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Reference table used in HW

q_5 flux (class uses 7) vector field. thermal energy per unit time per unit area. %
q_5 71| flux Flux component that is outward normal to the surface %
. s M
Q heat source heat energy generated per unit volume per unit time.| —
. M
e thermal energy density. Scalar field. | —
p density mass density of material which heat flows in. ?—g
. . . . 12
c specific heat energy to raise temp. of unit mass by one degree Kelvin. | ==
ko Thermal conductivity | Used in flux equation g = —kyVu, where u is temperature. %
K Thermal diffusivity Used in heat equation % = xVu + Q. Where x = %, u is temperature.
. d - ¢ 4 . [MI?
conservation of energy o Le(x, Hdv = L g-(-n)dA+ Lde. Each term has units -
Fourier law ¢ = —koVu. Relates flux to temperature gradient.
. = d d d
\% Divergence operator A vector operator. V = (5, 7 5)

0.1 Problem 1 (1.5.2)

=

*1.5.2. For conduction of thermal energy, the heat flux vector is ¢ = —KyVu. If
in addition the molecules move at an average velocity V', a process called
convection, then briefly explain why ¢ = —KgVu + cpuV. Derive the
corresponding equation for heat flow, including both conduction and con-
vection of thermal energy (assuming constant thermal properties with no
sources).

Fourier law is used to relate the flux to the temperature u by ¢ = —kO% for 1D or $ = —koVu
in general.

In addition to conduction, there is convection present. This implies there is physical material
mass flowing out of the control volume carrying thermal energy with it in addition to the
process of conduction. Hence the flux is adjusted by this extra amount of thermal energy
motion. The amount of mass that flows out of the surface per unit time per unit area is
N _[LmM]_[mM1 _[M]. . . __ L],

(vp) = [Tﬁ] = [T = ] Where p = [L3] is the mass density of the material and o = [T] is
velocity vector of material flow at the surface.

Amount of thermal energy that (z')p) contains is given by (z')p) cu where c is the specific heat

and u is the temperature. Therefore (Z‘Jp) cu is the additional flux due to convection part.



Total flux becomes
¢ = —koVu + Dpcu 1)
Starting from first principles. Using conservation of thermal energy given by

de - o

5= (7-9)

Where ¢ is thermal energy density in the control volume. In this problem Q = 0 (no energy
source). The integral form of the above is

d -
— X, t)dV = -(-7)dA
) cwnav= [ .o

The dot product with the unit normal vector 71 was added to indicate the normal component
of ¢ at the surface. Since e (,t) = pcu and by using divergence theorem the above is written

as

d , -

= fvpcudv - fvv (-@)av
Using (1) in the above and moving the time derivative inside the integral (which becomes
partial derivative) results in

d _ _
fvpcg—?dv = fVV : (kOVu - Z'Jpcu) av

Moving all terms under one integral sign

du _
J;/ [pco.)—t -V (kOVu - vpcu)]dV =0
Since this is zero for all control volumes, therefore the integrand is zero
pc—u -V. (kOVu - Z'Jpcu) =0

Assuming «k = k—O, the above simplifies to
pc

Ju=xV2u - - (0u) (2)

Applying to (2) the property of divergence of the product of scalar and a vector given by
V - (ou) :u(v -Z‘J)+7'J-(Vu)

Equation (2) becomes

%:szu—(u(v-@)+z‘)-(Vu))




0.2 Problem 2 (1.5.3)

1.5.3. Consider the polar coordinates

z =rcosf
y = rsind.
3 2 __ 2 2 8r _ 8 _ 89 _
(a) S:l;:e T —-axa + ySi;‘ashow that 7= = cosf, 5 = sinf, 7 =
€=, and 3 = =5,
r oz r

(b) Show that # = cos 6 + sinf7 and @ = — sin 6% + cos 6.

(c) Using the chain rule, show that V = #£ + 815 and hence Vu =
du a 18ug
3;1‘ + r 0.

(d) If A = A,# + Agf, show that V-4 = 12(rA,) + L 5(As), since
8#/80 = @ and 86/89 = —+ follows from part (b).

