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0.1 Section 2.5 problem 1

Sketch the graph of f (y) vs. y and determine critical points and classify each as stable or not stable.
dy _ 2.
m =ay+by5a>0,b>0,y>0

f(y)=ay+by
The following is sketch of f (y) fora=1,b=1.0r f (y) =y+y?

f(y) vs. y for a=1,b=1

The critical points are solution of

fly)=0
y (a + by) =0
Therefore the critical points are
y1=0
Yo = %a (not in domain)
Or
y1=0
Yo=-1

Notice that since 2 > 0,b > 0, then y, < 0. Here is sketch of the direction field.

Yy
A sketch of direction fields
N
~a A A
~a A A
y=—a/br o

Therefore y = 0 is not stable, and y = %’1 is stable. However, since y, > 0, then y = %’1 will not be
reached. Per discussion, only lines above y, are to be considered. In the following problem, since
—00 < y < oo, then all lines will be considered. This is the only difference between this problem and
the next one.

0.1.1 Appendix

This is extra. The problem is also solved to determined which is the stable and which is the unstable

critical points. But using direction field as above, is simpler method. The ODE is % = ay +by?. This



is separable

d
L dx
y (a + by)
Integrating
| _ [ ax (1)
y (a + by)
. dy . . . o . é B _ 1
For the integral f o)’ partial fractions is used to split it. Let st o o)’ therefore

A(a+by)+By:1
Aa+y(Ab+B) =1
Hence comparing terms, gives
Ab+B=0
Aa=1
Solving for A, B, gives

Hence the integral becomes

fﬁzéj‘}/dy_gfaiyby

1 b dy
Eln|y|_£fa+by

Let u = a + by, —» du = bdy, hence faizy = % % = %ln lu| = %ln|a + by| and the above becomes
d 1 b1
f—y = —ln|y| - ——1n|a+by|
Yy (11 + by) a ab
1

1
= Eln|y|—aln|a+by|

1
= - (1n |y| —In |a + by|)

1
S oy
a |a+by
Hence (1) becomes
1
- Y |=x+c
a |a+by
Where c is constant of integration. Therefore
In|—Y | = ax +ac
a+by
Let ac = ¢y a new constant. Then
In afby =ax + ¢
Yy = px+Co
a+by
Yy
= Cne™
a+by 0¢

Solving for y
y = aCoe™ + byCoe™
y (1 =bCpe™) = aCye™
- aCoe™
Y= A= bCyem)
limy = lim — “Co

X—00 X—00 - _
— ~bCy



Since a > 0 then e™ — oo as x — co and the above simplifies to

1i QCO
m y =
e’ = ZpC,
_ a
b

Since the limit goes to the point —g then this point is stable equilibrium and the point y = 0 is not
stable.

0.2 Section 2.5 problem 2

Sketch the graph of f (y) vs. y and determine critical points and classify each as stable or not stable.

%:ay+by2;a>0,b>0,—oo<y0<oo

f(y) =ay+by?
This is the same problem as above, with same direction field. But now the phase line will include
both critical points. The critical points are from above

y1=0
_—ﬂ
Yo = b
Or
=0
Yo = -1

For a =1,b = 1. Here is sketch of the direction field.

()
A sketch of direction fields
y_ol ,
~a A A
~a “Aa A
y=—a/br o

Therefore y = 0 is not stable, and y = %ﬂ is stable. The following is the phase line for this problem

Phase line
Yy
00
unstable critical point y=20

stable critical point I y=—a/b




0.3 Section 2.6 problem 1

Determine if (2x + 3) + (Zy - 2) Z—Z =0 is exact and solve if so.

M(x,y) N (x,y)
(2x +3) + (Zy—Z)E =0

ODE is exact if %I = ‘;—I;]. Applying this to the above gives

IM

5y =0

IN

o 0
Therefore, it is exact. Before solving, it is always best to apply singular point analysis on f (x, y) in
order to determined if the solution is unique or not. Writing the ODE as % =f (x, y) - —((22;;?;) shows

that this is non-linear first order and applying theorem 2, shows that f (x) is not continuous at y = 1.

