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1 HW 4

1.1 Section 2.6 problem 19

Question Show that x%y3 +x (1 + y2) v’ =0 is not exact, and then becomes exact when multiplied by

u (x, y) = xl? and then solve.

Solution The first step is to apply theorem two and also check where the ODE is singular. Writing it
as
dy -x%y
- = X, A
dx f ( y) x (1 + yz)

This is non-linear first order ODE. There is a pole at x = 0. From theorem two, this says that unique
solution is not guaranteed to exist since the first condition which says that f (x, y) must be continuous,
was not satisfied. Now the ODE is solved.

Mo

X2y + x (1 + yz)y’ =0

Hence
M (x,y) = x%°
N(x,y) = x(l +y2)
An ODE is exact when %I = %]. These are now calculated to see if the ODE is exact or not
oM
— = 3x%y?
y
IN 1412
dx Y

The above shows that that 2—1;4 # %\: therefore the ODE is not exact. Multiplying the original ODE

by given integrating factor it becomes

(yx2y3) + px (1 +y2) y =0
2,3 1
Ty =0

x+%(1+yz)y/ 0

Now M =xand N = y% (1 + yz). Checking that the new M, N are indeed exact.
oM
dy
N
dx

0



The new ODE is exact. Now the ODE is solved using the standard method.

Q\P&(x,y) -y (1)
x
IV (x, _
—;;y):N:%(l+y2) (2)
Integrating (1) w.r.t x gives
W= a2 £ (y) (3)
IV
oy (v)
Comparing the above to (2) in order to solve for f’ (y) gives
1+y?
f (_1/) - ysy
1 2
f(y)=f ;;3]/ dy +c (4)

1+12
We need now to solve f;—gdy

1+y? 1 e
f i dy=fy—3dy+fy—3dy

1 1

:_2_y2+f37dy
1

2‘2—y2+1n|y|

Using the above solution in (4) gives

1
f(y):—$+ln|y|+c

Using the above in (3) gives
1

1
\I’:Exz—ﬁ+ln|y|+c

dv . . :
But — = ¢, therefore the above simplifies to, after collecting all constants to one

1 1
§x2—2—y2+ln|y|=C x+0
22,3
Checking y = 0 as solution, shows that putting y = 0 in f(x,y) = (;yz) = 0. Hence y = 0 is also a
14y

solution.

Summary The solutions are

1
2x

1
2—2—y2+1n|y|:C x#0,y#0

y=0 x#0



1.2 Section 2.6 problem 20

Question Show that (? —2¢7*sin x) + (Cosyﬂyﬂ)y’ = 0 is not exact, and then becomes exact
when multiplied by u (x, y) = ye* and then solve.

Solution First we will check where the ODE is singular. Writing it as

siny .
—2¢™*sinx
dy = fry) =
dx y cosy+2e~* cosx
Yy

This is non-linear first order ODE. We see a pole at y = 0. Hence y # 0. From theorem two, this
says that that unique solution is not guaranteed since first condition which says that f (x, y) must be
continuous, was not satisfied.

M (x,y) = sy _ 2e*sinx

y
cosy +2¢~*cosx
N(x, y) =
y
An ODE is exact when %I = (;—i]. These are now calculated to see if the ODE is exact or not
oM | . 1
— =Inysiny + - cosy
9y y
IN 9 (1 1 -1 1. —2¢7% ,
— = —|-cosy+ -2e*cosx| = —2¢cosx——2eFsinx = (cos x + sin x)
dx  dx\y Yy

From above we see that 22 # 2~ therefore the ODE is not exact. Multiplying the original ODE by
dy Jx
given integrating factor it becomes

i 2
y(SIEy—Ze‘xsinx)+y(COSy+ e~ cosx)y, 0

ye* (Sl;ly —2e7*sin x) + ye*

’

<
Il
)

(cosy +2e7 cos x)

(exsiny—2ysinx + e cosy+2(;osx>y 0
Now
M =e*siny - 2ysinx
N =e¢"cosy +2cosx

Checking now the new M, N are indeed exact.

