HW 5, Math 319, Fall 2016
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1 HW)S

1.1 Section 3.1 problem 9

Find the solution to vy +y -2y = 0;y(0) = 1,4’ (0) = 1 and sketch the solution and describe its
behavior as t increases.

solution

The characteristic equation is found by substituting y = ¢* into the ODE and simplifying, giving
+r-2=0
r+2)(r-1)=0
Hence the roots are r; = -2,7, = 1. Roots are real and distinct. The two solutions are

yp=e?

— ot
Va=e
The general solution is linear combination of the above two solutions
y=al1+ ol
= 1672 + cyet

Now ¢y, ¢; are found from initial conditions. Applying first initial condition (y(0) = 1) to the general
solution gives

1:C1+C2 (1)

Taking time derivative of the general solution gives y’ (t) = —2c;e™% + c,¢!. Applying second initial
condition to this results in

1=-2¢c1+¢ (2)
Equation (1,2) are now solved for ¢y, c;. From (1), ¢; =1 —¢,. Substituting this into (2) gives
1=-2(1-c)+0,
=-242c+0c,
=-2+43c,
Hence ¢, = % =1. Therefore c; =1 -1 = 0. Hence
c1=0
c =
Substituting these back into the general solution gives
y@)=¢

Since the solution is exponential, it will grow in time and blows up. Here is sketch of the solution.



solution to 3.2 problem 9

y(t)
o

0.0 0.5 1.0 1.5 2.0 25 3.0

1.2 Section 3.1 problem 10

Find the solution to y” + 4y’ + 3y = 0;y(0) = 2,y’ (0) = -1 and sketch the solution and describe its
behavior as t increases.

solution

The characteristic equation is found by substituting y = ¢"" into the ODE and simplifying, giving
2 +4r+3=0
r+3)(r+1)=0
Hence the roots are r; = -3,7, = —1. Roots are real and distinct. The two solutions are

yp=e

yp=c
The general solution is linear combination of the above two solutions
Yy=alr+ ol
=173 + et

Now ¢y, ¢, are found from initial conditions. Applying first initial condition (y (0) = 2) to the general
solution gives

2=C1+C2 (1)

Taking time derivative of the general solution gives v’ (t) = —3c;e™> - c,e™". Applying second initial
condition to this results in

-1= —3C1 —C (2)
Equation (1,2) are now solved for ¢y, c;. From (1), c; = 2 — c,. Substituting this into (2) gives

“1=-32-c)-c,

=-6+ 3C2 —C
=-6+ 2C2

Hence ¢; = _12+6 = 2.5. Therefore ¢c; =2 -2.5 =0.5. Hence
1 = 0.5

Cy = 25



Substituting these back into the general solution gives
y(t) = 0.5¢73 + 2.5¢7
At t becomes large, both solutions decay to zero. So we expect the general solution to go to zero

very fast. Here is a sketch.

solution to 3.2 problem 10

00 05 10 15 20 25 30

1.3 Section 3.1 problem 11

Find the solution to 6y” -5y +y = 0;y(0) = 4,y’ (0) = 0 and sketch the solution and describe its
behavior as t increases.

solution

The characteristic equation is found by substituting y = ¢* into the ODE and simplifying, giving

6r2-5r+1=0
— Vp2—.
Hence ry, = by bzaW, where A = b? — 4ac = 25— (4) (6) = 1. Since A > 0, the roots will be real and

distinct. The roots are

b Vb?-4ac

Tip=—=
’ 2a 2a

5 1
= — 4+ —
12 12
1 1 . .
Hence the roots are r = 272 =3 Roots are real and distinct. The two solutions are

1
= git
1
Yo = g§t
The general solution is linear combination of the above two solutions

Y =cy1+ Gl
1 1
= CleZ + C2€3

Now ¢y, ¢; are found from initial conditions. Applying first initial condition (y (0) = 4) to the general
solution gives

4:C1+C2 (1)



R - Lo 1oL 1 Ly . I
Taking time derivative of the general solution gives y’ (f) = Sc1e2” + 2ce3 . Applying second initial
condition to this results in

1 1
0= Ecl + §C2 (2)

Equation (1,2) are now solved for ¢y, c;. From (1), c; = 4 — c,. Substituting this into (2) gives

