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Reference table used in HW

q_5 flux (class uses 7) vector field. thermal energy per unit time per unit area. %
q_5 -7 | flux Flux component that is outward normal to the surface %
. s M
Q heat source heat energy generated per unit volume per unit time.| —
. M
e thermal energy density. Scalar field. | —
p density mass density of material which heat flows in. ?—g
. . . . 12
c specific heat energy to raise temp. of unit mass by one degree Kelvin. | =
ko Thermal conductivity | Used in flux equation g = —kyVu, where u is temperature. %
K Thermal diffusivity Used in heat equation % = xVu + Q. Where x = %, u is temperature.
. d - ¢ 4 . [MI?
conservation of energy o Le(x, Hdv = L g-(-n)dA + Lde. Each term has units -
Fourier law ¢ = —koVu. Relates flux to temperature gradient.
. = d d d
\Y% Divergence operator A vector operator. V = (5, 7 5)

0.1 Problem 1 (1.5.2)

-

*1.5.2. For conduction of thermal energy, the heat flux vector is ¢ = —KoVu. If
in addition the molecules move at an average velocity V', a process called
convection, then briefly explain why ¢ = —KogVu + cpuV. Derive the
corresponding equation for heat flow, including both conduction and con-
vection of thermal energy (assuming constant thermal properties with no
sources).

Fourier law is used to relate the flux to the temperature u by ¢ = _kOZ_Z for 1D or ¢ = —koVu
in general.

In addition to conduction, there is convection present. This implies there is physical
material mass flowing out of the control volume carrying thermal energy with it in addition

to the process of conduction. Hence the flux is adjusted by this extra amount of thermal
energy motion. The amount of mass that flows out of the surface per unit time per unit

area is (z')p) = [%%] = [%%] Where p = [2—/3[] is the mass density of the material and 7 = [%]
is velocity vector of material flow at the surface.
Amount of thermal energy that (z‘)p) contains is given by (z‘)p) cu where c is the specific heat

and u is the temperature. Therefore (z')p) cu is the additional flux due to convection part.
Total flux becomes

¢ = —koVu + Dpcu 1)
Starting from first principles. Using conservation of thermal energy given by
de _
a_t = - ( . (P)
Where e is thermal energy density in the control volume. In this problem Q = 0 (no energy
source). The integral form of the above is

d L
— | e@nav=[ ¢-(-n)dA
dtfve(x 2 f;’b =)

The dot product with the unit normal vector 7 was added to indicate the normal component
of $ at the surface. Since ¢ (X, t) = pcu and by using divergence theorem the above is written



as

d _
= = v (-
dtfvpcudV j;/ ( ¢)dv

Using (1) in the above and moving the time derivative inside the integral (which becomes
partial derivative) results in

d
pc—udV fV koVu — vpcu)d

Moving all terms under one 1ntegral sign
du _ i,
j“/ [pcﬁ -V (kOVu - Y‘Jpcu)]dV =0
Since this is zero for all control volumes, therefore the integrand is zero
Ju o -
peo; = V- (kOVu - vpcu) =

Assuming « = k—o, the above simplifies to
pc

%u =«V2u -V - (ou) (2)

Applying to (2) the property of divergence of the product of scalar and a vector given by
V - (ou) =u(7 -z‘;)+z7'(7u)

Equation (2) becomes

%:szu—(u(v-z‘))+@~(Vu))

0.2 Problem 2 (1.5.3)

1.5.3. Consider the polar coordinates

T =rcosf
y = rsind.
(a) Sin:e r? =8.1:o + y2., oshow that 92 = cos#, g—;—' = sind, % =
cos d — 3in
r 8z — r

(b) Show that # = cos 0 + sinf7 and 8 = —sin 63 + cos 63.

(c) Using the chain rule, show that V = #£& + é%b% and hence Vu =

8-
Fur+ 1550

(d) If A = A,# + Agf, show that V-4 = 1 2(r4,) + 1 5(Ay), since
d#/88 = @ and 86/99 = —+ follows from part (b).

2y

Q

(e) Show that V?u =1 ai (r

Q’I?