oM | .
—— =e‘cosy—2sinx
Iy
N g
5y = ¢ cosy - 2sinx
The new ODE is exact. Now the ODE is solved using the standard method.
v (x, y) _ ) )
T:M:e siny — 2y sin x (1)
oV (x, B
M:N:excosy+2cosx (2)

dy



Integrating (1) w.r.t x gives
‘I’:exsiny+2ycosx+f(y) (3)

v ,
B_y =ce‘cosy+2cosx+ f (y)

Comparing the above to (2) in order to solve for f’ (y) gives
e‘cosy+2cosx + f’ (y) =e*cosy+2cosx
f(y)=0
fly)=c (4)

Substituting the above into (3) gives
W =e*siny +2ycosx +c
But il—\f = ¢, therefore the above simplifies to, after collecting all constants to one

e*siny +2ycosx =C y#0

1.3 Section 2.6 problem 21
Question Show that y + (2x - yey) Yy’ = 0 is not exact, and then becomes exact when multiplied by
u (x, y) =y and then solve.
Solution
M (x, y) =y
N(x,y) =2x —ye¥

An ODE is exact when %A = %\:. These are now calculated to see if the ODE is exact or not
IM 1
dy B
IN )
dx

From above we see that aa—M + 2N therefore the ODE is not exact. Multiplying the original ODE by
y dx

given integrating factor it becomes

yy+y(2x—ye-'/)y’ =0
v+ (ny - yze-'/) v =0
Now
M =12
N = 2xy — y%e¥
Checking now the new M, N are indeed exact.
dy 4
oN

-9
Jx Y



The new ODE is exact. Now the ODE is solved using the standard method.

oV (x,
gy
oV (x, ~
<9(y ). N =23y -y
Integrating (1) w.r.t x gives
W= y2x+ f (y)

80_)_\;/ =2yx + f’ (y)
Comparing the above to (2) in order to solve for f’(y) gives
2yx+ f' (y) = 2xy - y?e¥
' (y) = P
fly)= —fyzeydwc

1)

(2)

()

(4)

The integral f y?eYdy can be found using integration by parts. Let u = y?,dv = ¢/ — du = 2y,v = €Y,

therefore

f y2eVdy = f udo
= uv—fvdu

=y%e¥ -2 f yeVdy

Applying integration by parts again to f yeYdy, where now u = y,dv =e — du =1,v = ¢Y, the above

becomes
fyZeydy =y2e¥ -2 (yey - fe-'/dy)
= y2e¥ -2 (yey - ey)
= y2e¥ — 2yeV + 2¢¥
=ey(y2—2y+2)
Therefore from (4)
f(y) = —ey(y2—2y+2)+c
Substituting the above into (3) gives
N4 :yzx—ey(y2—2y+2)+c

But Z—‘i = ¢p, therefore the above simplifies to, after collecting all constants to one

Pr—el (2 -2y+2)=C

1.4 Section 2.6 problem 22

Question Show that (x +2)sin y+(x cos y) Yy’ = 01is not exact, and then becomes exact when multiplied

by u (x, y) = xe* and then solve.



Solution
M(x,y) =(x+2)siny

N(x,y) = xcosy

. J . .
An ODE is exact when ai; = é—lj. These are now calculated to see if the ODE is exact or not

M

3y =(x+2)cosy

Z = Ccosy
From above we see that ‘;ﬂ # 2N therefore the ODE is not exact. Multiplying the original ODE by
y dx

given integrating factor it becomes

-

px+2)siny +pu (xcosy)y
xe* (x + 2)siny + xe* (x coS y) Yy =
Now
M= (xzex + 2xex) siny
N = x%* cosy

Checking now the new M, N are indeed exact.