Hence ¢, =12. Therefore ¢c; =4 -12 = —-8. Hence
= -8
Cy = 12
Substituting these back into the general solution gives
1 1
y(t) = -8e2" +12¢3'

1 1 1
Since e2’ grows faster than e3' and since 2’ has negative coefficient, then the solution will go to —co
as t increases. Here is sketch of the solution

solution to 3.2 problem 11

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.4 Section 3.1 problem 12

Find the solution to y”’ +3y" = 0;y(0) = -2, (0) = 3 and sketch the solution and describe its behavior
as t increases.

solution
The characteristic equation is found by substituting y = ¢" into the ODE and simplifying, giving

?+3r=0
r(r+3)=0



Hence the roots are r; = 0,7, = —3. Roots are real and distinct. The two solutions are
v =1
Va=¢

The general solution is linear combination of the above two solutions

3t

y=cp+cpet

Now ¢y, c; are found from initial conditions. Applying first initial condition (y (0) = -2) to the general
solution gives

-2 = C1+0C (1)

Taking time derivative of the general solution gives i’ (t) = —3c,e™>. Applying second initial condition
to this results in

3= —3C2 (2)
Hence c, = -1. Therefore ¢; = —1. Substituting these back into the general solution gives
y(H)=-1-¢>

As t — oo, the term ¢ — 0 and we are left with —1. Hence lim,_, y (t) = —1. Here is sketch of the
solution

solution to 3.2 problem 12

-1.0F

-1.1F
-1.2¢

> 1.3}

0.0 0.5 1.0 1.5 2.0 25 3.0

1.5 Section 3.1 problem 13

Find the solution to y” + 5y’ + 3y = 0;y(0) = 1,1’ (0) = 0 and sketch the solution and describe its
behavior as t increases.

solution

The characteristic equation is found by substituting y = ¢"* into the ODE and simplifying, giving

2 +5r+3=0
-b  Vb?>—4ac

= — +
H.en.ce "2 20 = 2a
distinct. The roots are

, where A = b? — 4ac = 25 - (4) (3) = 13. Since A > 0, the roots will be real and

b Vb?-4ac
Moo= —F—
’ 2a 2a

-5 413

272



Hence the roots are r = _75 + ‘/Tﬁ,rz = _75 - \/T» The two solutions are
[F2)
2
y1=e
#-5)
2 2
Y2=¢
The general solution is linear combination of the above two solutions
F5), 55
2 2
Yy =rce + e

Now ¢y, ¢, are found from initial conditions. Applying first initial condition (y(0) = 1) to the general
solution gives
1= c1+0C (1)

Taking time derivative of the general solution gives

y()=c [_75 + ?)e(gﬁtﬁ)t e (_5 \/E)e(_zs‘\/?)t

Applying second initial condition to this results in

a2 sl 2

_+_ —_—
2 2 2 2

From (1), ¢; =1 - ¢, and from (2)
5 1 -5 1
°=<1‘Cz>(? g]*”(?’%)
5. V138 5 VI35 Vi3
2

W
W

=3 tr T3 3 ey g
5 13

=—§+T \/EC2
-5 1



5-13
i3

and the solution becomes

[5+\/_) 75%)

Therefore ¢c; =1 + 2

y@—(

S

AN B R (e 3
2\/_ Vi3

79} i1 38}, (s 5-5)

) +(5v13-13) e(%%)t +(-5v13 +13) e(f‘?)t]

W
N
W

|

Vi3 (—5 x/ﬁ) 5 _VB),

:21—6 266(;£+ )t+5x/1_e( +T) ~13e —5\/_2(7_7) +13e(_75_ )tJ

~\ﬂ

-5_V13
2

:216 13e(75+@) +5V13 e( ) ~5V13 e( _T) +13e( )t]

N‘ﬁ
W

""m
N\n‘n

Here is sketch of the solution showing that y — 0 as t — oo

solution to 3.2 problem 13

1.6 Section 3.1 problem 14

Find the solution to 2y” +y’ — 4y = 0;y(0) = 0, (0) = 1 and sketch the solution and describe its
behavior as ¢ increases.

solution

The characteristic equation is found by substituting y = ¢* into the ODE and simplifying, giving

