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Reference table used in HW

𝜙 flux (class uses 𝑞⃗) vector field. thermal energy per unit time per unit area. �𝑀𝑇3 �

𝜙 ⋅ 𝑛̂ flux Flux component that is outward normal to the surface �𝑀𝑇3 �

𝑄 heat source heat energy generated per unit volume per unit time.� 𝑀
𝐿𝑇3 �

𝑒 thermal energy density. Scalar field. � 𝑀
𝐿𝑇2 �

𝜌 density mass density of material which heat flows in.�𝑀𝐿3 �

𝑐 specific heat energy to raise temp. of unit mass by one degree Kelvin. � 𝐿2

𝑇2𝑘𝑜 �

𝑘0 Thermal conductivity Used in flux equation 𝑞 = −𝑘0∇𝑢, where 𝑢 is temperature. � 𝑀𝐿
𝑇3𝑘0 �

𝜅 Thermal di�usivity Used in heat equation 𝜕𝑢
𝜕𝑡 = 𝜅∇𝑢 + 𝑄̃. Where 𝜅 = 𝑘0

𝜌𝑐 , 𝑢 is temperature.

conservation of energy 𝑑
𝑑𝑡
∫
𝑉
𝑒 (𝑥, 𝑡) 𝑑𝑣 = ∫

𝐴
𝑞̄ ⋅ (−𝑛̂) 𝑑𝐴 + ∫

𝑉
𝑄𝑑𝑣. Each term has units �𝑀𝐿2

𝑇3 �

Fourier law 𝜙 = −𝑘0∇̄𝑢. Relates flux to temperature gradient.

∇ Divergence operator A vector operator. ∇̄ = � 𝜕
𝜕𝑥 ,

𝜕
𝜕𝑦 ,

𝜕
𝜕𝑥
�

0.1 Problem 1 (1.5.2)

l.~. Heat Equation in Two or Three Dimensions 

x=L 

EXERCISES 1.5 

Area 
magnified 

Figure 1.5.3 Spherical coordinates. 

29 

1.5.1. Let c(x, y, z, t) denote tht' concentration of a pollutant (the amount per unit 
volume). 

(a) What is an expression for the total amount of pollutant in the region 
R? 

(b) Suppose that the flow J of the pollutant is proportional to the gradient 
of the concentration. (Is this reasonable?) Express conservation of the 
pollutant. 

( c) Derive the partial differential equation governing the diffusion of the 
pollutant. 

*1.5.2. For conduction of thermal energy, the heat flux vector is <p = -KoVu. If 
in addition the molecules move at an average velocity V, a process called 
convection, then briefly explain why <p == -KoVu + cpuV. Derive the 
corresponding equation for heat flow, including both conduction and con­
vection of thermal energy (assuming constant thermal properties with no 
sources). 

1.5.3. Consider the polar coordinates 

x == rcosO 

y == rsinO. 

(a) Since r2 == x2 + y2, show that ~ == cosO, ~ = sinO, 
cos 8 and 88 = -sin8 

r ' 8% r· 

(b) Show that r = cos oi + sin 03 and Ii = - sin oi + cos 03. 
(c) Using the chain rule, show that V = r tr + 1i~1B and hence Vu = 
~r+ ~~Ii. 

(d) If A = Arr + A81i, show that V·A == ~1.:(rAr) + ~1B(A8), sinct' 
8rj80 = Ii and 8lij80 = -r follows from part (b). 

Fourier law is used to relate the flux to the temperature 𝑢 by 𝜙 = −𝑘0
𝜕𝑢
𝜕𝑥 for 1D or 𝜙 = −𝑘0∇̄𝑢

in general.

In addition to conduction, there is convection present. This implies there is physical
material mass flowing out of the control volume carrying thermal energy with it in addition
to the process of conduction. Hence the flux is adjusted by this extra amount of thermal
energy motion. The amount of mass that flows out of the surface per unit time per unit

area is �𝑣̄𝜌� ≡ � 𝐿𝑇
𝑀
𝐿3 � = �𝑀𝑇

1
𝐿2 �. Where 𝜌 ≡ �𝑀𝐿3 � is the mass density of the material and 𝑣̄ ≡ � 𝐿𝑇�

is velocity vector of material flow at the surface.

Amount of thermal energy that �𝑣̄𝜌� contains is given by �𝑣̄𝜌� 𝑐𝑢 where 𝑐 is the specific heat
and 𝑢 is the temperature. Therefore �𝑣̄𝜌� 𝑐𝑢 is the additional flux due to convection part.
Total flux becomes

𝜙 = −𝑘0∇̄𝑢 + 𝑣̄𝜌𝑐𝑢 (1)

Starting from first principles. Using conservation of thermal energy given by

𝜕𝑒
𝜕𝑡

= − �∇̄ ⋅ 𝜙�

Where 𝑒 is thermal energy density in the control volume. In this problem 𝑄 = 0 (no energy
source). The integral form of the above is

𝑑
𝑑𝑡 �𝑉

𝑒 (𝑥̄, 𝑡) 𝑑𝑉 = �
𝑆
𝜙 ⋅ (−𝑛̂) 𝑑𝐴

The dot product with the unit normal vector 𝑛̂ was added to indicate the normal component
of 𝜙 at the surface. Since 𝑒 (𝑥̄, 𝑡) = 𝜌𝑐𝑢 and by using divergence theorem the above is written
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as
𝑑
𝑑𝑡 �𝑉

𝜌𝑐𝑢𝑑𝑉 = �
𝑉
∇̄ ⋅ �−𝜙� 𝑑𝑉

Using (1) in the above and moving the time derivative inside the integral (which becomes
partial derivative) results in

�
𝑉
𝜌𝑐

𝜕𝑢
𝜕𝑡

𝑑𝑉 = �
𝑉
∇̄ ⋅ �𝑘0∇̄𝑢 − 𝑣̄𝜌𝑐𝑢� 𝑑𝑉

Moving all terms under one integral sign

�
𝑉
�𝜌𝑐

𝜕𝑢
𝜕𝑡

− ∇̄ ⋅ �𝑘0∇̄𝑢 − 𝑣̄𝜌𝑐𝑢�� 𝑑𝑉 = 0

Since this is zero for all control volumes, therefore the integrand is zero

𝜌𝑐
𝜕𝑢
𝜕𝑡

− ∇̄ ⋅ �𝑘0∇̄𝑢 − 𝑣̄𝜌𝑐𝑢� = 0

Assuming 𝜅 = 𝑘0
𝜌𝑐 , the above simplifies to

𝜕
𝜕𝑡𝑢 = 𝜅∇ 2𝑢 − ∇̄ ⋅ (𝑣̄𝑢) (2)

Applying to (2) the property of divergence of the product of scalar and a vector given by

∇̄ ⋅ (𝑣̄𝑢) = 𝑢 �∇̄ ⋅ 𝑣̄� + 𝑣̄ ⋅ �∇̄𝑢�

Equation (2) becomes

𝜕𝑢
𝜕𝑡 = 𝜅∇ 2𝑢 − �𝑢 �∇̄ ⋅ 𝑣̄� + 𝑣̄ ⋅ �∇̄𝑢��

0.2 Problem 2 (1.5.3)

l.~. Heat Equation in Two or Three Dimensions 

x=L 

EXERCISES 1.5 

Area 
magnified 

Figure 1.5.3 Spherical coordinates. 

29 

1.5.1. Let c(x, y, z, t) denote tht' concentration of a pollutant (the amount per unit 
volume). 

(a) What is an expression for the total amount of pollutant in the region 
R? 

(b) Suppose that the flow J of the pollutant is proportional to the gradient 
of the concentration. (Is this reasonable?) Express conservation of the 
pollutant. 

( c) Derive the partial differential equation governing the diffusion of the 
pollutant. 

*1.5.2. For conduction of thermal energy, the heat flux vector is <p = -KoVu. If 
in addition the molecules move at an average velocity V, a process called 
convection, then briefly explain why <p == -KoVu + cpuV. Derive the 
corresponding equation for heat flow, including both conduction and con­
vection of thermal energy (assuming constant thermal properties with no 
sources). 

1.5.3. Consider the polar coordinates 

x == rcosO 

y == rsinO. 

(a) Since r2 == x2 + y2, show that ~ == cosO, ~ = sinO, 
cos 8 and 88 = -sin8 

r ' 8% r· 

(b) Show that r = cos oi + sin 03 and Ii = - sin oi + cos 03. 
(c) Using the chain rule, show that V = r tr + 1i~1B and hence Vu = 
~r+ ~~Ii. 