IM 2,x X
&—y = (x e’ +2xe )cosy
N _ 2xe* cosy + x%e* cosy = (xze" + 2xe") cosy
dx
The new ODE is exact. Now the ODE is solved using the standard method.
v (x, y)
— M = (+2px X)
T—M—(xe +2xe)smy 1)
oV (x, _
% =N = x%* cosy (2)
Integrating (2) w.r.t y as it is simpler than integrating (1) w.r.t. x, gives
W= fxzex cosydy = x%¢* siny + f (x) (3)
v

= = 2xe* siny + x%e* siny + f7 (x)

Comparing the above to (1) in order to solve for f’ (x) gives
2xe* siny + x2e¥ siny + f7 (x) = (xze" + 2xe") siny
frx=0
f)=c (4)
Substituting the above into (3) gives
W = x%e*siny + ¢
But Z—\i = ¢y, therefore W = ¢; and the above simplifies to, after collecting all constants to one

2

xe*siny =C



1.5 Section 2.6 problem 23

Question Show that if I% = Q where Q is function of y only, then M + Ny’ = 0 has integrating
factor of form p (y) = of Qv
Solution Given the differential equation

dy (x) _

dx 0

M (x,y) + N(x,y)

Multiplying by u (y) results in
uM + uNy" =0
The above is exact if
d (yM) d (yN)

dy T ox
Performing the above, taking into account that ;1 depends on y only, results in

du IM JIN
aM Gy T

dy
The above is first order ODE in u
dity N oM
dy Hox ~H dy
IN M
du | ox oy
ay H T
IN_oM
_ dx dy .
Let Q = ——. If Q depends on y only, then the above ODE is separable. Hence
du
2y~
d
7’1 =Q(y)dy

Integrating both sides gives

= [Q()ar+c
Ju = ] CLMC

u(y) = el Q)ay

Where A is some constant, which can be taken to be 1 leading to the result required to show. The
IN IM

above procedure works only when Q = % happened to be function of y only. This complete the
proof.

1.6 Section 2.6 problem 24

Nyx—My
xM-yN -

factor of form u (x, y). Find the general formula for p.

Question Show that if R where R is function of xy only, then M + Ny’ = 0 has integrating



Solution Given the differential equation

M (x) N (xy) 20

Let u (t) where t = xy. Multiplying the above with u (t) gives

(x)
y(t)M(x y)+y(t)N(x y) 4y =0
The above is exact when
JuM _ JuN
dy  Idx
Hence
u IM _ du dN
However,
du _ dudt dy ©)
8y dt dy ar
And
du _dudt du
ox " didx i’ )
Substituting (2,3) into (1) gives
du IM dy JIN
ar MG, = NG
du IN M
ar (M -yN) = Hox ~Hay
N oM
du(t) (5 Iy )
a F (xM - yN)
(5-%)
In the above, y depends on t only, where ¢ is function of xy only. If % depends on ¢ only, then
(5-5)
the above can be considered a separable first order ODE in u. Let R (t) = % and the above can
be written as
du(t) _
T~ MR (®)
Since separable, then
d
“()._R(ndt

d
fﬁ:fMt
U

Inju| = [ Rat+C

|y| _ o RatsC

#:AefRdt



10

Where A is constant of integration which can be taken to be 1. Hence u = e/ Rdt This works only if R
is function of ¢ only.

1.7 Section 2.7 problem 20

20. Convergence of Euler’s Method. It can be shown that under suitable conditions on f,
the numerical approximation generated by the Euler method for the initial value problem
v = f(t,y), y(ty) = yo converges to the exact solution as the step size & decreases. This is
illustrated by the following example. Consider the initial value problem

y=1—=t+y,  yt) =y
(a) Show that the exact solution is y = ¢(¢) = (yo — to)e' " + .
(b) Using the Euler formula, show that
Yk=(1+h)Yk71+h—htk71, k=1’27
(c) Noting that y; = (1 4+ h)(yo — ty) + t1, show by induction that

yn= 1 +h)"(yo — o) + 1 (i)

for each positive integer n.

(d) Consider a fixed point ¢ > #, and for a given n choose h = (t — t;)/n. Then t, = t for
every n. Note also that s — Oasn — oco. By substituting for /2 in Eq. (i) and lettingn — oo,
show that y,, — ¢(t) as n — oo.

Hint: lim (1 + a/n)" = e“.