212 +r—4=0

-b Vb%-dac

Hence 7y, = wE where A = b? —4ac =1 - (4) (2) (-4) = 33. Since A > 0, the roots will be real




and distinct. The roots are

T e
127 2y 2a
-1 V33
474
Hence the roots are r| = i + \/TSE,Q = 411 - \/T?S. The two solutions are
1,3
(%)
nh=e
9
4 4
=e

The general solution is linear combination of the above two solutions
8}, 8
+ e

4

y=od
Now ¢y, ¢; are found from initial conditions. Applying first initial condition (y (0) = 0) to the general
solution gives
0= c1+Cy (1)
Taking time derivative of the general solution gives

vo=al-5+ @]e(i”?)f R =

Applying second initial condition to this results in

ol 1Bl

__+_
4 4

From (1), ¢; = —¢, and from (2)

1:—C2(—1+@)+C2[_1—@)
4 4 4 4
_1 ¥ 1 V33
T4 4 g oy 2
V33

-2

Therefore ¢; = 2 and the solution becomes
V33
yo 2w 2 )

V33 V33

Since —31 + g =1.186 and —31 - \{ng = -1.686 then the above can be written as
2 2
_ 2 plset _ £ 1186t
RV V33

—1.186t 1.186t

Then we see that as t+ — co the second term e — 0 and we are left with e which will go to oo



10

for large t. Hence
tlim y(t) =00
Here is sketch of the solution

solution to 3.2 problem 14

120;
100;
80;
60;
40}
20}

y(t)

1.7 Section 3.1 problem 15

Find the solution to ¥y’ + 8y’ -9y = 0;y(1) = 1,3’ (1) = 0 and sketch the solution and describe its
behavior as t increases.

solution

The characteristic equation is found by substituting y = ¢* into the ODE and simplifying, giving
+8r-9=0
r-1)(@r+9) =0
Hence the roots are r = 1,7, = —9. The two solutions are

t

yi=e
Ya=¢

The general solution is linear combination of the above two solutions

ot

y=ce + et

Now ¢y, ¢, are found from initial conditions. Applying first initial condition (y (1) = 1) to the general
solution gives

1 =cee! +cpe™® (1)
Taking time derivative of the general solution gives
Y () = cief = 9cpe™
Applying second initial condition to this results in

0 = cie! = 9cye™ (2)



11

1 —C2679 1

From (1), c; = —F— =e¢ - c,¢71 and from (2)

0= (efl - czeflo) el —9cye™?
=1-cye™? —9cpe™
=1+c (—6*9 - 96*9)

0=1+c,(-10e7)

Hence
1
_ 19
cp = —e
2710
_ - 419 401 49 _ .
Therefore ¢; = e — e 0 =71 - 5696 10 =1 G 1= e I and the solution becomes
9 1
_ 2t 9,-9t
= —e¢let + —¢%
7710 10
9 L
10 10

Then we see that as t — oo the second term ¢~ — 0 and we are left with ¢~! which will go to oo for
large t. Hence

tlim y(#) =0
Here is sketch of the solution.

solution to 3.2 problem 15
50 j! T T T T T T T T T T T T T T T T T T T ]

1.8 Section 3.1 problem 16

Find the solution to 4y” -y = 0;y(-2) = 1,'(-2) = -1 and sketch the solution and describe its
behavior as t increases.

solution

The characteristic equation is found by substituting y = ¢"" into the ODE and simplifying, giving
47 -1=0

1 .
Hence the roots are r; = +2. The two solutions are



The general solution is linear combination of the above two solutions

1 1

It .y
y= c1e2 +cre 2

12

Now ¢y, ¢, are found from initial conditions. Applying first initial condition (y(-2) = 1) to the general

solution gives
1=ciet +cpe

Taking time derivative of the general solution gives
1

1 1, 1 1
y’ (t) = §C1€2 - §C2€ 2

Applying second initial condition to this results in

1=t et
-1 = =Cq€ — =(Cre
21 272

1—cge

From (1), ¢; = = e - c,¢? and from (2)

el

e—cye?)et - 1cze
(e-e?)et -3

1
Cre — —(Cre
2

1=

I
N =

NP N=DN] -

|
o

N
I

Hence

1 3
= Ee‘l +el= ¢

1

_ 3 1 .
Therefore ¢; = e - (—e 1) P =e— se=—3¢ and the solution becomes

L, 1
y= c1e2 +cpe 2

1 4 3 -1
=——ee2' + Zele2!
2 2

t

1,0 3 ot
= ——¢ 2 4+ —¢ 2

1)