(d) If A = Arr + A81i, show that V·A == ~1.:(rAr) + ~1B(A8), sinct' 
8rj80 = Ii and 8lij80 = -r follows from part (b). 

30 Chapter 1. Heat Equation 

1.5.4. Using Exercise 1.5.3(a) and the chain rule for partial derivatives, derive the 
special case of Exercise 1.5.3(e) if u(r) only. 

1.5.5. Assume that the temperature is circularly symmetric: u = u(r, t), where 
r2 = x2 + y2. We will derive the heat equation for this problem. Consider 
any circular annulus a ~ r ~ b. 

(a) Show that the total heat energy is 211" J: cpur dr. 

(b) Show that the How of heat energy per unit time out of the annulus at 
r = b is -211"bKoau/ar I,=b. A similar result holds at r = a. 

(c) Use parts (a) and (b) to derive the circularly symmetric heat equation 
without sources: 

au k a ( au) 
at =;:ar rar . 

1.5.6. Modify Exercise 1.5.5 if the thermal properties depend on r. 

1.5.7. Derive the heat equation in two dimensions by using Green's theorem, 
(1.5.16), the two-dimensional form of the divergence theorem. 

1.5.8. If Laplace's equation is satisfied in three dimensions, show that 

If V'uon dS = 0 

for any dosed surface. (Hint: Use the divergence theorem.) Give a physical 
interpretation of this result (in the context of heat flow). 

1.5.9. Determine the equilibrium temperature distribution inside a circular annu­
lus (rl ~ r ~ r2): 

*(a) if the outer radius is at temperature T2 and the inner at Tl 

(b) if the outer radius is insulated and the inner radius is at temperature 
Tl 

1.5.10. Determine the equilibrium temperature distribution inside a circle (r ~ ro) 
if t.he boundary is fixed at temperature To. 

*1.5.11. Consider 
au = ~~ (rau) 
at rar ar 

a<r<b 

subject. to 

au au 
u(r.O) = f(r), ar (a, t) = ,B, and ar (b, t) = 1. 

Using physical reasoning. for what value(s) of {3 does an equilibrium tem­
perature distribution exist? 

𝑥 = 𝑟 cos𝜃 (1)

𝑦 = 𝑟 sin𝜃 (2)



4

0.2.1 part (a)

since 𝑟2 = 𝑥2 + 𝑦2 then taking derivative w.r.t. 𝑥

2𝑟
𝜕𝑟
𝜕𝑥

= 2𝑥

𝜕𝑟
𝜕𝑥

=
𝑥
𝑟

=
𝑟 cos𝜃

𝑟
= cos𝜃 (3)

And taking derivative w.r.t. 𝑦

2𝑟
𝜕𝑟
𝜕𝑦

= 2𝑦

𝜕𝑟
𝜕𝑦

=
𝑦
𝑟

=
𝑟 sin𝜃

𝑟
= sin𝜃 (4)

Now taking derivative w.r.t. 𝑦 of (2) gives

1 =
𝜕𝑟
𝜕𝑦

sin𝜃 + 𝑟
𝜕 sin𝜃
𝜕𝑦

From (4) 𝜕𝑟
𝜕𝑦 = sin𝜃 and 𝜕 sin𝜃

𝜕𝑦 = cos𝜃 �𝜕𝜃𝜕𝑦 �. Therefore the above becomes

1 = sin2 𝜃 + 𝑟 cos𝜃 �
𝜕𝜃
𝜕𝑦 �

𝜕𝜃
𝜕𝑦

=
1 − sin2 𝜃
𝑟 cos𝜃

=
cos2 𝜃
𝑟 cos𝜃

Hence

𝜕𝜃
𝜕𝑦 = cos𝜃

𝑟

Similarly, taking derivative w.r.t. 𝑥 of (1) gives

1 =
𝜕𝑟
𝜕𝑥

cos𝜃 + 𝑟
𝜕 cos𝜃
𝜕𝑥

From (3), 𝜕𝑟
𝜕𝑥 = cos𝜃 and 𝜕 cos𝜃

𝜕𝑥 = − sin𝜃 �𝜕𝜃𝜕𝑥 �, Therefore the above becomes

1 = cos2 𝜃 − 𝑟 sin𝜃 �
𝜕𝜃
𝜕𝑥 �

𝜕𝜃
𝜕𝑥

=
1 − cos2 𝜃
𝑟 sin𝜃

=
sin2 𝜃
𝑟 sin𝜃

Hence

𝜕𝜃
𝜕𝑥 = sin𝜃

𝑟

0.2.2 Part (b)

By definition of unit vector

𝑟̂ =
𝑟̄
|𝑟|

=
(|𝑟| cos𝜃) ̂𝚤 + (|𝑟| sin𝜃) ̂𝚥

|𝑟|
= cos𝜃 ̂𝚤 + sin𝜃 ̂𝚥
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To find 𝜃̂, two relations are used.�𝜃̂� = 1 by definite of unit vector. Also 𝜃̂ ⋅ 𝑟̂ = 0 since
these are orthogonal vectors (basis vectors). Assuming that 𝜃̂ = 𝑐1 ̂𝚤 + 𝑐2 ̂𝚥, the two equations
generated are

�𝜃̂� = 1 = 𝑐21 + 𝑐22 (1)

𝜃̂ ⋅ 𝑟̂ = 0 = �cos𝜃 ̂𝚤 + sin𝜃 ̂𝚥� ⋅ �𝑐1 ̂𝚤 + 𝑐2 ̂𝚥� = 𝑐1 cos𝜃 + 𝑐2 sin𝜃 (2)

From (2), 𝑐1 =
−𝑐2 sin𝜃

cos𝜃 . Substituting this into (1) gives

1 = �
−𝑐2 sin𝜃

cos𝜃 �
2

+ 𝑐22

=
𝑐22 sin2 𝜃
cos2 𝜃 + 𝑐22

Solving for 𝑐2 gives

cos2 𝜃 = 𝑐22 �sin
2 𝜃 + cos2 𝜃�

𝑐2 = cos𝜃
Since 𝑐2 is now known, 𝑐1 is found from (2)

0 = 𝑐1 cos𝜃 + 𝑐2 sin𝜃
0 = 𝑐1 cos𝜃 + (cos𝜃) sin𝜃

𝑐1 =
− (cos𝜃) sin𝜃

cos𝜃
Hence 𝑐1 = − sin𝜃. Therefore

𝜃̂ = − sin𝜃 ̂𝚤 + cos𝜃 ̂𝚥

0.2.3 Part (c)

∇ =
𝜕
𝜕𝑥

̂𝚤 +
𝜕
𝜕𝑥

̂𝚥 (1)

Since 𝑥 ≡ 𝑥 (𝑟, 𝜃) , 𝑦 ≡ 𝑦 (𝑟, 𝜃), then
𝜕
𝜕𝑥

=
𝜕
𝜕𝑟

𝜕𝑟
𝜕𝑥

+
𝜕
𝜕𝜃

𝜕𝜃
𝜕𝑥

𝜕
𝜕𝑦

=
𝜕
𝜕𝑟

𝜕𝑟
𝜕𝑦

+
𝜕
𝜕𝜃

𝜕𝜃
𝜕𝑦

Equation (1) becomes

∇ = �
𝜕
𝜕𝑟

𝜕𝑟
𝜕𝑥

+
𝜕
𝜕𝜃

𝜕𝜃
𝜕𝑥 �

̂𝚤 + �
𝜕
𝜕𝑟

𝜕𝑟
𝜕𝑦

+
𝜕
𝜕𝜃

𝜕𝜃
𝜕𝑦 �

̂𝚥

Using result found in (a), the above becomes

∇ = �
𝜕
𝜕𝑟

cos𝜃 +
𝜕
𝜕𝜃 �−

sin𝜃
𝑟 �� ̂𝚤 + �

𝜕
𝜕𝑟

sin𝜃 +
𝜕
𝜕𝜃

cos𝜃
𝑟 � ̂𝚥

Collecting on 𝜕
𝜕𝑟 ,

𝜕
𝜕𝜃 gives

∇ =
𝜕
𝜕𝑟

�cos𝜃 ̂𝚤 + sin𝜃 ̂𝚥� +
𝜕
𝜕𝜃 �−

sin𝜃
𝑟

̂𝚤 +
cos𝜃
𝑟

̂𝚥�

=
𝜕
𝜕𝑟

�cos𝜃 ̂𝚤 + sin𝜃 ̂𝚥� +
1
𝑟
𝜕
𝜕𝜃

�− sin𝜃 ̂𝚤 + cos𝜃 ̂𝚥�

Using result from (b), the above simplifies to

∇ = 𝑟̂ 𝜕
𝜕𝑟 + 𝜃̂1

𝑟
𝜕
𝜕𝜃

Hence

∇𝑢 = �𝑟̂
𝜕
𝜕𝑟

𝑢 + 𝜃̂
1
𝑟
𝜕
𝜕𝜃

𝑢�
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0.2.4 Part (d)

