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1 HW)S

1.1 Section 3.1 problem 9

Find the solution to y” + ' — 2y = 0;y(0) = 1,' (0) = 1 and sketch the solution and describe its
behavior as t increases.

solution
The characteristic equation is found by substituting y = ¢* into the ODE and simplifying, giving
+r-2=0
r+2)(r-1)=0
Hence the roots are r{ = -2,7, = 1. Roots are real and distinct. The two solutions are
nh=e
y, =

The general solution is linear combination of the above two solutions

-2t

Y=yt
= 1672 + cyet

Now ¢y, c; are found from initial conditions. Applying first initial condition (y (0) = 1) to the general
solution gives

1:C1+C2 (1)

Taking time derivative of the general solution gives y’ (f) = —2c;e7? + c,e!. Applying second initial
condition to this results in

1=-2c1+c )
Equation (1,2) are now solved for ¢y, c;. From (1), ¢; =1 —c,. Substituting this into (2) gives
1==2(1-c)+0c,
=-242c+0¢)
=-2+43c,
Hence ¢; = % =1. Therefore c; =1 -1 = 0. Hence
c1=0
c =
Substituting these back into the general solution gives
y)=¢

Since the solution is exponential, it will grow in time and blows up. Here is sketch of the solution.

solution to 3.2 problem 9
2of : : :

151

£ 10}

0.0 0.5 1.0 1.5 2.0 25 3.0

1.2 Section 3.1 problem 10

Find the solution to y” + 4y’ + 3y = 0;(0) = 2,1’ (0) = -1 and sketch the solution and describe its
behavior as t increases.

solution

The characteristic equation is found by substituting y = ¢"* into the ODE and simplifying, giving
P+4r+3=0
r+3)(r+1)=0



Hence the roots are r; = =3,7, = —1. Roots are real and distinct. The two solutions are

yp=e

— ot
Yy2=e
The general solution is linear combination of the above two solutions
y=alr+ ol
=173 + et

Now ¢y, c; are found from initial conditions. Applying first initial condition (y (0) = 2) to the general
solution gives

2=C1+C2 (1)

Taking time derivative of the general solution gives y’ (t) = —=3c,¢™! — c,e™. Applying second initial
condition to this results in

-1= —3C1 —Cy (2)
Equation (1,2) are now solved for ¢y, ;. From (1), ¢; = 2 — c,. Substituting this into (2) gives

1=-3Q2-c) -0,

=-6+ 3C2 —C
=-6+ 2C2

Hence ¢; = _12+6 = 2.5. Therefore ¢c; =2 -2.5 =0.5. Hence
1 = 0.5
Cy = 2.5

Substituting these back into the general solution gives
y(t) = 0.5¢73 + 2.5¢7

At t becomes large, both solutions decay to zero. So we expect the general solution to go to zero
very fast. Here is a sketch.

solution to 3.2 problem 10
20l - - -

1.5¢

0.5r
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1.3 Section 3.1 problem 11

Find the solution to 6y” —5y" +y = 0;(0) = 4,1’ (0) = 0 and sketch the solution and describe its
behavior as t increases.

solution

The characteristic equation is found by substituting y = ¢* into the ODE and simplifying, giving

6r2-5r+1=0
-b Vbh2-4ac

= — =+
H.en.ce "2 20 2
distinct. The roots are

, where A = b? —4ac = 25 - (4) (6) = 1. Since A > 0, the roots will be real and

b Vb?%-4ac

T, = — =+
127 g 2a

5 1
= — 4+ —
12 12

Hence the roots are r| = %,rz = % Roots are real and distinct. The two solutions are
1
1= ez'
1
Yo = e§t



The general solution is linear combination of the above two solutions

Yy =ayt+ Gl
it it

=cc1e2 +cpes
Now ¢y, c; are found from initial conditions. Applying first initial condition (y (0) = 4) to the general
solution gives

4= c1+Co (1)

1 1

Taking time derivative of the general solution gives i’ (t) = %cleit + %cZegt. Applying second initial
condition to this results in

1 1
0= ECl + §C2 (2)

Equation (1,2) are now solved for ¢y, ¢;. From (1), c; = 4 — c,. Substituting this into (2) gives