1.71 parta

y=1-t+y
y(to) = yo

This is linear first order ODE. Writing it as y’ —y = 1 —¢, then the integrating factor is u = o U=t

and the ODE becomes

% (ye‘t) =et(1-1)

Integrating both sides
yet = fe‘t(l -tdt+c

= f e tdt — f tetdt + ¢ 1)
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But fte‘tdt = fudv where u =t,dv=e¢t - du=1,v = -¢*, hence

fte‘tdt = uv—fvdu
= —tet +fe‘tdt

=—tet—et
Putting this result in (1) gives
yet = -t - (—te‘t - e‘t) +c
=—et+tet+et+c
=tet+c
Therefore solving for y gives
y=t+ce 2)
The constant c is now found from initial conditions.
Yo = to + ce'o
c= (yo - fo) efo
Substituting ¢ found back into (2) gives the final solution
y=t+ (yo - to) e~foet
= (yo—to) o+t (3)

1.7.2 Partb

Euler formula is
Ve = hf (e Vet) + v k=123, (1)
Where in this problem f (tk_l,yk_l) is the RHS of y’ =1 -t + y but evaluated at #,_;. Hence
f (tk—lr]/k—l) =1-ti1 + Y
Substituting this into (1) gives
Y =h (1= b1 +Yi1) + Vi
=h—htyq +hyeq + Yk
:(1 +h)yk_1+h—htk_1 k:1,2,3,"'

Which is the required formula asked to derive.

1.7.3 Partc
The formula given y; = (1 + k) (yo - to) +t; can be found as follows. Since

y1 = Yo+ hf (o, vo)
:y0+h(1—t0 +y0)
=1y +h—ht; + hyy
Adding ty -ty to the above will not changed anything, hence
Y1 =Yo+h—ht; +hyy+ 1ty — 1
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But t; =ty + h by definition, hence the above becomes, by replacing t, + & above with t;
Y1 = Yo+t =ty +hyo —to
Simplifying
1= (yo—fo)+h(y0—fo) +1h
=1+ (yo—to) + 1

Now the question will be answered. Need to show that y, = (1 + h)" (yo - to) + t, is true, using induc-

tion. This is true for k =1 as shown above. Now assuming it is true for k, we then need to show it is
true for k + 1.

By assumption, it is true for k, hence
ye =1 +h) (yo—to) + (1)
But using Euler formula
Vet = Y+ 1f (b vie)
:yk"'h(l_tk"'yk) (2)
Substituting (1) into RHS of (2)
Vsl = ((1 + h)k (yo - to) + tk) +h (1 —t+ ((1 + h)k (yo - to) + tk))
= (@ + 1) (yo — to) + b+ =ty + h (A + 1) (yo — to) + 1)
= U+ 1) (yo—to) + b+ 1= It + (L + 1) (yo — to) + Ity
=(1 +h)k(y0—t0) +t+h+h(1 +h)k(y0—t0)
But t; + h =t by definition, hence
Yerr = 1+ 1) (vo—to) + trar +h (1 + " (vo—to)
= (1+ 1) (o~ to) L+ 1) + by
= 1+ ) (vo —to) + tret

The above shows it is true for k +1 given it is true for k. Therefore, it is true for any positive integer
n.

1.7.4 Partd

Using

Yo =@ +0)" (yo—to) + 1,

. _ bty . .
Replacing /1 = == in the above gives

Yn = (1 + (tn;to))” (vo—to) + tu

Taking the limit

lim y, = r}im (1 + (@)) (yo - to) + 7}im t,

n—oo
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But lim,_, t, = t, hence replacing all ¢, with ¢ in the above gives

. . t—1to\\"
=+ (52 G-+
Using hint that lim,,_,, (1 + g)n = ¢” the above simplifies to
Y (t) = 1}1_{1010 Yn
= E(t_tO) (yo - to) +t

Which is the analytical solution found in part (a).