𝐴̄ = 𝐴𝑟𝑟̂ + 𝐴𝜃𝜃̂

∇ = 𝑟̂
𝜕
𝜕𝑟

+ 𝜃̂
1
𝑟
𝜕
𝜕𝜃

Hence

∇ ⋅ 𝐴̄ = �𝑟̂
𝜕
𝜕𝑟

+ 𝜃̂
1
𝑟
𝜕
𝜕𝜃�

⋅ �𝐴𝑟𝑟̂ + 𝐴𝜃𝜃̂�

= �𝑟̂
𝜕
𝜕𝑟

⋅ 𝐴𝑟𝑟̂� + �𝑟̂
𝜕
𝜕𝑟

⋅ 𝐴𝜃𝜃̂� + �𝜃̂
1
𝑟
𝜕
𝜕𝜃

⋅ 𝐴𝑟𝑟̂� + �𝜃̂
1
𝑟
𝜕
𝜕𝜃

⋅ 𝐴𝜃𝜃̂� (1)

But

𝑟̂
𝜕
𝜕𝑟

⋅ 𝐴𝑟𝑟̂ = 𝑟̂
𝜕
𝜕𝑟

(𝐴𝑟𝑟̂)

= 𝑟̂ ⋅ �
𝜕𝐴𝑟
𝜕𝑟

𝑟̂ + 𝐴𝑟
𝜕𝑟̂
𝜕𝑟�

=
𝜕𝐴𝑟
𝜕𝑟

(𝑟̂ ⋅ 𝑟̂) + 𝐴𝑟 �𝑟̂ ⋅
𝜕𝑟̂
𝜕𝑟�

=
𝜕𝐴𝑟
𝜕𝑟

(1) + 𝐴𝑟 (0)

=
𝜕𝐴𝑟
𝜕𝑟

(2)

And

𝑟̂
𝜕
𝜕𝑟

⋅ 𝐴𝜃𝜃̂ = 𝑟̂
𝜕
𝜕𝑟

�𝐴𝜃𝜃̂�

= 𝑟̂ ⋅ �
𝜕𝐴𝜃
𝜕𝑟

𝜃̂ + 𝐴𝜃
𝜕𝜃̂
𝜕𝑟 �

=
𝜕𝐴𝜃
𝜕𝑟

�𝑟̂ ⋅ 𝜃̂� + 𝐴𝜃 �𝑟̂ ⋅
𝜕𝜃̂
𝜕𝑟 �

=
𝜕𝐴𝜃
𝜕𝑟

(0) + 𝐴𝜃 (0) = 0 (3)

And

𝜃̂
1
𝑟
𝜕
𝜕𝜃

⋅ 𝐴𝑟𝑟̂ = 𝜃̂
1
𝑟
𝜕
𝜕𝜃

(𝐴𝑟𝑟̂)

=
1
𝑟
𝜃̂ ⋅ �

𝜕𝐴𝑟
𝜕𝜃

𝑟̂ + 𝐴𝑟
𝜕𝑟̂
𝜕𝜃�

=
1
𝑟
𝜕𝐴𝑟
𝜕𝜃

�𝜃̂ ⋅ 𝑟̂� +
1
𝑟
𝐴𝑟 �𝜃̂ ⋅

𝜕𝑟̂
𝜕𝜃�

=
1
𝑟
𝜕𝐴𝑟
𝜕𝜃

(0) +
1
𝑟
𝐴𝑟 �𝜃̂ ⋅ 𝜃̂�

Since 𝜕𝑟̂
𝜕𝜃 = 𝜃̂. Therefore

𝜃̂
1
𝑟
𝜕
𝜕𝜃

⋅ 𝐴𝑟𝑟̂ =
1
𝑟
𝐴𝑟 (4)
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And finally

𝜃̂
1
𝑟
𝜕
𝜕𝜃

⋅ 𝐴𝜃𝜃̂ = 𝜃̂
1
𝑟
𝜕
𝜕𝜃

�𝐴𝜃𝜃̂�

=
1
𝑟
𝜃̂ ⋅ �

𝜕𝐴𝜃
𝜕𝜃

𝜃̂ + 𝐴𝜃
𝜕𝜃̂
𝜕𝜃�

=
1
𝑟
𝜕𝐴𝜃
𝜕𝜃

�𝜃̂ ⋅ 𝜃̂� +
1
𝑟
𝐴𝜃 �𝜃̂ ⋅

𝜕𝜃̂
𝜕𝜃�

=
1
𝑟
𝜕𝐴𝜃
𝜕𝜃

(1) +
1
𝑟
𝐴𝜃 �𝜃̂ ⋅ (−𝑟̂)�

=
1
𝑟
𝜕𝐴𝜃
𝜕𝜃

(1) +
1
𝑟
𝐴𝜃 (0)

=
1
𝑟
𝜕𝐴𝜃
𝜕𝜃

(5)

Substituting (2,3,4,5) into (1) gives

∇ ⋅ 𝐴̄ =
𝜕𝐴𝑟
𝜕𝑟

+ 0 +
1
𝑟
𝐴𝑟 +

1
𝑟
𝜕𝐴𝜃
𝜕𝜃

=
1
𝑟
𝐴𝑟 +

𝜕𝐴𝑟
𝜕𝑟

+
1
𝑟
𝜕𝐴𝜃
𝜕𝜃

Add since 𝜕
𝜕𝑟
(𝑟𝐴𝑟) = 𝐴𝑟 + 𝑟𝜕𝐴𝑟

𝜕𝑟 , the above can also be written as

∇ ⋅ 𝐴̄ =
1
𝑟 �

𝐴𝑟 + 𝑟
𝜕𝐴𝑟
𝜕𝑟 � +

1
𝑟
𝜕𝐴𝜃
𝜕𝜃

=
1
𝑟
𝜕
𝜕𝑟

(𝑟𝐴𝑟) +
1
𝑟
𝜕𝐴𝜃
𝜕𝜃

0.2.5 Part (e)

From part (c), it was found that

∇ = 𝑟̂
𝜕
𝜕𝑟

+ 𝜃̂
1
𝑟
𝜕
𝜕𝜃

But

∇ 2 = ∇ ⋅ ∇

= �𝑟̂
𝜕
𝜕𝑟

+ 𝜃̂
1
𝑟
𝜕
𝜕𝜃�

⋅ �𝑟̂
𝜕
𝜕𝑟

+ 𝜃̂
1
𝑟
𝜕
𝜕𝜃�

Using result of part (d), which says that ∇ ⋅ 𝐴̄ = 1
𝑟
𝜕
𝜕𝑟
(𝑟𝐴𝑟)+

1
𝑟
𝜕𝐴𝜃
𝜕𝜃 , the above becomes (where

now 𝐴𝑟 ≡
𝜕
𝜕𝑟 , 𝐴𝜃 ≡ 1

𝑟
𝜕
𝜕𝜃)

∇ 2 =
1
𝑟
𝜕
𝜕𝑟 �

𝑟
𝜕
𝜕𝑟�

+
1
𝑟
𝜕
𝜕𝜃 �

1
𝑟
𝜕
𝜕𝜃�

=
1
𝑟
𝜕
𝜕𝑟 �

𝑟
𝜕
𝜕𝑟�

+
1
𝑟2

𝜕2

𝜕𝜃2

Hence

∇ 2𝑢 =
1
𝑟
𝜕
𝜕𝑟 �

𝑟
𝜕𝑢
𝜕𝑟 �

+
1
𝑟2
𝜕2𝑢
𝜕𝜃2

0.3 Problem 3 (1.5.4)
30 Chapter 1. Heat Equation 

1.5.4. Using Exercise 1.5.3(a) and the chain rule for partial derivatives, derive the 
special case of Exercise 1.5.3(e) if u(r) only. 