2

Q

(e) Show that V2u =12 (r¢) + L&z
x =rcos0 1)
y=rsin0 (2)

0.2.1 part (a)

since 2 = x? + y? then taking derivative w.r.t. x

Zrﬁ:ZX
ax
8r_x
ox r
_rcosf
oy

= cos 6 (3)



And taking derivative w.r.t. y

21’ﬁ =2y
9y
ar y
dy
_ rsin®
oy
=sin O (4)
Now taking derivative w.r.t. y of (2) gives
1= &sin +r&8m9
Iy 9y
From (4) Z—; = sin 6 and as;;lg = cos 6 (z—i). Therefore the above becomes
.2 (86)
1=sin"0+rcosO|—
9y
90 1-sin’0
8_]/ ~ rcosf
_ cos?0
~ rcos6
Hence
zg __cos0
dy r

Similarly, taking derivative w.r.t. x of (1) gives

1_&1’ o+ dcos B
_8xCOS ' ox

dcos0

From (3), j—; = cos 0 and R

=-sin6 (Z—z), Therefore the above becomes

20
1=cos?0 —rsin@(—)

dx
90 1-cos?6
dx  rsin6
_ sin®0
~ rsin@
Hence

d0 _ sin0
ox  r




0.2.2 Part (b)

By definition of unit vector

7 (rlcos )i+ (Ir|sin6) ]

Irl Irl
= cos 01 + sin 0f

To find 6, two relations are used.||d]| = 1 by definite of unit vector. Also 6 - # = 0 since
these are orthogonal vectors (basis vectors). Assuming that 0 = c;7 + ¢,f, the two equations
generated are

||é =1=c2+c} (1)
0-7=0= (cos 07 + sin Gj) . (c1i+ czj) =cycosO +cysinf (2)
From (2), ¢; = —220111919_ Substituting this into (1) gives
. 2
—Cysin @ 5
1= +
( cos 0 ) ‘2
2 ;2
c5sin” 0
=2 72
cos? 6

Solving for ¢, gives
cos? 0 = c3 (sin2 0 + cos? 9)
cp = cos O
Since ¢, is now known, ¢; is found from (2)
0=cycos0 +cysin
0 = ¢y cos O + (cos 0) sin O
_ —(cos6)sin6

&1
cos 0

Hence ¢; = —sin 0. Therefore

0 = —sin 07 + cos 67

0.2.3 Part (c)
- 1)

Since x = x(r,0) ,y = y (r, 0), then
Jd _ddr J JO
9x  drax  309x
Jd _ddr J IO
dy ~droy 209y



Equation (1) becomes

A~

1+

A~

J

dor, 290
drdx 00 dx
Using result found in (a), the above becomes

V—i 6+i_sin6 A_,.i'@.,.iCOSGA
B &rcos 00 r ! &rsm 00 r J

9g9or, 999
drdy dO0dy

. J dJd .
Collecting on -, - gives

— a 7 1 2
V= 5 (cos Of + sin 6]) +

d ( sin6 _ cos@)
- i+ i

76 )
= 2 (cos 01+ sin 6) + - (=sin 67 + cos 0
—E(COS 1+ Ss1n ])+;%(—sm 1+ CcOS ])

Using result from (b), the above simplifies to

N Al
V=7=+0-
ar r

d
20

Hence

0.2.4 Part (d)

9 19
=57 % %
Hence
Y A:(?iwli (A7 + Ag0)
adr rdo ’ o
:(?i-A?)+(fi-A 0 +(éli-m)+(éli-A é) 1)
ar 7 ar Y rdg 7 rag
But

IA,
=L (1) + 4,(0)

DA,

=, (2)




And

_dAy 3
= 7(0)"'149(0)—0 (3)

And

. o7 A
Since a—; = 0. Therefore

1
CAT=-A, (4)

And finally

== (5)

Substituting (2,3,4,5) into (1) gives
dA, 1 10Ay

V-A=
ar *




Add since — (rAr) =A + r , the above can also be written as
Ao z9A 1 8A9
r 96
8 1 (9A9
&_ (rAr) 86

0.2.5 Part (e)

From part (c), it was found that

V=7 o + ol 4
=7V— _—

ar rdo
But

V2=V.V
d 10 dJd 10
(7’5 + 9;%) (1’&— + 6;8—6)
Using result of part (d), which says that V - A = ——( A,) + -—-, the above becomes (where
9 19

now Ar = E'Ae = ;%

VZ_l& 0 18 10
Cror r& r&@ rd0
1 0
r

d 1 92
T ror (r8r) Py
Hence
V2y = li (r@) l@
ror\ dr] 12002

0.3 Problem 3 (1.5.4)

1.5.4. Using Exercise 1.5.3(a) and the chain rule for partial derivatives, derive the
special case of Exercise 1.5.3(e) if u(r) only.