Now the ODE is solved. Setting up the two equations
v

dx
v
5y ~N=w-2 (2)
Integrating (1) w.r.t. x gives
fg—\ydx=f2x+3dx
dx
W=2x2+3x+ f(y) (3)
Therefore
v
2 ='W

Comparing the above to (2) shows that f’ (y) = 2y - 2. By integrating f (y) is found to be
fly) =y -2y +c
Substituting f (y) back into (3) gives W (x,y (x))
\I/(x,y(x)) =x?+3x + <y2 —2y+c)

However, since %\If = 0, then W = ¢;, where ¢; is some constant. Therefore the above can be written
as
x% +3x + ( 2-2 ) =
Yy y+c)=0C

Combining constants and simplifying gives the implicit solution for y (x) as

X +3x+yP-2y=¢cy y#l1 (4)

0.4 Section 2.6 problem 2

Determine if (2x + 4_1/) + (2x - Zy) Z—Z =0 is exact and solve if so.
M(x,y) N(x,y)
—_—N /—’%d
(2x+4y) + (2x-29)=L = 0
dx

ODE is exact if %A = ?9_1;:]' Applying this to the above gives

IM
5
IN
==

4

2

Therefore the ODE is not exact.




0.5 Section 2.6 problem 3

Determine if (3x2 - 2xy + 2) + (6y2 -x%+ 3) Z—Z =0 is exact and solve if so.

M(x,y) N(x,y)
(322 - 2xy +2) + (6y2 — 22 + 3)% =0

ODE is exact if %I = Z—I;]. Applying this to the above gives

QLVI — _2x
dy

IN
Fri

—(3x2 —2xy+2)
(6y2 —x2+3)

and applying theorem 2, shows that f (x) is not continuous at y = i,/%xZ - % Now the ODE is solved.

Setting up the two equations

Hence the ODE is exact. Writing the ODE as Y f (x, y) = shows that this is non-linear first order

dx

v )
a—x—M—3x - 2xy +2 (1)
oo,
a—y—N—6y -x*+3 (2)
Integrating (1) w.r.t. x gives
v
8_de = f(?)xz - 2xy + 2) dx
\I’:x3—x2y+2x+f(y) (3)
Therefore
IV ,
oy =)

Equating the above to (2) gives

—x2+f’(y) = 6y2—x2+3
f(v) =6y +3
Integrating the above w.r.t. y gives
f(y) =23 +3y+c
Substituting f (y) back into (3) gives W (x,y (x))
\I/(x,y(x)) =3 —x2y+2x+ 2> + 3y +¢
However, since %\If = 0, then W = ¢;, where ¢; is some constant. Therefore the above can be written

as

3

X -xPy+2x+ 2 +3y+c=¢

Combining constants and simplifying gives the implicit solution for y (x) as

¥ -y +2x+2° +3y = ¢,

The above solution is valid only for y # i,/%xz - %

0.6 Section 2.6 problem 4

Determine if (2xy2 + Zy) + (2x2y + 2x) % =0 is exact and solve if so.
M(xy) Nzy)
(nyz + Zy) + (2x2y + Zx)d—y =0
dx




ODE is exact if (Zi; = aa—lj. Applying this to the above gives

J
i/I=4x]/+2
Iy

aN—4 +2
ox 4

Hence the ODE is exact. Writing the ODE as Z—Z =f (x, y) = ((zzzy = )) shows that this is non-linear first order
2+

and applying theorem 2, shows that f (x) is not continuous at y = 71 for x # 0. Now the ODE is

solved under these assumptions. Setting up the two equations
IV

i =M =2xy? + 2y (1)
v
(9y =N = 2x%y + 2x (2)
Integrating (1) w.r.t. x gives
f —dx = f (2xy? +2y) dx
W = 22y +2yx+f(y) (3)
Therefore
A4 ,
(9—y =2x%y +2x + f (y)

Equating the above to (2) gives
232y + 2x + f (y) = 2x2%y + 2x
f(y)=0
Integrating the above w.r.t. y gives
fly)=c
Substituting f (y) back into (3) gives W (x,y (x))
(x y(x)) = x%y? +2yx + C

. d . .
However, since ¥ =0, then W = ¢, where ¢ is some constant. Therefore the above can be written
as

Xy? +2yx+c=0q

Combining constants and simplifying gives the implicit solution for y (x) as

2,2 —1
XY +2yx =c, yi;,xio

0.7 Section 2.6 problem 5

—(ax+by)

is exact and solve if so.
bx+cy

M(xy) N(xy)
(ax + by) + (bx + cy)a =0

. o d
Determine if d—z =

ODE is exact if %A = i—lj. Applying this to the above gives

oM
Z—p
dy
ON
x_b

b
Hence the ODE is exact. Writing the ODE as =flx ( ) —loxrty) shows that this is non-linear first order