1.5.5. Assume that the temperature is circularly symmetric: u = u(r, t), where 
r2 = x2 + y2. We will derive the heat equation for this problem. Consider 
any circular annulus a ~ r ~ b. 

(a) Show that the total heat energy is 211" J: cpur dr. 

(b) Show that the How of heat energy per unit time out of the annulus at 
r = b is -211"bKoau/ar I,=b. A similar result holds at r = a. 

(c) Use parts (a) and (b) to derive the circularly symmetric heat equation 
without sources: 

au k a ( au) 
at =;:ar rar . 

1.5.6. Modify Exercise 1.5.5 if the thermal properties depend on r. 

1.5.7. Derive the heat equation in two dimensions by using Green's theorem, 
(1.5.16), the two-dimensional form of the divergence theorem. 

1.5.8. If Laplace's equation is satisfied in three dimensions, show that 

If V'uon dS = 0 

for any dosed surface. (Hint: Use the divergence theorem.) Give a physical 
interpretation of this result (in the context of heat flow). 

1.5.9. Determine the equilibrium temperature distribution inside a circular annu­
lus (rl ~ r ~ r2): 

*(a) if the outer radius is at temperature T2 and the inner at Tl 

(b) if the outer radius is insulated and the inner radius is at temperature 
Tl 

1.5.10. Determine the equilibrium temperature distribution inside a circle (r ~ ro) 
if t.he boundary is fixed at temperature To. 

*1.5.11. Consider 
au = ~~ (rau) 
at rar ar 

a<r<b 

subject. to 

au au 
u(r.O) = f(r), ar (a, t) = ,B, and ar (b, t) = 1. 

Using physical reasoning. for what value(s) of {3 does an equilibrium tem­
perature distribution exist? 
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Let 𝑢 ≡ 𝑢 (𝑟). From problem 2 part (a) it was found that

𝑥 = 𝑟 cos𝜃
𝑦 = 𝑟 sin𝜃

𝜕𝑟
𝜕𝑥

= cos𝜃

𝜕𝑟
𝜕𝑦

= sin𝜃

𝜕𝜃
𝜕𝑦

=
cos𝜃
𝑟

𝜕𝜃
𝜕𝑥

=
− sin𝜃

𝑟
And

∇ 2𝑢 =
𝜕2𝑢
𝜕𝑥2

+
𝜕2𝑢
𝜕𝑦2

(1)

But
𝜕2𝑢
𝜕𝑥2

=
𝜕
𝜕𝑥 �

𝜕𝑢
𝜕𝑥�

=
𝜕
𝜕𝑥 �

𝜕𝑢
𝜕𝑟

𝜕𝑟
𝜕𝑥�

=
𝜕
𝜕𝑥 �

𝜕𝑢
𝜕𝑟

cos𝜃�

= �
𝜕
𝜕𝑥

𝜕𝑢
𝜕𝑟 �

cos𝜃 +
𝜕𝑢
𝜕𝑟

𝜕 cos𝜃
𝜕𝑥

= �
𝜕2𝑢
𝜕𝑟2

𝜕𝑟
𝜕𝑥�

cos𝜃 +
𝜕𝑢
𝜕𝑟 �

− sin𝜃
𝜕𝜃
𝜕𝑥 �

= �
𝜕2𝑢
𝜕𝑟2

cos𝜃� cos𝜃 +
𝜕𝑢
𝜕𝑟 �

− sin𝜃 �
− sin𝜃

𝑟 ��

=
𝜕2𝑢
𝜕𝑟2

cos2 𝜃 +
1
𝑟

sin2 𝜃
𝜕𝑢
𝜕𝑟

(2)

And
𝜕2𝑢
𝜕𝑦2

=
𝜕
𝜕𝑦 �

𝜕𝑢
𝜕𝑦�

=
𝜕
𝜕𝑦 �

𝜕𝑢
𝜕𝑟

𝜕𝑟
𝜕𝑦�

=
𝜕
𝜕𝑦 �

𝜕𝑢
𝜕𝑟

sin𝜃�

= �
𝜕
𝜕𝑦

𝜕𝑢
𝜕𝑟 �

sin𝜃 +
𝜕𝑢
𝜕𝑟

𝜕 sin𝜃
𝜕𝑦

= �
𝜕2𝑢
𝜕𝑟2

𝜕𝑟
𝜕𝑦�

sin𝜃 +
𝜕𝑢
𝜕𝑟 �

cos𝜃𝜕𝜃
𝜕𝑦 �

= �
𝜕2𝑢
𝜕𝑟2

sin𝜃� sin𝜃 +
𝜕𝑢
𝜕𝑟 �

cos𝜃 �
cos𝜃
𝑟 ��

=
𝜕2𝑢
𝜕𝑟2

sin2 𝜃 +
1
𝑟

cos2 𝜃𝜕𝑢
𝜕𝑟

(3)

Substituting (2),(3) into (1) gives

∇ 2𝑢 = �
𝜕2𝑢
𝜕𝑟2

cos2 𝜃 +
1
𝑟

sin2 𝜃
𝜕𝑢
𝜕𝑟 �

+ �
𝜕2𝑢
𝜕𝑟2

sin2 𝜃 +
1
𝑟

cos2 𝜃𝜕𝑢
𝜕𝑟 �

=
𝜕2𝑢
𝜕𝑟2

+
1
𝑟 �

sin2 𝜃
𝜕𝑢
𝜕𝑟

+ cos2 𝜃𝜕𝑢
𝜕𝑟 �

=
𝜕2𝑢
𝜕𝑟2

+
1
𝑟
𝜕𝑢
𝜕𝑟
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Which can be written as

∇ 2𝑢 = 1
𝑟
𝜕
𝜕𝑟
�𝑟𝜕𝑢𝜕𝑟 �

Which is the special case of problem 2(e) ∇ 2𝑢 = 1
𝑟
𝜕
𝜕𝑟
�𝑟𝜕𝑢𝜕𝑟 � +

1
𝑟2

𝜕2𝑢
𝜕𝜃2 when 𝑢 ≡ 𝑢 (𝑟) only.

0.4 Problem 4 (1.5.5)

30 Chapter 1. Heat Equation 

1.5.4. Using Exercise 1.5.3(a) and the chain rule for partial derivatives, derive the 
special case of Exercise 1.5.3(e) if u(r) only. 

1.5.5. Assume that the temperature is circularly symmetric: u = u(r, t), where 
r2 = x2 + y2. We will derive the heat equation for this problem. Consider 
any circular annulus a ~ r ~ b. 

(a) Show that the total heat energy is 211" J: cpur dr. 

(b) Show that the How of heat energy per unit time out of the annulus at 
r = b is -211"bKoau/ar I,=b. A similar result holds at r = a. 

(c) Use parts (a) and (b) to derive the circularly symmetric heat equation 
without sources: 

au k a ( au) 
at =;:ar rar . 

1.5.6. Modify Exercise 1.5.5 if the thermal properties depend on r. 

1.5.7. Derive the heat equation in two dimensions by using Green's theorem, 
(1.5.16), the two-dimensional form of the divergence theorem. 

1.5.8. If Laplace's equation is satisfied in three dimensions, show that 

If V'uon dS = 0 

for any dosed surface. (Hint: Use the divergence theorem.) Give a physical 
interpretation of this result (in the context of heat flow). 

1.5.9. Determine the equilibrium temperature distribution inside a circular annu­
lus (rl ~ r ~ r2): 

*(a) if the outer radius is at temperature T2 and the inner at Tl 

(b) if the outer radius is insulated and the inner radius is at temperature 
Tl 

1.5.10. Determine the equilibrium temperature distribution inside a circle (r ~ ro) 
if t.he boundary is fixed at temperature To. 

*1.5.11. Consider 
au = ~~ (rau) 
at rar ar 

a<r<b 

subject. to 

au au 
u(r.O) = f(r), ar (a, t) = ,B, and ar (b, t) = 1. 

Using physical reasoning. for what value(s) of {3 does an equilibrium tem­
perature distribution exist? 