Let u = u(r). From problem 2 part (a) it was found that

x=rcosf
y=rsin0
ar
&—x:cose
ar )
8—y=sm6
d0  cosO
Eriia
d0 —sin6
ox 7
And
*u  J%u
Vzu:ﬁ-i_&_yz
But
Pu _ d (du
d (dudr
=a(§£)
—;(%COSQ)
d du du dcos O
= a_a_) 0% o ox
%u dr du( . 20
= Wg—x)cose+5(—sm8&—x)
2%u u( .
= Wcos@)cos@+§(—sme(
2%u

=—cos? 0+ 1sin2 6@
ar? r ar

—sin@

10

(1)

(2)



And

Substituting (2),(3) into (1) gives

2

Jd
Vy = (Q_Z cos? 0 +

1 Ju
7’sm 9&) (

Ju
:—+—(sm 6—+cos 60—

u 1
art r
_ %u 1 du
B &1’2 ror

Which can be written as

Which is the special case of problem 2(e) V2u = —; (r';—u) + 5

ar

d%u 0+ 1 Q&u
52 sin? - cos? 5

u
ar

1 9%u
72 992

when u = u (r) only.

11

(3)
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0.4 Problem 4 (1.5.5)

1.5.5. Assume that the temperature is circularly symmetric: u = u(r,t), where
r?2 = 22 4+ y*. We will derive the heat equation for this problem. Consider
any circular annulus a < r < b.
(a) Show that the total heat energy is 2w f: cour dr.

(b) Show that the ow of heat energy per unit time out of the annulus at
r=bis ~27bKo0u/0r |,=s. A similar result holds at r = a.

(c) Use parts (a) and (b) to derive the circularly symmetric heat equation

without sources:
ou_ ko ( ou
8t ror\ or)’

0.4.1 Part(a)

Considering the thermal energy in a annulus as shown

Amount of thermal energy in Amount of thermal energy in
unit thickness volume is annulus is fo% f b(cpu) rdrdf

Integrating gives total thermal energy

210 b 27 b
f f (cpu)rdrd@zf d@f (cpu)rdr
0 a 0 a
b
:27'(f (cpu)rdr
a
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0.4.2 Part (b)

Using Fourier law,

(1) = —kOVu
' du N ~1du
AT rdo
Since symmetric in 0, then g—g = 0 and the above reduces to
- du
= kg —
¢ o

Hence the heat flow per unit time through surface at » = b is

J;zna(—ﬁ)ds

27 Aau .
fo (—korz) () rdO

But 71 = # since radial unit vector. The above becomes

2 QJu u
fo ko 210 = - (2rky) 15

At r = b the above becomes
u
- (Zﬂko) b W )
r=b
Similarly at r = a

du
- (27'[k0) a E

r=a

0.4.3 Part (c)

Applying that the rate of time change of total energy equal to flux through the boundaries
gives

du
+ (ano) b E

r=a

d b du
T (271]; (cpu) rdr) = —(2ntky) a P

r=b

Moving % inside the first integral, it become partial

b du b9 ( du
27’cfa CPE) rdr—27'(k0fa E’(rz)dr

Moving everything under one integral

Pl du d [ du
f (CPE)T—kog—r(TE)]dTZO
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Hence, since this is valid for any annulus, then the integrand is zero

ouy 9 () _,
Por) 5" or ) T

8u_k018(c9u)

5t " oprar\ar

du x4 r&u
ot rar\ or

Hence

k
Where x = 2.

cp

0.5 Problem 5 (1.5.6)

1.5.6. Modify Exercise 1.5.5 if the thermal properties depend on 7.

The earlier problem is now repeated but in this problem ¢ = c(r), kg = ko (r) and p = p (7).
These are the thermal properties in the problem.