1 1
O=E(4—C2)+§C2

Hence ¢, = 12. Therefore ¢; =4 -12 = -8. Hence
1 = -8
Cy = 12
Substituting these back into the general solution gives
1t it
y(t) = —8ez +12e3

1 1 1
Since e2' grows faster than e3' and since e2' has negative coefficient, then the solution will go to

—oo as t increases. Here is sketch of the solution

solution to 3.2 problem 11
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1.4 Section 3.1 problem 12

Find the solution to y” + 3y’ = 0;4(0) = -2,y (0) = 3 and sketch the solution and describe its
behavior as t increases.

solution

The characteristic equation is found by substituting y = ¢" into the ODE and simplifying, giving
?+3r=0
r(r+3)=0
Hence the roots are ; = 0,7, = =3. Roots are real and distinct. The two solutions are
yi =1
Va=¢

The general solution is linear combination of the above two solutions

3t

Y =cp+ce

Now cy,c, are found from initial conditions. Applying first initial condition (y(0) = -2) to the
general solution gives

-2 = c1+0C (1)



Taking time derivative of the general solution gives v’ (t) = —3c,¢™>. Applying second initial condi-
tion to this results in

3=-3c, (2)
Hence c, = —1. Therefore ¢; = —1. Substituting these back into the general solution gives
y(H)=-1-¢>

As t — oo, the term ¢ — 0 and we are left with —1. Hence lim,_., y (f) = —1. Here is sketch of the
solution

solution to 3.2 problem 12

-1.0[
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> -1.3f
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-1.5¢
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1.5 Section 3.1 problem 13

Find the solution to ¥ + 5y’ + 3y = 0;y(0) = 1," (0) = 0 and sketch the solution and describe its
behavior as t increases.

solution

The characteristic equation is found by substituting y = ¢* into the ODE and simplifying, giving

?+5r+3=0

— Vp2—.
Hence r, = 2—2 + %, where A = b? — 4ac = 25 - (4) (3) = 13. Since A > 0, the roots will be real

and distinct. The roots are

b Vb?-4ac

Nn2=5-=*
’ 2a 2a

-5 413
= — +

2 2
V13

-5 -5 .
Hence the roots are r| = Tt =55 The two solutions are

-5 V13
y _6(7 T)t
1=
;S_Vj)t

2 2

v
The general solution is linear combination of the above two solutions

;5+@)t (é_@)t
2 2 2 2
+ e

y= cle(
Now ¢y, c; are found from initial conditions. Applying first initial condition (y (0) = 1) to the general
solution gives
l=c+c (1)
Taking time derivative of the general solution gives

vy =q [_75 + g)e(}r‘?)t to, (—25 \/ﬁ)e(;‘?)t

Applying second initial condition to this results in

0=cl(_5 x/ﬁ) Cz(_S «/1_3] @

—+— |+
2 2



From (1), ¢; =1 - ¢, and from (2)

5 13 5 13
:““fz)(? T]*"z(TT)
-5 V13 5 V13 5 Vi3
Tyt Tty 50
-5 1
= % +5
_ -5++13
= —2\/ﬁ
Therefore ¢; =1 + > \;/1; and the solution becomes
o B )
R s (55 (32D 9
2V13 213
) 50 ) e )
=21—6 268(_; @) +(5V13 - 13)e(25 g) +(—5\/ﬁ+13)e(_25_v2173)t]
:21_6 266(;+g) +5‘/_€(75+g) —136(_5 \/7) —5\/_e(;5_g) +13e(_25_\?)t]
21_6 133(%5+\/TT3) +5\/_e(75 g) —5\/_6(%57\/717’) +13e(775 \/Zﬁ)t]

Here is sketch of the solution showing that y - 0 ast — oo

solution to 3.2 problem 13

1.6 Section 3.1 problem 14

Find the solution to 2y” +y’ — 4y = 0;y(0) = 0, (0) = 1 and sketch the solution and describe its
behavior as t increases.

solution

The characteristic equation is found by substituting y = ¢"* into the ODE and simplifying, giving

2 +r—-4=0
Hence 1y, = ;—Z + VZ;ZZ—;T‘ZC, where A = b? —4ac =1 - (4) (2) (-4) = 33. Since A > 0, the roots will be real
and distinct. The roots are
-b b? - 4ac
n2T ot T
-1 \/ﬁ