0.4.1 Part(a)

Considering the thermal energy in a annulus as shown

dr

Amount of thermal energy in
unit thickness volume is
rdrdθ cuρ

rdθ

a

Amount of thermal energy in

annulus is
∫ 2π

0

∫ b
a
(cρu) rdrdθ

dr
dθ

r
b

Integrating gives total thermal energy

�
2𝜋

0
�

𝑏

𝑎
�𝑐𝜌𝑢� 𝑟𝑑𝑟𝑑𝜃 = �

2𝜋

0
𝑑𝜃�

𝑏

𝑎
�𝑐𝜌𝑢� 𝑟𝑑𝑟

= 2𝜋�
𝑏

𝑎
�𝑐𝜌𝑢� 𝑟𝑑𝑟

0.4.2 Part (b)

Using Fourier law,

𝜙 = −𝑘0∇̄𝑢

= −𝑘0 �𝑟̂
𝜕𝑢
𝜕𝑟

+ 𝜃̂
1
𝑟
𝜕𝑢
𝜕𝜃�

Since symmetric in 𝜃, then 𝜕𝑢
𝜕𝜃 = 0 and the above reduces to

𝜙 = −𝑘0𝑟̂
𝜕𝑢
𝜕𝑟
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Hence the heat flow per unit time through surface at 𝑟 = 𝑏 is

�
2𝜋

0
𝜙 ⋅ (−𝑛̂) 𝑑𝑠

�
2𝜋

0
�−𝑘0𝑟̂

𝜕𝑢
𝜕𝑟 �

⋅ (𝑛̂) 𝑟𝑑𝜃

But 𝑛̂ = 𝑟̂ since radial unit vector. The above becomes

�
2𝜋

0
−𝑘0

𝜕𝑢
𝜕𝑟

𝑟𝑑𝜃 = − (2𝜋𝑘0) 𝑟
𝜕𝑢
𝜕𝑟

At 𝑟 = 𝑏 the above becomes

− (2𝜋𝑘0) 𝑏
𝜕𝑢
𝜕𝑟

�
𝑟=𝑏

Similarly at 𝑟 = 𝑎

− (2𝜋𝑘0) 𝑎
𝜕𝑢
𝜕𝑟

�
𝑟=𝑎

0.4.3 Part (c)

Applying that the rate of time change of total energy equal to flux through the boundaries
gives

𝑑
𝑑𝑡 �

2𝜋�
𝑏

𝑎
�𝑐𝜌𝑢� 𝑟𝑑𝑟� = − (2𝜋𝑘0) 𝑎

𝜕𝑢
𝜕𝑟

�
𝑟=𝑎

+ (2𝜋𝑘0) 𝑏
𝜕𝑢
𝜕𝑟

�
𝑟=𝑏

= 2𝜋𝑘0�
𝑏

𝑎

𝜕
𝜕𝑟 �

𝑟
𝜕𝑢
𝜕𝑟 �

𝑑𝑟

Moving 𝑑
𝑑𝑡 inside the first integral, it become partial

2𝜋�
𝑏

𝑎
�𝑐𝜌

𝜕𝑢
𝜕𝑡 �

𝑟𝑑𝑟 = 2𝜋𝑘0�
𝑏

𝑎

𝜕
𝜕𝑟 �

𝑟
𝜕𝑢
𝜕𝑟 �

𝑑𝑟

Moving everything under one integral

�
𝑏

𝑎
��𝑐𝜌

𝜕𝑢
𝜕𝑡 �

𝑟 − 𝑘0
𝜕
𝜕𝑟 �

𝑟
𝜕𝑢
𝜕𝑟 ��

𝑑𝑟 = 0

Hence, since this is valid for any annulus, then the integrand is zero

�𝑐𝜌
𝜕𝑢
𝜕𝑡 �

𝑟 − 𝑘0
𝜕
𝜕𝑟 �

𝑟
𝜕𝑢
𝜕𝑟 �

= 0

𝜕𝑢
𝜕𝑡

=
𝑘0
𝑐𝜌

1
𝑟
𝜕
𝜕𝑟 �

𝑟
𝜕𝑢
𝜕𝑟 �

Hence

𝜕𝑢
𝜕𝑡 =

𝜅
𝑟
𝜕
𝜕𝑟
�𝑟𝜕𝑢𝜕𝑟 �

Where 𝜅 = 𝑘0
𝑐𝜌 .

0.5 Problem 5 (1.5.6)

30 Chapter 1. Heat Equation 

1.5.4. Using Exercise 1.5.3(a) and the chain rule for partial derivatives, derive the 
special case of Exercise 1.5.3(e) if u(r) only. 

1.5.5. Assume that the temperature is circularly symmetric: u = u(r, t), where 
r2 = x2 + y2. We will derive the heat equation for this problem. Consider 
any circular annulus a ~ r ~ b. 

(a) Show that the total heat energy is 211" J: cpur dr. 

(b) Show that the How of heat energy per unit time out of the annulus at 
r = b is -211"bKoau/ar I,=b. A similar result holds at r = a. 

(c) Use parts (a) and (b) to derive the circularly symmetric heat equation 
without sources: 

au k a ( au) 
at =;:ar rar . 

1.5.6. Modify Exercise 1.5.5 if the thermal properties depend on r. 

1.5.7. Derive the heat equation in two dimensions by using Green's theorem, 
(1.5.16), the two-dimensional form of the divergence theorem. 

1.5.8. If Laplace's equation is satisfied in three dimensions, show that 

If V'uon dS = 0 

for any dosed surface. (Hint: Use the divergence theorem.) Give a physical 
interpretation of this result (in the context of heat flow). 

1.5.9. Determine the equilibrium temperature distribution inside a circular annu­
lus (rl ~ r ~ r2): 

*(a) if the outer radius is at temperature T2 and the inner at Tl 

(b) if the outer radius is insulated and the inner radius is at temperature 
Tl 

1.5.10. Determine the equilibrium temperature distribution inside a circle (r ~ ro) 
if t.he boundary is fixed at temperature To. 

*1.5.11. Consider 
au = ~~ (rau) 
at rar ar 

a<r<b 

subject. to 

au au 
u(r.O) = f(r), ar (a, t) = ,B, and ar (b, t) = 1. 

Using physical reasoning. for what value(s) of {3 does an equilibrium tem­
perature distribution exist? 

The earlier problem is now repeated but in this problem 𝑐 ≡ 𝑐 (𝑟) , 𝑘0 ≡ 𝑘0 (𝑟) and 𝜌 ≡ 𝜌 (𝑟).
These are the thermal properties in the problem.
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0.5.1 Part(a)

�
2𝜋

0
�

𝑏

𝑎
�𝑐 (𝑟) 𝜌 (𝑟) 𝑢� 𝑟𝑑𝑟𝑑𝜃 = �

2𝜋

0
𝑑𝜃�

𝑏

𝑎
�𝑐 (𝑟) 𝜌 (𝑟) 𝑢� 𝑟𝑑𝑟

= 2𝜋�
𝑏

𝑎
�𝑐 (𝑟) 𝜌 (𝑟) 𝑢� 𝑟𝑑𝑟

0.5.2 Part (b)

𝜙 = −𝑘0 (𝑟) 𝑟̂
𝜕𝑢
𝜕𝑟

The heat flow per unit time through surface at 𝑟 is therefore

�
2𝜋

0
𝜙 ⋅ (𝑛̂) 𝑑𝑠 = �

2𝜋

0
�−𝑘0 (𝑟) 𝑟̂

𝜕𝑢
𝜕𝑟 �

⋅ (𝑛̂) 𝑟𝑑𝜃

But 𝑛̂ = 𝑟̂ since radial therefore

�
2𝜋

0
−𝑘0 (𝑟)

𝜕𝑢
𝜕𝑟

𝑟𝑑𝜃 = − (2𝜋𝑘0 (𝑟)) 𝑟
𝜕𝑢
𝜕𝑟

At 𝑟 = 𝑏 the above becomes

− �2𝜋 𝑘0�𝑟=𝑏� 𝑏
𝜕𝑢
𝜕𝑟

�
𝑟=𝑏

Similarly at 𝑟 = 𝑎

− �2𝜋 𝑘0�𝑟=𝑎� 𝑎
𝜕𝑢
𝜕𝑟

�
𝑟=𝑎

0.5.3 Part (c)

Applying that the rate of time change of total energy equal to flux through the boundaries
gives