0.5.1 Part(a)

271 b 27T b
fo fa(c(r)p(r)u)rdrdezj; dQJ; (c(r)p(r)u)rdr

=2n fb (c (" p u) rdr
0.5.2 Part (b)

> du
¢ = —ko (T)T&—r

The heat flow per unit time through surface at r is therefore

27 271 0
fo - (R)ds = fo (—ko(r)?a—”r‘).(ﬁ)rde

But 71 = # since radial therefore
21 u u
fo ko (1) 5140 = = 27k (D) 15

At r = b the above becomes
u
— (27‘[ k0|r:b) b &_T

r=b
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Similarly at r = a

du
- (27’( k0|r:a) a Z

r=a

0.5.3 Part (c)

Applying that the rate of time change of total energy equal to flux through the boundaries
gives

du
+ (2ol )0 5

b
% (27zfa (cp®u) rdr) == (2” k0|r=a) g % -

b9 Ju
=271fa Z(ko(r)rw)dr

Moving % inside the first integral, it become partial

27'([ (c (" p —) rdr =21 fb % (ko (r)r%)dr

Moving everything under one integral

b P )
f[(c(r)p(r)&—btl) 2 (ko(r)r—)]dr_O

Since this is valid for any annulus then the integrand is zero

d d d
(c(r)p(r) &—?)r— 5 (ko (r)rg—l:) =0

Therefore, the heat equation when the thermal properties depends on r becomes

r=b

du(rt) 1 ( )
Jat p(r)c(r) r z}’r 0

du(r, t))

0.6 Problem 6 (1.5.9)

1.5.9. Determine the equilibrium temperature distribution inside a circular annu-
lus (ry <7 < rp):
*(a) if the outer radius is at temperature T, and the inner at T

(b) if the outer radius is insulated and the inner radius is at temperature
T,
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0.6.1 Part (a)

adt 1o
symmetry in 0 is assumed and therefore temperature u depends only on r only. This means

u (rg) is the same at any angle O for that specific ry. This becomes a second order ODE

Ki(du)zo

rar\"dr
K (du . d*u 0
—_ — r— 1| =
r\dr dr?
A2y 1du
_—t —— =
dr?2 = rdr
Since ; # 0. Assuming Z—l: = v (r), the above becomes

dv+1v—0
dr r

do 1
— = ——7
dr r

dv_ dr
v 7

The heat equation is g x2 (r%). At steady state % = 0. And since circular region,

Integrating

Inv=-Inr+¢

v = e~ Inrtal

— Cze—lnr

1
= (CH—
21’

. du
Where ¢, = ¢°1. Since = =0, then

Integrating
u(r)=cylnr+cs
When r = r{,u = T;, and when r = r,,u = T,, therefore
Ty =cyInr; +c3
Ty =cylnry +c3
From first equation, c; = T; — ¢, Inry. Substituting in second equation gives
Ty =cInry,+T;—cyInrg

=0Cy (1117"2 - 1117"1) + Tl
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Therefore
T,-T,
0=—"—""—
27 In ry—1Inr
Hence ¢3 =T; - hjz_ﬁr Inry. Therefore the steady state solution becomes
2= 1

u(r)y=cyInr+c;

T,-T T,-T
=—2 1 Inr+Ty-———Inny
Inr, —Inr Inr, —Inr
:T1+(Tz—Tl)lnr—(TZ—Tl)lnrl
Inry—Inr
T+ (T, -Ty)(Inr—1Inry)
lnrz—lnr1
ln(i)
1
=T+ (T, - Ty)

In (r—z)
1

Hence

u(r) =Ty + (T, - Ty)

uf2)
2

0.6.2 Part (b)
Insulated condition implies dd—l: = 0. So the above is repeated, but this new boundary condition
is now used at r,. Starting from the general solution found in part (a)
u(r)=cylnr+cs
When r = r;,u = T; and when r = rz,% = 0. But Z—l: = %2 Hence r = r, gives ;—2 =0orc, =0.
2
Therefore the solution is
u(r) =cs

When r = r, u = Ty, hence c3 = T;. The solution becomes

u(r)="T;

The temperature is T; everywhere. This makes sense as this is steady state, and no heat
escapes to the outside.
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0.7 Problem 7 (1.5.10)

1.5.10. Determine the equilibrium temperature distribution inside a circle (r < rg)
if the boundary is fixed at temperature Tj.