X+y

and applying theorem 2, shows that f (x) is not continuous at y = _Tbx. Now the ODE is solved under

these assumptions. Setting up the two equations

A4
oy =M=ax+by (1)
A4

=N=bx+cy (2)

y



Integrating (1) w.r.t. x gives

f&a;fdx=f(ax+by)dx

_ 22
‘}’—Ex +byx+f(y) (3)
Therefore
A4 ,
8_]/ =bx + f (y)
Equating the above to (2) gives
bx+f’(y) =bx+cy
fy)=cy
Integrating the above w.r.t. y gives
1
f(y) = 5er* +k

Where k is constant. Substituting f (y) back into (3) gives W (x,y(x))
_ 22 1.2
\I/(x,y(x)) = 5%+ byx + 7Y +k

However, since %\I’ =0, then W = ky, where k; is some constant. Therefore the above can be written
as

1
§x2+byx+ Ecy2+k =k

Combining constants and simplifying gives the implicit solution for y (x) as

a 1
Exz + byx + Ecyz =k,

ax? + 2byx + cy? = 2k, = k,

Summary of solution

ax®> +2byx +cy> =k, y# _Tbx

0.8 Section 2.6 problem 6

—(ax—by)

is exact and solve if so.
bx—cy

.
Determine if % =

M(x,y) N(x,y)

(ax—by) + (bx—cy)d—y =0

dx

ODE i tif 24 = 9N Applying this to the above gi

is exact i = o pplying this to the above gives
oM _
dy B
N _
ox

-b

b

Hence the ODE is not exact.

0.9 Section 2.6 problem 7

. . . . d . .
Determine if (ex siny — 2y sin x) + (ex cosy + 2 cos x) d—z =0 is exact and solve if so.

M (x,y) N| (x,y)

(exsiny—Zysinx) + (excosy+2cosx)d—y =0
dx
ODE i t.faM_aNA Ivine this to the ab .
is exact i Eiirs pplying this to the above gives

M . D si
— =¢*cosy —2sinx
dy Y

N "
— =¢*cosy —2sinx
Jx Y

—(e* siny-2ysin
Hence the ODE is exact. Writing the ODE as A f (x, y) = (etsiny-2ysins)

= shows that this is

e*cosy+2cosx

non-linear first order and applying theorem 2, shows that f (x) is not continuous at y = arccos (ﬂ)




Now the ODE is solved under these assumptions. Setting up the two equations

o _ M =e*si 2y si (1)
5, = M=e'siny-2ysinx
v
&—y:N=excosy+200sx (2)
Integrating (1) w.r.t. x gives
IV . .
xdx = f (e siny -2y smx) dx
\I/:exsiny+2ycosx+f(y) (3)
Therefore
oV ,
8_y =e*cosy+2cosx+ f (y)

Equating the above to (2) gives
e‘cosy+2cosx + f’ (y) =e*cosy+2cosx
f'(v)=0
Hence
flv)=c
Where c is constant. Substituting f (y) back into (3) gives W (x,y (x))
‘I’(x,y(x)) =e'siny+2ycosx+c
However, since %\II =0, then W = ¢;, where ¢; is some constant. Therefore the above can be written
as
esiny +2ycosx +c=rc;
Combining constants and simplifying gives the implicit solution for y (x) as
-2 cos x)

e¥siny + 2y cosx = ¢, Y # arccos (

Since ¢y is constant, then ¢y = 0 is allowed value. This implies e* sin y + 2y cosx = 0 is allowed, which
means y(x) = 0 is solution also, since when y = 0 then ¢*sin (0) + 2 (0) cosx gives zero. Hence a
second solution is

y(x) =0

Summary

-2cos x)

ex

e*siny + 2y cosx = c, y# arccos(
yx) =0 =0

0.10 Section 2.6 problem 8
Determine if (ex siny + 3y) - (3x —e'sin y) % =0 is exact and solve if so.

M(xy) N(xy)

dy

2 -0
dx

(ex siny + 3y) + (—3x +e*sin y)

ODE is exact if é—]\y/l = (Z_I;\c]' Applying this to the above gives

oM
(9—y:e siny + 3
JIN ‘o
%:—3+e siny

Hence the ODE is not exact

0.11 Section 2.6 problem 9

Determine if (ye"y cos 2x — 2¢™ sin 2x + Zx) + (xe™ cos 2x — 3) z—z =0 is exact and solve if so.