𝑑
𝑑𝑡 �

2𝜋�
𝑏

𝑎
�𝑐 (𝑟) 𝜌 (𝑟) 𝑢� 𝑟𝑑𝑟� = − �2𝜋 𝑘0�𝑟=𝑎� 𝑎

𝜕𝑢
𝜕𝑟

�
𝑟=𝑎

+ �2𝜋 𝑘0�𝑟=𝑏� 𝑏
𝜕𝑢
𝜕𝑟

�
𝑟=𝑏

= 2𝜋�
𝑏

𝑎

𝜕
𝜕𝑟 �

𝑘0 (𝑟) 𝑟
𝜕𝑢
𝜕𝑟 �

𝑑𝑟

Moving 𝑑
𝑑𝑡 inside the first integral, it become partial

2𝜋�
𝑏

𝑎
�𝑐 (𝑟) 𝜌 (𝑟)

𝜕𝑢
𝜕𝑡 �

𝑟𝑑𝑟 = 2𝜋�
𝑏

𝑎

𝜕
𝜕𝑟 �

𝑘0 (𝑟) 𝑟
𝜕𝑢
𝜕𝑟 �

𝑑𝑟

Moving everything under one integral

�
𝑏

𝑎
��𝑐 (𝑟) 𝜌 (𝑟)

𝜕𝑢
𝜕𝑡 �

𝑟 −
𝜕
𝜕𝑟 �

𝑘0 (𝑟) 𝑟
𝜕𝑢
𝜕𝑟 ��

𝑑𝑟 = 0

Since this is valid for any annulus then the integrand is zero

�𝑐 (𝑟) 𝜌 (𝑟)
𝜕𝑢
𝜕𝑡 �

𝑟 −
𝜕
𝜕𝑟 �

𝑘0 (𝑟) 𝑟
𝜕𝑢
𝜕𝑟 �

= 0

Therefore, the heat equation when the thermal properties depends on 𝑟 becomes

𝜕𝑢(𝑟,𝑡)
𝜕𝑡 = 1

𝜌(𝑟)𝑐(𝑟)
1
𝑟
𝜕
𝜕𝑟
�𝑘0 (𝑟) 𝑟

𝜕𝑢(𝑟,𝑡)
𝜕𝑟

�
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0.6 Problem 6 (1.5.9)

30 Chapter 1. Heat Equation 

1.5.4. Using Exercise 1.5.3(a) and the chain rule for partial derivatives, derive the 
special case of Exercise 1.5.3(e) if u(r) only. 

1.5.5. Assume that the temperature is circularly symmetric: u = u(r, t), where 
r2 = x2 + y2. We will derive the heat equation for this problem. Consider 
any circular annulus a ~ r ~ b. 

(a) Show that the total heat energy is 211" J: cpur dr. 

(b) Show that the How of heat energy per unit time out of the annulus at 
r = b is -211"bKoau/ar I,=b. A similar result holds at r = a. 

(c) Use parts (a) and (b) to derive the circularly symmetric heat equation 
without sources: 

au k a ( au) 
at =;:ar rar . 

1.5.6. Modify Exercise 1.5.5 if the thermal properties depend on r. 

1.5.7. Derive the heat equation in two dimensions by using Green's theorem, 
(1.5.16), the two-dimensional form of the divergence theorem. 

1.5.8. If Laplace's equation is satisfied in three dimensions, show that 

If V'uon dS = 0 

for any dosed surface. (Hint: Use the divergence theorem.) Give a physical 
interpretation of this result (in the context of heat flow). 

1.5.9. Determine the equilibrium temperature distribution inside a circular annu­
lus (rl ~ r ~ r2): 

*(a) if the outer radius is at temperature T2 and the inner at Tl 

(b) if the outer radius is insulated and the inner radius is at temperature 
Tl 

1.5.10. Determine the equilibrium temperature distribution inside a circle (r ~ ro) 
if t.he boundary is fixed at temperature To. 

*1.5.11. Consider 
au = ~~ (rau) 
at rar ar 

a<r<b 

subject. to 

au au 
u(r.O) = f(r), ar (a, t) = ,B, and ar (b, t) = 1. 

Using physical reasoning. for what value(s) of {3 does an equilibrium tem­
perature distribution exist? 

0.6.1 Part (a)

The heat equation is 𝜕𝑢
𝜕𝑡 = 𝜅

𝑟
𝜕
𝜕𝑟
�𝑟𝜕𝑢𝜕𝑟 �. At steady state 𝜕𝑢

𝜕𝑡 = 0. And since circular region,

symmetry in 𝜃 is assumed and therefore temperature 𝑢 depends only on 𝑟 only. This means
𝑢 (𝑟0) is the same at any angle 𝜃 for that specific 𝑟0. This becomes a second order ODE

𝜅
𝑟
𝑑
𝑑𝑟 �

𝑟
𝑑𝑢
𝑑𝑟 �

= 0

𝜅
𝑟 �

𝑑𝑢
𝑑𝑟

+ 𝑟
𝑑2𝑢
𝑑𝑟2 �

= 0

𝑑2𝑢
𝑑𝑟2

+
1
𝑟
𝑑𝑢
𝑑𝑟

= 0

Since 𝜅
𝑟 ≠ 0. Assuming 𝑑𝑢

𝑑𝑟 = 𝑣 (𝑟), the above becomes

𝑑𝑣
𝑑𝑟

+
1
𝑟
𝑣 = 0

𝑑𝑣
𝑑𝑟

= −
1
𝑟
𝑣

𝑑𝑣
𝑣

= −
𝑑𝑟
𝑟

Integrating

ln 𝑣 = − ln 𝑟 + 𝑐1
𝑣 = 𝑒− ln 𝑟+𝑐1

= 𝑐2𝑒− ln 𝑟

= 𝑐2
1
𝑟

Where 𝑐2 = 𝑒𝑐1. Since 𝑑𝑢
𝑑𝑟 = 𝑣, then

𝑑𝑢
𝑑𝑟

= 𝑐2
1
𝑟

𝑑𝑢 = 𝑐2
1
𝑟
𝑑𝑟

Integrating

𝑢 (𝑟) = 𝑐2 ln 𝑟 + 𝑐3
When 𝑟 = 𝑟1, 𝑢 = 𝑇1, and when 𝑟 = 𝑟2, 𝑢 = 𝑇2, therefore

𝑇1 = 𝑐2 ln 𝑟1 + 𝑐3
𝑇2 = 𝑐2 ln 𝑟2 + 𝑐3

From first equation, 𝑐3 = 𝑇1 − 𝑐2 ln 𝑟1. Substituting in second equation gives

𝑇2 = 𝑐2 ln 𝑟2 + 𝑇1 − 𝑐2 ln 𝑟1
= 𝑐2 (ln 𝑟2 − ln 𝑟1) + 𝑇1

Therefore

𝑐2 =
𝑇2 − 𝑇1

ln 𝑟2 − ln 𝑟1
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Hence 𝑐3 = 𝑇1 −
𝑇2−𝑇1

ln 𝑟2−ln 𝑟1
ln 𝑟1. Therefore the steady state solution becomes

𝑢 (𝑟) = 𝑐2 ln 𝑟 + 𝑐3

=
𝑇2 − 𝑇1

ln 𝑟2 − ln 𝑟1
ln 𝑟 + 𝑇1 −

𝑇2 − 𝑇1
ln 𝑟2 − ln 𝑟1

ln 𝑟1

= 𝑇1 +
(𝑇2 − 𝑇1) ln 𝑟 − (𝑇2 − 𝑇1) ln 𝑟1

ln 𝑟2 − ln 𝑟1

= 𝑇1 +
(𝑇2 − 𝑇1) (ln 𝑟 − ln 𝑟1)

ln 𝑟2 − ln 𝑟1

= 𝑇1 + (𝑇2 − 𝑇1)
ln � 𝑟

𝑟1
�

ln � 𝑟2
𝑟1
�

Hence

𝑢 (𝑟) = 𝑇1 + (𝑇2 − 𝑇1)
ln� 𝑟

𝑟1
�

ln� 𝑟2𝑟1
�

0.6.2 Part (b)

Insulated condition implies 𝑑𝑢
𝑑𝑟 = 0. So the above is repeated, but this new boundary

condition is now used at 𝑟2. Starting from the general solution found in part (a)

𝑢 (𝑟) = 𝑐2 ln 𝑟 + 𝑐3
When 𝑟 = 𝑟1, 𝑢 = 𝑇1 and when 𝑟 = 𝑟2,

𝑑𝑢
𝑑𝑟 = 0. But 𝑑𝑢

𝑑𝑟 =
𝑐2
𝑟 . Hence 𝑟 = 𝑟2 gives

𝑐2
𝑟2
= 0 or 𝑐2 = 0.