Last problem found the solution to the heat equation in polar coordinates with symmetry
in 0 to be

u(r)y=cyInr+c;
c, must be zero since at 7 = 0 the temperature must be finite. The solution becomes
u(r) = cs
Applying the boundary conditions at r = r
To=c3
Therefore,
u(r)="T,

The temperature everywhere is the the same as on the edge.

0.8 Problem 8 (1.5.11)

*1.5.11. Consider

@ = ££ rél—t <r<bdb
ot ror or asr
subject to
du ou
u(r,0) = f(r), E?(a,t) = 3, and E;(b’t) = 1.

Using physical reasoning. for what value(s) of 3 does an equilibrium tem-
perature distribution exist?

For equilibrium the total rate of heat flow at r = 2 should be the same as at r = b. Circumfer-
ence at r = g is 2rta and total rate of flow at r = a is given by . Hence total heat flow rate at
r = a is given by

Qra) 2| =2
mia P = 2maf

r=a



Similarly, total heat flow rate at r = b is given by
d
@nb) 22| = 2mb
or|._
r=b
Therefore 2mtaf = 2ma or

0.9 Problem 9 (1.5.12)

19

1.5.12. Assume that the temperature is spherically symmetric, u = u(r,t), where r
is the distance from a fixed point (2 = z2 + y? + z?). Consider the heat
flow (without sources) between any two concentric spheres of radii a and b.

(a) Show that the total heat energy is 47 [ : cpur? dr.

(b) Show that the flow of heat energy per unit time out of the spherical
shell at r = b is —47b? Ko Ou/Or |.=p. A similar result holds at r = a.

(c) Use parts (a) and (b) to derive the spherically symmetric heat equation

Ou _k 9 ( ,0u
o r2or\ or)

0.9.1 Part (a)
Total heat energy is, by definition

E= f cpudv
14

. . 4
Volume v of sphere of radius ris v = 5711/3. Hence

a = 4771’2
do = 4nr’dr

Equation (1) becomes, where now the r limits are from a to b
b
E= f cpu (4nr2dr)
a

b
=4n f cpur?dr
a
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0.9.2 Part (b)
By definition, the flux at » = b is

Po = —ko 5

The above is per unit area. At r = b, the surface area of the sphere is 47b?. Therefore, the
total energy per unit time is ¢, (4nb2) or

u

—47'(192]{0 a

r=b
Similarly for r = a.
0.9.3 Part(c)

By conservation of thermal energy

d du
_F=— 20 ——
th 4mtack P

d b b o [, du
7 (4nf cpur dr) = 4nk0fa > (r W)dr

a

b Ju b9 (,du
U 2, - — 2=

f pardr koj; 87’(r &r)dr

Moving everything into one integral

bl du d (,du
f [cpg—tr _ko&r( 8r)]dr =0

Since this is valid for any limits the integrand must be zero
du , d | ,du
P57 _k08( a)—0

du kol d 8_
ot cpr2or " or

du _ x d 72811
ot~ 2or or

Therefore

k
Where « = 2
cp



21

0.10 Problem 10 (1.5.13)

*1.5.13. Determine the steady-state temperature distribution between two concentric
spheres with radii 1 and 4, respectively, if the temperature of the outer
sphere is maintained at 80° and the inner sphere at 0° (see Exercise 1.5.12).

. . Jdu _ xk d [ odu du _ . .
The heat equation is > = 5— ( 5)' For steady state - = 0 and assuming symmetry in 0,
the heat equation becomes an ODE in r

Ei Zd_u =0
r2 dr rdr B

d zd_u_o
drrdr B

Forr#0
Let X = v (), h
e dr—UT’, ence

do 20
dr r
do dr
R ol
v r
Integrating

Inv=-2Inr+c
U= e—21nr+c

— C1€_2 Inr

1

. du
Therefore, since - = v (r) then
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Integrating

u(r):_TCl+c2

When r =1, u = 0 and when r = 4, u = 80, hence

0= —C1+Cp
80=—L+
=—+c
1 2
From first equation, ¢; = ¢, and from second equation 80 = —Tq + cq, hence ?Icl = 80 or
= (4);80) - %_ Therefore, the general solution becomes
3201 320
u(r)y=-—-—+—
3 r 3

or

u(r):ai—o(l—})
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