M(xy) N(xy)

—_—
(yexy cos 2x — 2e™¥ sin 2x + 2x) + (xe*¥ cos2x — 3)% =0




10
ODE is exact if (Zi; = (;—I:. Applying this to the above gives

IM
8_y = e cos 2x + yxe'¥ cos 2x — 2xe™Y sin 2x

5 e¥ cos 2x + xye™Y cos 2x — 2xe™ sin 2x
Hence the ODE is exact. Now the ODE is solved. Setting up the two equations

oV
Fr M = ye'¥ cos 2x — 2e™ sin 2x + 2x 1)
oV

a0 = N =xe"¥ cos2x -3 (2)
y

Integrating (1) w.r.t. x gives

IV
xdx = f (ye"y cos 2x — 2e™¥ sin 2x + 2x) dx

Y=y fe"y cos 2xdx — 2 fe"y sin 2xdx + 2 fxdx +f (y) (3)
Let

I= f e cos 2xdx
Using integration by parts. Let u = cos2x,dv = ¥ — du = -2sin (2x),v = ﬁ, hence

I:uv—fvdu

ev 2
= —cos2x + — fexy sin 2xdx
Yy Yy
Applying integration by parts again to f e¥ sin 2xdx, where now u

= sin2x,dv = ¥ — du =
Xy
2cos(2x),v = 67 Therefore the above becomes

e 2 (e . ey
I=—cos2x+—|—sin2x - f —2cos 2xdx
Y y\y Y
XY 2 (XY 2
=& cos2x + — (e_ sin2x — — fe"y cos Zxdx)
Y y\y Yy
ButI = f e cos 2xdx and the above becomes
eV 2 (e 2
I=—cos2x+ —-|—sin2x - -1
Y y\y Y
Solving for I
evy 2e*Y 4
I=—cos2x+ 5 sin2x——21
y y
4 evy 2e™Y
I+—ZI:—c052x+ 5 sin 2x
y Y Y
v +4\ eV 2e%
I > = — Ccos2x + > sin 2x
Y Y Y
2 Xy 2 DpXy
= Zy — cos2x + Zy — sin 2x
y+4y y+4 vy
Therefore

ye 2e%
f e cos2xdx = > Ccos 2x + —— sin 2x
Y +

+4 )

Similarly I = f e sin 2xdx is solve by integration by parts. Let ev = ¢, u = sin2x — du = 2cos2x,v =

Y

—, hence
y

er 2
I=—sin2x— - fexy cos 2xdx
Y Y

. ey
For f e cos 2xdx, let u = cos2x,dv = e — du = -2sin2x,v = — and the above becomes

y

ey 2 (Y 2
I=—sin2x - - (— cos2x + — fexy siandx)
y\y y
But f " sin 2xdx = I and the above becomes

exy 2 (e 2
I = —sin2x - - (— Ccos2x + —I)
Y y\y y
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Solving for I
er . 2eMY 4
I=—sin2x - 5 cos2x + _zI
Y Y Y
4 er . 2e%Y
I+—ZI:—s1n2x— 5 cos 2x
Y Y Y
yz +4 e 20
I 5 = —sin2x — 5 cos 2x
Y Y y
_ ]/2 v 2 2pXY
= yz +4? sin 2x — y2—+4 yz Ccos 2x
Hence
XYy XYy
e*Y sin 2xdx = Je sin 2x — Cos 2x (5)
Y +4 2+4

Substituting (4,5) into (3) gives

yeXy 2e%Y yey 264y
\sz( 2 C082x+2—5m2x)—2( Sian——cost)+x2+f(y)
y - +4 yo+ Y-+ Y2 +4

Simplifying

y2e 2ye"y 2ye™Y 4e*Y
=35 cos2x + > sin 2x — > sin 2x + -
y-+4 y-+4 y-+4 y-+4
2 ,xY 4%
yoe e
= cos2x +
¥ +4 Y2 +4

= % cos (2x) Ui +i +x2+f(y)
Y¥+4 2 +4

cos2x +x2+ f (y)

cos2x +x2 + f (y)

. 4+ 2
:eYCos(Zx)(y2+4)+x2+f(y)

Therefore

W = e% cos (2x) + x2 + f (y) (6)
Therefore

AY ,

3_y = xe™ cos (2x) + f (y)

Equating the above to (2) gives
xe™ cos (2x) + f' (y) =xe"¥ cos2x -3
fly)=-3
Hence
f (y) =-3y+c
Where c is constant. Substituting f (y) back into (6) gives
v (x,y (x)) = €% cos (2x) +x% -3y + ¢
However, since %‘P =0, then W = ¢;, where ¢; is some constant. Therefore the above can be written
as
e cos (2x) + x2 — 3y+c=0
Combining constants and simplifying gives the implicit solution for y (x) as

e cos (2x) + x2 -3y = ¢,

0.12 Section 2.6 problem 10

Determine if (% + 6x) +(Inx-2) Z—Z = 0;x > 0 is exact and solve if so.