) +

¥

x =rcos0 (1)
y=rsin0 (2)



0.21 part (a)

2

since 2 = x? + y? then taking derivative w.r.t. x
AR
r— =2x
dx
ar _x
ox r
_rcos
oy
=cos 6 (3)
And taking derivative w.r.t. y
AN
y— =
dy 4
ar vy
dy r
_ rsin0
o
=sin6 (4)
Now taking derivative w.r.t. y of (2) gives
d dsi
1= 2 ging 42500
Iy Iy
ar . dsin O a0
From (4) 3, = Sin 6 and —5, = Cos % (a_y) Therefore the above becomes
a0
1=sin’0 + rcos@(—)
9y
90 1-sin®0
dy  rcos6
B cos? 0
" rcos®
Hence
8_9 __cosO
dy
Similarly, taking derivative w.r.t. x of (1) gives
1= or cos@+r&cose
~ dx ax
ar dcos 6 . a0
From (3), 5= = Cos 0 and -— =-—sin 0 (5), Therefore the above becomes
) ) a0
1=cos*0—-rsinf|—
dx
d0 1-cos?6
dx  rsin®
3 sin® 0
~ rsin@
Hence
d0 _ sin0
ox

0.2.2 Part (b)

By definition of unit vector
7 (Irlcos0)i+ (Ir|sinO)f

|7l 7|

7

= cos 01 + sin 0f



To find O, two relations are used.”é” = 1 by definite of unit vector. Also 6 -7 = 0 since
these are orthogonal vectors (basis vectors). Assuming that 0 = c1i + cyf, the two equations
generated are

||é =1=c2+c3 (1)
0-7=0= (cos o1+ sin@j) . (clf+ czf) =cycosO +cysinf (2)
From (2), ¢; = _CCZOS:I;Q. Substituting this into (1) gives

. 2
—Cp sin O ’
1= +

( cos 0 ) 2

2
&)

3 3 sin’ 6
cos? 0
Solving for ¢, gives
cos? 0 = c3 (Sin2 0 + cos? 6)
¢, =cos0
Since ¢, is now known, ¢; is found from (2)
0=rcyc080 +cysin@
0 =y cos O + (cos 0) sin O
_ —(cos0)sin6

1 =
cos 0

Hence ¢; = —sin 6. Therefore

0 = —sin 67 + cos 0]

0.2.3 Part (c)
J . .
V = 8_3(1 + =] (1)

Since x = x(r,0),y =y (r, 0), then

d ddr d d0

ox  Jrox 90 ax

d ddr d dJ0

dy " aray 6y
Equation (1) becomes

ddr d d0 ddr d dJ0O\

) (&_@ " %5)1 " (5&? " %&_y)]
Using result found in (a), the above becomes

d d ( sin6\\. (Jd . d cosBO) _
V=|==cosO+ |- i+|=—snf+ == j

A

ar 20 r ar 20 r

. Jd J .
Collecting on -, - gives

J . . .y d [ sinf, cosB
V—Z(00591+51n6])+%(— . i+ . ])
= i (cos 01 + sin Qf) + li (— sin 01 + cos Qf)

ar rdo

Using result from (b), the above simplifies to

N Al
V=r=—+0-
ar r

ia
90

Hence



0.2.4 Part (d)

Hence

9

ar

d N (o N (19 N\ (a9 .

5 . A,,T’) + (1’— . AQQ + (6;— . Aﬂ’) + (6;8_6 . AQQ) (1)

But

And

== (0)+ A (0)=0 (3)
And

. o7 A
Since a—; = 0. Therefore

: Ari> = _AV (4)



And finally
A1 d ~ Al d A
0-=5 - Agl = 0-= (A60)
1. (dAg A PLe,
= ;9 —0 0+ AQ%)
19Ag jn ~ 1 ~ d0
1JA 1 A
=-—g W+ A (0-(-7)
r
1 8A 1
—g D +-46(0)
1 8A9
_ %470 5
r 40 ()
Substituting (2,3,4,5) into (1) gives
V-A= o4, +O+1A +18A9
- or r r 00
B 1A L 94 dA, L1 1 8A9
AT T
Add since — (rAr) =A+ r , the above can also be written as
V-A:1 A, + o4, +18A6
r ar r 00
1 BAQ
0.2.5 Part (e)
From part (c), it was found that
V=p ? + él ?
B rc?r rado
But
V2=V.V
d +él d d él d
r&r rdo r&r rado
Using result of part (d), which says that V-A = -— ( A,)+ - ! '9;;9, the above becomes (where
A4 10
now A, = ar’ 0 = 1 90
g2 12 (2), 10 (10
rar\ ar]  rao\rao
_1d( d 1 92
“ror\or) T R oe2
Hence
V2y = li % l&_zu
Trar\ ar]  r2oe?