2)

t t
Then we see that as t — oo the second term ¢ "2 — 0 and we are left with —%eHE which will go to

—oo for large t. Hence
tlim y(t) = —o0

Here is sketch of the solution.



solution to 3.2 problem 16

0*‘\

-10}
> 15}
-20f
-25}

1.9 Section 3.2 problem 1

3t
Find the Wronskian of the given pair of functions ¢*,¢ 2

solution

-3
We are given y; (t) = €%, y, (t) = e2', hence by definition, the Wronskian is

yi () ya(t)

W: / /
y1 (1) Yy (b)
3
2 o
- 268 2 -2
2e 3¢ 2
-3t i1
= ?ez - 2e2
-7t
= ?32

1.10 Section 3.2 problem 2

Find the Wronskian of the given pair of functions cost, sin ¢

solution

We are given y; () = cost,y, (t) = sint, hence by definition, the Wronskian is

yi(t) y2 ()
yi(t) ya ()

cost sint

—sint cost

= cos?t +sin’ t
=1

111 Section 3.2 problem 3

Find the Wronskian of the given pair of functions e=%, te=?

13



solution
We are given y; (t) = e72,y, (t) = te %, hence by definition, the Wronskian is
y1(t) Y2 (t)
i v ()

—2t t e—Zt

e
= _26721? 6721‘ _ Ztefzt
= (e‘Zt) (e‘Zt - 2te‘2t) + Qe 2tpp2t
=4 —Dpem4 4 Dpem

ey

112 Section 3.2 problem 4
Find the Wronskian of the given pair of functions x, xe*
We are given y; (x) = x,y, (x) = xe*, hence by definition, the Wronskian is

y1 () ¥ (%)
y1(0) yy (%)

X xe*

1 e +xe*

= (x) (e* + xe*) — xe*
= xe* + x2e¥ — xe*

= x2¢¥

1.13 Section 3.2 problem 5
Find the Wronskian of the given pair of functions e’ sint, e’ cost

solution

We are given y (f) = e’ sint, y, (t) = ¢ cost, hence by definition, the Wronskian is

y1(t) o (1)
yi(t) vy (1)

el sint et cost

elsint +efcost efcost—elsint

= (et sin t) (et cost — et sin t) —efcost (et sint + ! cos t)

= e sintcost — e sin® t — 2 costsint — e cos? t

= —e2gin’t — ¢? cos? t
= —2¢% (sin2 f + cos? t)

= —D¢2t

14



15

1.14 Section 3.2 problem 6
Find the Wronskian of the given pair of functions cos? 0,1 + cos 20

solution
We are given v (0) = cos? 0,1, (0) =1 + cos 20, hence by definition, the Wronskian is
y1(0) y2(0)
y1(0) y3(0)

cos? 0 1+ cos 26
—2cosfsinf -2sin26

= -2c0s20sin26 — (1 + cos 26) (-2 cos O sin O)
= —2cos?0sin20 — (-2 cos Osin O — 2 cos O sin 6 cos 26)

= —2cos?0sin20 + 2 cos Osin 6 + 2 cos O sin O cos 26

Using cos26 = 2cos? 6 —1 And sin 26 = 2sin 6 cos 6 the above becomes
W = —2cos? 6 (2sin 0 cos ) + 2 cos Osin 0 + 2005681116(20082 0 —1)
= —4cos®0sin 0 + 2 cos Osin 0 + 4 cos® Osin 6 — 2 cos O sin O
= —4cos® Osin O + 4 cos® Osin O
=0
We could also see that W = 0 more directly, by noticing that y; = cos26 = 1 —sin’6 and since

L_ lCos 26 then

.2
in“o0=-
sin” 6 373

y1 = cos? 0
=1 L 20
= 5~ 50

1 1
=5 + 5 cos 20
1
= = (1 + cos20)
2
Therefore, 1, = Ly,. Hence » is just a scaled version of y; and so these are two solutions are not
Y1 =32 Y218 y

linearly independent functions, (parallel to each others in vector space view) and so we expect that
the Wronskian to be zero.
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