T2 T4



Hence the roots are r = i + V%E,rz = i - \/T;S. The two solutions are
[+:9)
hh=e
9
4 4
Yy2=¢
The general solution is linear combination of the above two solutions
18}, 2
y=rce + Cpe

Now ¢y, ¢, are found from initial conditions. Applying first initial condition (v (0) = 0) to the general
solution gives

0= c1+Cp (1)
Taking time derivative of the general solution gives

vy =0a [—le + @]e(h‘/‘?)t . ( 1 \/ﬁ]e(i—‘/‘?)t

Applying second initial condition to this results in

(048

itr ®

From (1), ¢; = —c, and from (2)

4 4
1 43 1 33
2102— 2 Cz—Zcz—Tcz
-vV33
= 2 C2
-2

Therefore ¢; = -2 and the solution becomes
V33
2 [} 2 [+9)
RV V33
Since —31 + @ =1.186 and —i - %@ = —1.686 then the above can be written as
2 2
2 _plset _ £ 1186t

VT NeE

Then we see that as t — oo the second term e 118 — (0 and we are left with e
oo for large ¢t. Hence

1186 which will go to

tlim y(#) =0

Here is sketch of the solution

solution to 3.2 problem 14

1201
100+

1.7 Section 3.1 problem 15

Find the solution to y” + 8y —9y = 0;y (1) = 1,' (1) = 0 and sketch the solution and describe its
behavior as t increases.

solution



The characteristic equation is found by substituting y = ¢* into the ODE and simplifying, giving
”+8-9=0
r-1)(@r+9)=0
Hence the roots are r{ = 1,7, = =9. The two solutions are
t

hh=e
Yo=e

The general solution is linear combination of the above two solutions

ot

y=ce + et

Now ¢y, ¢, are found from initial conditions. Applying first initial condition (y (1) = 1) to the general
solution gives

1 =cee! +cpe™ 1)
Taking time derivative of the general solution gives
Y () = cref = 9cpe™
Applying second initial condition to this results in
0 = ciet = 9cye™ (2)

l—C2€79 -1
T ¢
e

From (1), ¢; = - c,¢71 and from (2)
0= (e‘l - cze‘lo) el —9cye™?
=1-cye? —9cpe™
=1+c (—6‘9 - 96‘9)

0=1+c,(-10e7)

Hence
1
9
c, = —e
2710
_ - 419 41 _ .
Therefore ¢; = et — e 0 =¢71 - 5696 10=¢1- € 1= € 1 and the solution becomes
9
_ 2t 9,9t
= —e¢let + —¢%
7710 10
_ iet—l + 169—%
10 10
9_

Then we see that as t — oo the second term e
for large t. Hence

% — 0 and we are left with ¢/~ which will go to o

tlim y(#) =o0

Here is sketch of the solution.

solution to 3.2 problem 15
50F ' ' ' -

1.8 Section 3.1 problem 16

Find the solution to 4y” —y = 0;y(-2) = 1,y’ (-2) = -1 and sketch the solution and describe its
behavior as t increases.

solution

The characteristic equation is found by substituting y = ¢"* into the ODE and simplifying, giving
42-1=0



1 .
Hence the roots are r| = +5. The two solutions are

1

yl = e2
L

yz =e 2

1

The general solution is linear combination of the above two solutions

1,
y= ci1e2 +cpe 2
general solution gives

Now ¢y, ¢, are found from initial conditions. Applying first initial condition (y(-2) = 1) to the

1=cie ! +cpe
Taking time derivative of the general solution gives

1 1 1 _1
y @)= EcleZt — —Cpe 2!
Applying second initial condition to this results in

Lol
-1 =—cie — =cpe
2" 27
From (1), ¢; = 1;128 = e - cp¢? and from (2)
1 1
-1= 5 (e - czez) et - 52
1 1
= E ECze — ECze
1
= - —0cye
5 G
Hence
3
cp==el4el=2¢l
2 2
Therefore ¢; = e — (ge‘l) P =e- se=-ze and the solution becomes

1,
Y =ce2 +cpe 2
1 4 3 ;2
=——ee2' + Zele2!
2 2
1,8 3 42t
= ——61+2 + —e 1 2
2 2
—oo for large t. Hence

tlim y(t) =—co

t t
Then we see that as t — co the second term ¢ "2 — 0 and we are left with —=¢'*2 which will go to

Here is sketch of the solution.