0.3 Problem 3 (1.5.4)

1.5.4. Using Exercise 1.5.3(a) and the chain rule for partial derivatives, derive the
special case of Exercise 1.5.3(e) if u(r) only.




Let u = u(r). From problem 2 part (a) it was found that

x=rcosf
y=rsin0
ar
&—x:cose
ar )
8—y=sm6
d60  cos 0O
Eria
Jd0  -sin0
ax v
And
*u  J%u
Vzu:ﬁ-i_&_yz
But
Pu _ d (du
ﬁ—a(—x)
_d (dudr
—a(aa)
:%(%0059)
_ i&_u) 9+@8COSG
dx d dr  dx
%u dr du( .
= Wg—x)cose+5(—sm8—
2%u u( .
= Wcos@)cos@+§(—sme(
2
_%COSZQ+ 8111265
And
Pu 9 (du
r?_yz_a_y(fP_y)
_d (dudr
_8_}/(5&7)
=i(%sm6)
dy \ dr
d du)\ . du dsin @
= a—m)sl o ay
2
= i—;j—;)sin8+%(cose—
2
= g—rgsine)sm6+%(cos@(
_Pu o, 1, du
—ﬁsm 6+;cos 68_r

Substituting (2),(3) into (1) gives

2 du 2%u

J 1 1 J
V2y = (_u cos? 0 + = sin? 9—) + (— sin® 0 + p cos? 6—?

or? r ar ar?

u 1( ., du 5 Ou
= — + —|sin“0— + cos* 0—
art r

P 1
S92 ror

or ar

00
Jx

90
dy

|

—sin
r

|

cos 6

0

)

(1)

(2)

(3)



Which can be written as

2, =12 (,on
Viu = ror (T z?r)
2
Which is the special case of problem 2(e) V2u = %a% (1’%) + %2% when u = u (r) only.

0.4 Problem 4 (1.5.5)

1.5.5. Assume that the temperature is circularly symmetric: u = u(r,t), where
r? = 22 4+ y*. We will derive the heat equation for this problem. Consider
any circular annulus a <r < b.
(a) Show that the total heat energy is 27 f: cpur dr.

(b) Show that the low of heat energy per unit time out of the annulus at
r=bis ~2rbKoOu/Or |,=p. A similar result holds at r = a.

(c) Use parts (a) and (b) to derive the circularly symmetric heat equation

without sources:
ou_ko ( on
ot ror\ or)

0.4.1 Part(a)

Considering the thermal energy in a annulus as shown

Amount of thermal energy in Amount of thermal energy in
unit thickness volume is annulus is fozw ]:(cpu) rdrdf
rdrdf cup

Integrating gives total thermal energy

21 b 27 b
f f (cpu)rdrd@zf d@f (cpu)rdr
0 a 0 a
b
:27zf (cpu)rdr
a

0.4.2 Part (b)

Using Fourier law,

5 = —kOVu
dJu ,1du
= —ko (T’Z + 8;%)

. o d
Since symmetric in 0, then £ = 0 and the above reduces to



10

Hence the heat flow per unit time through surface at r = b is

f()2ﬂ$-(—ﬁ)ds

27T 311
—kot— |- (R) rdO
fo ( of 8r) () 7
But 71 = # since radial unit vector. The above becomes
2T Ju u
—kg— = - (2mky) r—
fo Oarrde ( no)r&r

At r = b the above becomes

du
- (277](0) b E L
Similarly at r = a

Ju
- (27'(](0) a Z

r=a

0.4.3 Part (c)

Applying that the rate of time change of total energy equal to flux through the boundaries
gives

d b du du
T (27‘(]; (cpu) rdr) = —(2mtkg) a > + (27tkgy) b >

r=b

r=a

Moving % inside the first integral, it become partial

b du b9 ( Jdu
2nj; cpﬁ) rdr=27'(koj; Z(rw)dr

Moving everything under one integral

Pl du d [ du
f (cpz)r—kog—r(rg)]dr:O

Hence, since this is valid for any annulus, then the integrand is zero

Ju ' d [ du —0
Por) T\ "or ) T

8u_k018(o"u)

t  cpror

k(o
ot ror\ or

Hence

k
Where « = 2.