Therefore the solution is

𝑢 (𝑟) = 𝑐3
When 𝑟 = 𝑟1, 𝑢 = 𝑇1, hence 𝑐3 = 𝑇1. The solution becomes

𝑢 (𝑟) = 𝑇1

The temperature is 𝑇1 everywhere. This makes sense as this is steady state, and no heat
escapes to the outside.

0.7 Problem 7 (1.5.10)

30 Chapter 1. Heat Equation 

1.5.4. Using Exercise 1.5.3(a) and the chain rule for partial derivatives, derive the 
special case of Exercise 1.5.3(e) if u(r) only. 

1.5.5. Assume that the temperature is circularly symmetric: u = u(r, t), where 
r2 = x2 + y2. We will derive the heat equation for this problem. Consider 
any circular annulus a ~ r ~ b. 

(a) Show that the total heat energy is 211" J: cpur dr. 

(b) Show that the How of heat energy per unit time out of the annulus at 
r = b is -211"bKoau/ar I,=b. A similar result holds at r = a. 

(c) Use parts (a) and (b) to derive the circularly symmetric heat equation 
without sources: 

au k a ( au) 
at =;:ar rar . 

1.5.6. Modify Exercise 1.5.5 if the thermal properties depend on r. 

1.5.7. Derive the heat equation in two dimensions by using Green's theorem, 
(1.5.16), the two-dimensional form of the divergence theorem. 

1.5.8. If Laplace's equation is satisfied in three dimensions, show that 

If V'uon dS = 0 

for any dosed surface. (Hint: Use the divergence theorem.) Give a physical 
interpretation of this result (in the context of heat flow). 

1.5.9. Determine the equilibrium temperature distribution inside a circular annu­
lus (rl ~ r ~ r2): 

*(a) if the outer radius is at temperature T2 and the inner at Tl 

(b) if the outer radius is insulated and the inner radius is at temperature 
Tl 

1.5.10. Determine the equilibrium temperature distribution inside a circle (r ~ ro) 
if t.he boundary is fixed at temperature To. 

*1.5.11. Consider 
au = ~~ (rau) 
at rar ar 

a<r<b 

subject. to 

au au 
u(r.O) = f(r), ar (a, t) = ,B, and ar (b, t) = 1. 

Using physical reasoning. for what value(s) of {3 does an equilibrium tem­
perature distribution exist? 

Last problem found the solution to the heat equation in polar coordinates with symmetry
in 𝜃 to be

𝑢 (𝑟) = 𝑐2 ln 𝑟 + 𝑐3
𝑐2 must be zero since at 𝑟 = 0 the temperature must be finite. The solution becomes

𝑢 (𝑟) = 𝑐3
Applying the boundary conditions at 𝑟 = 𝑟0

𝑇0 = 𝑐3
Therefore,

𝑢 (𝑟) = 𝑇0

The temperature everywhere is the the same as on the edge.
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0.8 Problem 8 (1.5.11)

30 Chapter 1. Heat Equation 

1.5.4. Using Exercise 1.5.3(a) and the chain rule for partial derivatives, derive the 
special case of Exercise 1.5.3(e) if u(r) only. 

1.5.5. Assume that the temperature is circularly symmetric: u = u(r, t), where 
r2 = x2 + y2. We will derive the heat equation for this problem. Consider 
any circular annulus a ~ r ~ b. 

(a) Show that the total heat energy is 211" J: cpur dr. 

(b) Show that the How of heat energy per unit time out of the annulus at 
r = b is -211"bKoau/ar I,=b. A similar result holds at r = a. 

(c) Use parts (a) and (b) to derive the circularly symmetric heat equation 
without sources: 

au k a ( au) 
at =;:ar rar . 

1.5.6. Modify Exercise 1.5.5 if the thermal properties depend on r. 

1.5.7. Derive the heat equation in two dimensions by using Green's theorem, 
(1.5.16), the two-dimensional form of the divergence theorem. 

1.5.8. If Laplace's equation is satisfied in three dimensions, show that 

If V'uon dS = 0 

for any dosed surface. (Hint: Use the divergence theorem.) Give a physical 
interpretation of this result (in the context of heat flow). 

1.5.9. Determine the equilibrium temperature distribution inside a circular annu­
lus (rl ~ r ~ r2): 

*(a) if the outer radius is at temperature T2 and the inner at Tl 

(b) if the outer radius is insulated and the inner radius is at temperature 
Tl 

1.5.10. Determine the equilibrium temperature distribution inside a circle (r ~ ro) 
if t.he boundary is fixed at temperature To. 

*1.5.11. Consider 
au = ~~ (rau) 
at rar ar 

a<r<b 

subject. to 

au au 
u(r.O) = f(r), ar (a, t) = ,B, and ar (b, t) = 1. 

Using physical reasoning. for what value(s) of {3 does an equilibrium tem­
perature distribution exist? 

For equilibrium the total rate of heat flow at 𝑟 = 𝑎 should be the same as at 𝑟 = 𝑏. Circum-
ference at 𝑟 = 𝑎 is 2𝜋𝑎 and total rate of flow at 𝑟 = 𝑎 is given by 𝛽. Hence total heat flow
rate at 𝑟 = 𝑎 is given by

(2𝜋𝑎)
𝜕𝑢
𝜕𝑟

�
𝑟=𝑎

= 2𝜋𝑎𝛽

Similarly, total heat flow rate at 𝑟 = 𝑏 is given by

(2𝜋𝑏)
𝜕𝑢
𝜕𝑟

�
𝑟=𝑏

= 2𝜋𝑏

Therefore 2𝜋𝑎𝛽 = 2𝜋𝑎 or

𝛽 =
𝑎
𝑏

0.9 Problem 9 (1.5.12)

1.5. Heat Equation in Two or Three Dimensions 31 

1.5.12. Assume that the temperature is spherically symmetric, 1.1 = u(r, t), where r 
is the distance from a fixed point (r2 = x 2 + y2 + z2). Consider the heat 
flow (without sources) between any two concentric spheres of radii a and b. 

(a) Show that the total heat energy is 411" J: cpur2 dr. 

(b) Show that the flow of heat energy per unit time out of the spherical 
shell at r = b is -411"b2 Ko 8u/ar Ir:b. A similar result holds at r = a. 

(c) Use parts (a) and (b) to derive the spherically symmetric heat equation 

811. = ~~ ( r2 8U) 
at r2 ar 8r. 

*1.5.13. Determine the steady-state temperature distribution between two concentric 
spheres with radii 1 and 4, respectively, if the temperature of the outer 
sphere is maintained at 80° and the inner sphere at 0° (see Exercise 1.5.12). 

1.5.14. Isobars are lines of constant temperature. Show that isobars are perpendic­
ular to any part of the boundary that is insulated. 

1.5.15. Derive the heat equation in three dimensions assuming constant thermal 
properties and no sources. 

1.5.16. Express the integral conservation law for any three-dimensional object. As­
sume there are no sources. Also assume the heat flow is specified, Vu·i& = 
g(:.:, 11, z), on the entire boundary and does not depend on time. By in­
tegrating with respect to time, determine the total thermal energy. (Hint: 
Use the initial condition.) 

1.5.17. Derive the integral conservation law for any three dimensional object (with 
constant thermal properties) by integrating the heat equation (1.5.11) (as­
suming no sources). Show that the result is equivalent to (1.5.1). 

Orthogonal curvilinear coordinates. A coordinate system (11., 
v,w) may be introduced and defined by x = x(u,v,w),y = y(u,v,w) and 
z = z(u, v, w). The radial vector r == xi + yj + zk. Partial derivatives of 
r with respect to a coordinate are in the direction of the coordinate. Thus, 
for example, a vector in the u-direction 8r/8u can be made a unit vector e" 
in the u-direction by dividing by its length h" = lar/8v.1 called the scale 
factor: e" = hI .. 8r / 811. . 