M(x,y) N(x,y)
(Z + 6x) Y2 _o
X dx
ODE i tif M = N Arplving this to the above gi
is exact if 5~ = 5. Applying this to the above gives
oM

JIN

1
dy o«
1
x

ox
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h . oy h d]/ _ _ ,(%+6x)
Hence the ODE is exact. Writing the ODE as o f (x, y) =5

and applying theorem 2, shows that f (x) is not continuous at x = ¢>. Now the ODE is solved under
these assumptions. Setting up the two equations

A% y

shows that this is non-linear first order

— =M-==+6x 1)
ax X
Ay
— =N=Ilnx-2 (2)
9y
Integrating (1) w.r.t. x gives

a—qjdx = f(z + 6x) dx

dx x
W =yln(x) + 3x2 +f(y) (3)

No need to use In|x| since the problem said that x > 0. Therefore

IV
§?=mw+ﬁ@
Equating the above to (2) gives
In(x) + £/ (y) = In (x) - 2
fy)=-2

Hence
f (y) =2y+c
Where c is constant. Substituting f (y) back into (3) gives W (x,y(x))
\I’(x,y(x)) =yln(x)+3x%> -2y +c

However, since %‘I’ =0, then W = ¢;, where ¢; is some constant. Therefore the above can be written
as

yln(x) +3x> -2y +c=¢;
Combining constants and simplifying gives the implicit solution for y (x) as

yln(x) +3x% -2y =¢, x> 0;x # e

0.13 Section 2.6 problem 11

Determine if (x In (y) + xy) + (y In (x) + xy) Z—Z =0;x > 0;y > 0 is exact and solve if so.

M (x,y) N (x,y)

(+1n(y) + 1) + (Y@ +29) 2 = 0

ODE is exact if %A = (;—lj Applying this to the above gives

&_M X X (1 + y)
dy -y y
IN vy y1+x)
— = 4 - 7
Jx  x X
Hence this ODE is not exact.
0.14 Section 2.6 problem 12
Determine if —— 5+ J 3 d—z =0 is exact and solve if so.
(x2+yz)§ (xz+y2)§
M(x,y) N(x,y)
d
ad 7+ Y 3 —ch =0
(2+y?)? (2+y?)?
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ODE is exact if (Zi; = 2_1;1‘ Applying this to the above gives

M -3 X (Zy) _ —-3xy

dy 2 : :

T ey (2 +2)°
IN -3 -3

i e Lo R

@) (@)
) 2 x2 5

x2+y2)2 -

Hence ODE is exact. Writing the ODE as % =f (x, y) = yy 2 _ = shows that this is non-linear first order

3
(2+y2)2

and applying theorem 2, shows that f (x) is not continuous at y = 0. Now the ODE is solved under

these assumptions. Setting up the two equations

2

&—\P=M=;§ 1)
S (@)

i—\yzN:% @)
F )

Integrating (1) w.r.t. x gives

ox (x2 N yz) .
Let u = x? + y?, then Z—u = 2x. Substituting this into [ ~——dx gives
* (2+y2)2
d
il §tJlx = f %%
(x2 + yz)z u2
1 -3
= Efquu
-1
147
3/
2
1
=TT +£(v)
1
) _( 2 2)% +f(y)
x2+y
Hence
1
V= —(2—2)1 +£(v) (3)
x2+y
Therefore
v 1 -2
Zy @) @)+ f ()
= ! s+ f (y)
()
Equating the above to (2) gives
— 4 y) =
(x2 + yz)z (x2 + yz)z
f'y)=0
Hence
fly)=c
Where ¢ is constant. Substituting f (y) back into (3) gives W (x,y(x))

\I’(x,y(x)) = .t +c

()
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. d . .
However, since ¥ =0, then W = ¢, where ¢ is some constant. Therefore the above can be written
as

1
—— 1 tc=q
(x2 +92)?
Combining constants and simplifying gives the implicit solution for y (x) as
1

(2 +7)?
1
3 1

(xz +y2)2 =—— =g
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