1.8 Section 3.1 problem 1
Find the general solution to y”” + 2y’ — 3y = 0.

This is second order, linear, constant coefficient ODE. Letting y = ¢* and replacing this into the
ODE gives

e”(r2+2r—3)=0

Since ¢’ # 0, the above reduces to what is called the characteristic equation of the ODE

2+2r-3=0

Which can be written as (r —1) (r + 3) = 0. Hence r; = 1,7, = —-3. Therefore the solution is
y(t) = cret + cpe’?t
Where ¢y, ¢, are constants which can be found from initial conditions. Hence the general solution is

y () = cref + cpe™

1.9 Section 3.1 problem 2
Find the general solution to y”” + 3y’ + 2y = 0.

This is second order, linear, constant coefficient ODE. The characteristic equation of the ODE

2+3r+2=0

Which can be written as (r + 1) (r + 2) = 0. Hence r; = -1, 7, = —2. Therefore the solution is
y(t) = cre! + et
Where ¢y, ¢, are constants which can be found from initial conditions. Hence the general solution is

y(t) = cret + cpe

1.10 Section 3.1 problem 3
Find the general solution to 6y -y’ -y = 0.

This is second order, linear, constant coefficient ODE. The characteristic equation of the ODE

6rr—r—-1=0
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—baVi2—dac  12VT-&O)(-T) _ 121424 _ 145 1 -1 L
Hence r = o = 12( X _ TREETE Hence r; = T2 =7 Therefore the solution is

y(t) = cre"tt + cpe™

Where ¢y, ¢, are constants which can be found from initial conditions. Hence the general solution is

1t Y
y () =crez +ce3

111 Section 3.1 problem 4
Find the general solution to 2y"” -3y’ +y = 0.

This is second order, linear, constant coefficient ODE. The characteristic equation of the ODE

22 -3r+1=0
b+ Vb2-4 +v9-4(2)(1 +1 1 C .
Hence r = —= o o B 94( D _ 3%. Hencer, =1,r, = > Therefore the solution is

y(t) = cret + cpe’?t

Where ¢y, ¢, are constants which can be found from initial conditions. Hence the general solution is

1
y(t) = cret + cpe2’

112 Section 3.1 problem 5
Find the general solution to y”” + 5y = 0.

This is second order, linear, constant coefficient ODE. The characteristic equation of the ODE

2 +5r=0

Which can be written as r(r + 5) = 0, hence r; = 0,7, = —5.Therefore the solution is
y(t) = cre! + et
Where ¢y, ¢, are constants which can be found from initial conditions. Hence the general solution is

y(t) = cq + cpe™

1.13 Section 3.1 problem 6
Find the general solution to 4y” — 9y = 0.

This is second order, linear, constant coefficient ODE. The characteristic equation of the ODE

42-9=0

9 9 3 3 3 .
Therefore r? = JOorr= i\/; =+ Hence r; = 572 = —E.Therefore the solution is
y(t) = cre! + et
Where ¢y, ¢, are constants which can be found from initial conditions. Hence the general solution is

3, 3,
y () =crez +cye 2
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1.14 Section 3.1 problem 7

Find the general solution to v —9y" + 9y = 0.

This is second order, linear, constant coefficient ODE. The characteristic equation of the ODE is

2-9r+9=0
—bsVb2—4ac  9++/B1-4(1)(9 9+81-36  9+V45 94345 9+3+/5 9-34/5
Hence r = o _ 2 > Do) _ > =——= z‘f. Hence r; = = Therefore

the solution is
y(t) = cret + et
Where ¢, ¢, are constants which can be found from initial conditions. Hence the general solution is

9435 ; 9-35

y(t)=cre 2 +ce 2

1.15 Section 3.1 problem 8
Find the general solution to y"" -2y’ -2y = 0.

This is second order, linear, constant coefficient ODE. The characteristic equation of the ODE is

?-2r-2=0

—_b+Vp2— \/4— _ </
Hence r = bt 2!; doc _ 2£V4 ;(1)( D _ 2 24+8 = Zi;/ﬁ = Ziiﬁ =1+ \/5 Hence ry =1+ \/5,1/2 =1- \/5
Therefore the solution is

y(t) = cret + cpe’?t
Where ¢y, ¢, are constants which can be found from initial conditions. Hence the general solution is

y@) = cle(“‘g)t + cze(l_‘/g)t
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