\

solution to 3.2 problem 16
0_. : :
-5

_ -10¢f
= s

-20f
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1.9 Section 3.2 problem 1

Find the Wronskian of the given pair of functions e
solution

2t -2
,€ 2

1)

2)
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-3
We are given y; (t) = €%, y, (t) = e2', hence by definition, the Wronskian is

yi(t) v (t)

W: / /
y1 () vy (t)
_3t

~ 2t 0 2

Ty 2 .
2e 5€ 2
-3t i

= —e2 —2p2
> e e
-7t

= —e2
2

1.10 Section 3.2 problem 2

Find the Wronskian of the given pair of functions cost,sin t

solution

We are given y, () = cost,y, (t) = sint, hence by definition, the Wronskian is

yi(t) vy (b)
vi) ya(t)

cost sint

—sint cost
= cos?t + sin’t
=1

111 Section 3.2 problem 3

Find the Wronskian of the given pair of functions e~%, te=?*

solution
We are given v, (t) = e72,y, (t) = te™?, hence by definition, the Wronskian is
y1(t) 2 ()

i) ya (b
—2t te—Zt

W=

e

—De72t 72t _ D2t
= (e‘Zt) (e‘Zt - 2te‘2t) + 2e 2pp2t
e

—4 _Dtem4t 4 DfeH
4t

=e

112 Section 3.2 problem 4

Find the Wronskian of the given pair of functions x, xe*

solution

We are given y; (x) = x,y; (x) = xe*, hence by definition, the Wronskian is

y1(x) yp (%)
v (¥) vy (%)

X xe*

1 e +xe*

= (x) (¢* + xe*) — xe*

X

= xe* + x2e¢* — xe

— xzex

113 Section 3.2 problem 5

Find the Wronskian of the given pair of functions ¢’ sint, e cos t

solution



11

We are given vy (t) = e’ sint,y, (t) = ¢ cost, hence by definition, the Wronskian is

y1(H) ya ()
vi () vy ()

el sint el cost

W=

efsint +efcost efcost—elsint

= ( tsin t) (et cost—elsin t) —efcost (et sint + ef cos t)
= e sintcost — e sin® t — e2 costsin t — €2 cos? t

= —e2 gin® t — ¢? cos? t

= —2¢% (sin2 t + cos? t)

= —D¢2t

1.14 Section 3.2 problem 6

Find the Wronskian of the given pair of functions cos? 0,1 + cos 260

solution

We are given y; (0) = cos? 0,1, (0) = 1 + cos 20, hence by definition, the Wronskian is

v1(0) y2(0)

y1(6) y2(6)
cos? 0 1+ cos20

—2cosfOsin@ —2sin20

= —2cos? 0sin 20 — (1 + cos 26) (-2 cos O sin O)
= -2 cos? 0sin 20 — (=2 cos @ sin O — 2 cos O sin O cos 20)
= —2cos? 0sin20 + 2 cos Osin O + 2 cos O sin O cos 20
Using cos26 = 2cos? 0 —1 And sin 26 = 2sin 0 cos 6 the above becomes
W = —2cos? 6 (2sin O cos ) + 2 cos @sin 0 + ZCOSQSiHQ(ZCOSZ 9 —1)
=—4cos’0sin@ +2cosOsin O +4cos® OsinO — 2 cos Osin O
=—4cos’Osin O +4cos®Osin O
=0
We could also see that W = 0 more directly, by noticing that y; = cos?26 = 1 - sin? 6 and since
sin?6 = % - %cos 20 then

y1 = cos? 0
1 1
=1-[=-=cos20
2 2
—1+1 20
=5 2cos

1
=3 (1 + cos26)

Therefore, y; = %yz. Hence y; is just a scaled version of y; and so these are two solutions are not
linearly independent functions, (parallel to each others in vector space view) and so we expect that
the Wronskian to be zero.
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