cp

0.5 Problem 5 (1.5.6)

1.5.6. Modify Exercise 1.5.5 if the thermal properties depend on 7.

The earlier problem is now repeated but in this problem c = c(r) kg = ko () and p = p (7).
These are the thermal properties in the problem.
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0.5.1 Part(a)

21 b 27 b
f L(c(r)p(r)u)rdrd@zj; d@fa (c(r)p(r)u)rdr

0
=27 fh (c (r)p(r) u) rdr
0.5.2 Part (b)

b= o (72

The heat flow per unit time through surface at r is therefore

fo znq? () ds = f o (—ko (r)f%) () rd®

0
But 71 = # since radial therefore

27 ou ou
fo ko () 516 = — @rtky (D) 15

At r = b the above becomes

Similarly at r = a

0.5.3 Part (c)

Applying that the rate of time change of total energy equal to flux through the boundaries
gives

Ju

% (27’( fab (c ) p(r)u) rdr) =- (2n k0|r:a) a % _ + (2n k0|r:b) b >

b9 du
:ZNJ; Z(ko(r)rz)dr

Moving % inside the first integral, it become partial

27'(fb c(r)p(r)%)rdrzznfb%(ko(r)r%)dr

Moving everything under one integral

br d d d
f (c(r)p(r)a—ttl)r— > (ko (r)rg—z)]dr =0

Since this is valid for any annulus then the integrand is zero

d d d
(c(r)p(r) &—?)r— 5 (ko (r)r&—:l) =0

Therefore, the heat equation when the thermal properties depends on r becomes

r=b

du(rt) _ 1 120 du(r,t)
o pen T or (ko (Nr=; )
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0.6 Problem 6 (1.5.9)

1.5.9. Determine the equilibrium temperature distribution inside a circular annu-
lus (ry <7 < 7ry):
*(a) if the outer radius is at temperature T> and the inner at T

(b) if the outer radius is insulated and the inner radius is at temperature
T,

0.6.1 Part (a)

The heat equation is % = ;% (r%). At steady state % = 0. And since circular region,
symmetry in 0 is assumed and therefore temperature u depends only on r only. This means
u (rg) is the same at any angle O for that specific ry. This becomes a second order ODE

Ki(du)zo

rdr VE
E(d_u+f_”):0
r\dr  dr?

d>u  1du

PR

Since ; # 0. Assuming % = v(r), the above becomes

Integrating

Inv=-Inr+¢

v = e Inrta

du

— =70, then

Where ¢, = ¢°1. Since
du 1
ar = 2y
du = CZ}dT’
Integrating
u(r)=cylnr+cs
When r = r{,u = T;, and when r = r,,u = T,, therefore
Ty =cyInr; +c3
Ty =cyInr, +c3
From first equation, c; = T; — ¢, Inr;. Substituting in second equation gives
Ty =cylnry, + Ty —cplnryg
=c(nr,—-Inr)+T;

Therefore
T, -T,

Cp= —"— ~
2" Inr,—Inr
2 1
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T-Ty
Inry—Inry

Hence ¢3 =Ty - Inry. Therefore the steady state solution becomes

u(r)=cylnr+cs

T, -T T, -T
L Sl W R SRS Tkl B
1Il1’2 — 1111’1 1111’2 — 1111’1
_ Tl + (Tz—Tl)lnr— (TZ —Tl)hl?"l
Inr, —Inr
T4 (T, = Ty)(Inr—1nry)
Inry—Inr
ln(ri)
=Ty +(T, - Ty) -

In (r—z)
st

Hence

n(i7)
()

u(r) =Ty + (T, - Ty)

0.6.2 Part (b)
Insulated condition implies i—u 0. So the above is repeated, but this new boundary
condition is now used at r,. Starting from the general solution found in part (a)
u(r) = czlnr+c3
When r=r,u=T; andwhenr—rz, » = =0.Bu t r.Hencer:rzgives‘;—2:00rc2:0.
2
Therefore the solution is
u(r)=c;

When r = r, u = T1, hence c3 = T;. The solution becomes

u(r)=T

The temperature is T; everywhere. This makes sense as this is steady state, and no heat
escapes to the outside.

0.7 Problem 7 (1.5.10)

1.5.10. Determine the equilibrium temperature distribution inside a circle (r < rg)
if the boundary is fixed at temperature Tj.