1.5.18. Determine the scale factors for cylindrical coordinates. 

1.5.19. Determine the scale factors for spherical coordinates. 

1.5.20. The gradient of a scalar can be expressed in terms of the new coordinate 
system Vg = aor/8v. + b8r/8v + c8r/aw, where you will determine the 
scalars a, b, c. Using dg = V g. dr, derive that the gradient in an orthogonal 
curvilinear coordinate system is given by 

" 18g A 18g A 18g A 

V g = h" 8v. e" + hv 8v e v + hwa,;;ew. (1.5.23) 

0.9.1 Part (a)

Total heat energy is, by definition

𝐸 = �
𝑉
𝑐𝜌𝑢𝑑𝑣 (1)

Volume 𝑣 of sphere of radius 𝑟 is 𝑣 = 4
3𝜋𝑟

3. Hence

𝑑𝑣
𝑑𝑟

= 4𝜋𝑟2

𝑑𝑣 = 4𝜋𝑟2𝑑𝑟
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Equation (1) becomes, where now the 𝑟 limits are from 𝑎 to 𝑏

𝐸 = �
𝑏

𝑎
𝑐𝜌𝑢 �4𝜋𝑟2𝑑𝑟�

= 4𝜋�
𝑏

𝑎
𝑐𝜌𝑢𝑟2𝑑𝑟

0.9.2 Part (b)

By definition, the flux at 𝑟 = 𝑏 is

𝜙𝑏 = −𝑘0
𝜕𝑢
𝜕𝑟

�
𝑟=𝑏

The above is per unit area. At 𝑟 = 𝑏, the surface area of the sphere is 4𝜋𝑏2. Therefore, the
total energy per unit time is 𝜙𝑏 �4𝜋𝑏2� or

−4𝜋𝑏2𝑘0
𝜕𝑢
𝜕𝑟

�
𝑟=𝑏

Similarly for 𝑟 = 𝑎.

0.9.3 Part(c)

By conservation of thermal energy

𝑑
𝑑𝑡
𝐸 = −4𝜋𝑎2𝑘0

𝜕𝑢
𝜕𝑟

�
𝑟=𝑎

+ 4𝜋𝑏2𝑘0
𝜕𝑢
𝜕𝑟

�
𝑟=𝑏

𝑑
𝑑𝑡 �

4𝜋�
𝑏

𝑎
𝑐𝜌𝑢𝑟2𝑑𝑟� = 4𝜋𝑘0�

𝑏

𝑎

𝜕
𝜕𝑟 �

𝑟2
𝜕𝑢
𝜕𝑟 �

𝑑𝑟

�
𝑏

𝑎
𝑐𝜌

𝜕𝑢
𝜕𝑡

𝑟2𝑑𝑟 = 𝑘0�
𝑏

𝑎

𝜕
𝜕𝑟 �

𝑟2
𝜕𝑢
𝜕𝑟 �

𝑑𝑟

Moving everything into one integral

�
𝑏

𝑎
�𝑐𝜌

𝜕𝑢
𝜕𝑡

𝑟2 − 𝑘0
𝜕
𝜕𝑟 �

𝑟2
𝜕𝑢
𝜕𝑟 ��

𝑑𝑟 = 0

Since this is valid for any limits the integrand must be zero

𝑐𝜌
𝜕𝑢
𝜕𝑡

𝑟2 − 𝑘0
𝜕
𝜕𝑟 �

𝑟2
𝜕𝑢
𝜕𝑟 �

= 0

𝜕𝑢
𝜕𝑡

=
𝑘0
𝑐𝜌

1
𝑟2

𝜕
𝜕𝑟 �

𝑟2
𝜕𝑢
𝜕𝑟 �

Therefore

𝜕𝑢
𝜕𝑡 =

𝜅
𝑟2

𝜕
𝜕𝑟
�𝑟2 𝜕𝑢𝜕𝑟 �

Where 𝜅 = 𝑘0
𝑐𝜌

0.10 Problem 10 (1.5.13)

1.5. Heat Equation in Two or Three Dimensions 31

1.5.12. Assume that the temperature is spherically symmetric, u = u(r, t), where r
is the distance from a fixed point (r2 = x2 + y2 + z2). Consider the heat
flow (without sources) between any two concentric spheres of radii a and b.

(a) Show that the total heat energy is 47r fo cpur2 dr.
(b) Show that the flow of heat energy per unit time out of the spherical

shell at r = b is -4irb2Ko 8u/8r Ir=b. A similar result holds at r = a.
(c) Use parts (a) and (b) to derive the spherically symmetric heat equation

8u k 8 T28u
8t r2 8r C?

.

*1.5.13. Determine the steady-state temperature distribution between two concentric
spheres with radii 1 and 4, respectively, if the temperature of the outer
sphere is maintained at 80° and the inner sphere at 0° (see Exercise 1.5.12).

1.5.14. Isobars are lines of constant temperature. Show that isobars are perpendic-
ular to any part of the boundary that is insulated.

1.5.15. Derive the heat equation in three dimensions assuming constant thermal
properties and no sources.

1.5.16. Express the integral conservation law for any three-dimensional object. As-
sume there are no sources. Also assume the heat flow is specified,
g(x, y, z), on the entire boundary and does not depend on time. By in-
tegrating with respect to time, determine the total thermal energy. (Hint:
Use the initial condition.)

1.5.17. Derive the integral conservation law for any three dimensional object (with
constant thermal properties) by integrating the heat equation (1.5.11) (as-
suming no sources). Show that the result is equivalent to (1.5.1).
Orthogonal curvilinear coordinates. A coordinate system (u,
v, w) may be introduced and defined by x = x(u, v, w), y = y(u, v, w) and
z = z(u, v, w). The radial vector r =_ At + yj + A. Partial derivatives of
r with respect to a coordinate are in the direction of the coordinate. Thus,
for example, a vector in the u-direction 8r/8u can be made a unit vector e
in the u-direction by dividing by its length h = I8r/8ul called the scale
factor: cu = - er/au .

1.5.18. Determine the scale factors for cylindrical coordinates.

1.5.19. Determine the scale factors for spherical coordinates.

1.5.20. The gradient of a scalar can be expressed in terms of the new coordinate
system Vg = a 6)r/8u + b 8r/(7v + c Or/Ow, where you will determine the
scalars a, b, c. Using dg = V9 dr, derive that the gradient in an orthogonal
curvilinear coordinate system is given by

Vg = 1 8g _ 1 8g 1 8g
0-

( )

T" T. eu + h 8; e +
hu, 8w

. 1.5.23

The heat equation is 𝜕𝑢
𝜕𝑡 =

𝜅
𝑟2

𝜕
𝜕𝑟
�𝑟2 𝜕𝑢𝜕𝑟 �. For steady state 𝜕𝑢

𝜕𝑡 = 0 and assuming symmetry in
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𝜃, the heat equation becomes an ODE in 𝑟
𝜅
𝑟2

𝑑
𝑑𝑟 �

𝑟2
𝑑𝑢
𝑑𝑟 �

= 0

𝑑
𝑑𝑟 �

𝑟2
𝑑𝑢
𝑑𝑟 �

= 0

2𝑟
𝑑𝑢
𝑑𝑟

+ 𝑟2
𝑑2𝑢
𝑑𝑟2

= 0

For 𝑟 ≠ 0

𝑟
𝑑2𝑢
𝑑𝑟2

+ 2
𝑑𝑢
𝑑𝑟

= 0

Let 𝑑𝑢
𝑑𝑟 = 𝑣 (𝑟), hence

𝑟
𝑑𝑣
𝑑𝑟

+ 2𝑣 = 0

𝑑𝑣
𝑑𝑟

= −
2𝑣
𝑟

𝑑𝑣
𝑣

= −2
𝑑𝑟
𝑟

Integrating

ln 𝑣 = −2 ln 𝑟 + 𝑐
𝑣 = 𝑒−2 ln 𝑟+𝑐

= 𝑐1𝑒−2 ln 𝑟

= 𝑐1
1
𝑟2

Therefore, since 𝑑𝑢
𝑑𝑟 = 𝑣 (𝑟) then

𝑑𝑢
𝑑𝑟

= 𝑐1
1
𝑟2

𝑑𝑢 = 𝑐1
𝑑𝑟
𝑟2

Integrating

𝑢 (𝑟) = −𝑐1
𝑟 + 𝑐2

When 𝑟 = 1, 𝑢 = 0 and when 𝑟 = 4, 𝑢 = 80, hence

0 = −𝑐1 + 𝑐2

80 =
−𝑐1
4

+ 𝑐2

From first equation, 𝑐1 = 𝑐2, and from second equation 80 = −𝑐1
4 + 𝑐1, hence

3
4𝑐1 = 80 or

𝑐1 =
(4)(80)

3 = 320
3 . Therefore, the general solution becomes

𝑢 (𝑟) = −
320
3

1
𝑟
+
320
3

or

𝑢 (𝑟) = 320
3
�1 − 1

𝑟
�
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