Last problem found the solution to the heat equation in polar coordinates with symmetry
in 0 to be

u(r)y=cyInr+c;
c, must be zero since at 7 = 0 the temperature must be finite. The solution becomes
u(r) = cs
Applying the boundary conditions at r = r
Ty =c3
Therefore,
u(r) =

The temperature everywhere is the the same as on the edge.
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0.8 Problem 8 (1.5.11)

*1.5.11. Consider

subject to
du Ou
u(r,0) = f(r), E(a,t) = 3, and E(b’t) =1.

Using physical reasoning. for what value(s) of 3 does an equilibrium tem-
perature distribution exist?

For equilibrium the total rate of heat flow at r = a should be the same as at » = b. Circum-
ference at r = a is 2rta and total rate of flow at r = a is given by . Hence total heat flow
rate at r = a is given by

(o) du| )
Tia ar| = 2maf
Similarly, total heat flow rate at r = b is given by
d
@nb) 22| = 2mb
or|._
r=b
Therefore 2mtaf = 2ma or
_a
b= b

0.9 Problem 9 (1.5.12)

1.5.12. Assume that the temperature is spherically symmetric, 4 = u(r,t), where r
is the distance from a fixed point (r? = z2 + y? + 22). Consider the heat
flow (without sources) between any two concentric spheres of radii a and b.

(a) Show that the total heat energy is 4 [ : cpur? dr.

(b) Show that the flow of heat energy per unit time out of the spherical
shell at r = b is —47wb? Ko Ou/Or |r=p. A similar result holds at r = a.

(c) Use parts (a) and (b) to derive the spherically symmetric heat equation

Ou _k 0 ( 20u
o o\ or)

0.9.1 Part (a)

Total heat energy is, by definition
E= f cpudv (1)
14
4

Volume v of sphere of radius r is v = 57173. Hence
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Equation (1) becomes, where now the r limits are from a to b

E= fb cpu (4nr2dr)

b
= 4n f cpur?dr
a
0.9.2 Part (b)
By definition, the flux at » = b is
Ju
=k —
Po = —ko = .

The above is per unit area. At r = b, the surface area of the sphere is 47b?. Therefore, the
total energy per unit time is ¢, (4nb2) or

d
—47'(172](0 &—u
r

r=b
Similarly for r = a.

0.9.3 Part(c)

By conservation of thermal energy

d du
—F = -411a%kn —
dt ko arl_,

d b b9 (,du
E(élnfa cpur dr) —4nk0fa Z(V E)dr

b du, b (,du
j;cpﬁrdr—koj; E’(r W)dr

Moving everything into one integral

b du d (., du
f [cp8—tr2 - k0c9_r (rzz)]dr =0

Since this is valid for any limits the integrand must be zero

d d (.0
cp—ur2 —koﬁ (r2 u) =0

It r
du ko1 d (,du
—_— = | rcr—
at  cprédr\ Odr
Therefore
du _ x d [ odu
ETRR (r E)
ko
Where x = —

cp

0.10 Problem 10 (1.5.13)

*1.5.13. Determine the steady-state temperature distribution between two concentric
spheres with radii 1 and 4, respectively, if the temperature of the outer
sphere is maintained at 80° and the inner sphere at 0° (see Exercise 1.5.12).

. . du x d
The heat equation is Friie bn (r

du . .
>; = 0 and assuming symmetry in

291

87). For steady state
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0, the heat equation becomes an ODE in r
K d [ ,du 0
—_—|rr—\ =
r2dr\ dr

d zdu 0

—|rr—1 =

dr\ dr
Forr#0

d
Let d—l: =v(r), hence

do 20

dr  r

dov dr

R, Josd

v r
Integrating

Inv=-2Inr+c
U= e—21nr+c

— C1€_2 Inr

1
:Clr_Z

. du
Therefore, since - = v (r) then

Integrating

u(r):_TCl+cz

When r =1, u = 0 and when r = 4, u = 80, hence

0= —C1 +Cy
80 = L+
=—+c
n 2
From first equation, ¢; = ¢, and from second equation 80 = —761 + ¢1, hence ch = 80 or
1= (4);—80) = %. Therefore, the general solution becomes
() = 3201 N 320
- 3r 3

or

u(r):%(l—%)
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