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0.1 Problem 1

Mechanics

Physics 311
Fall 2015

Homework 10 (12/7/15, due 12/14/15)

1. (10 points)
Show that the total energy associated with each normal mode of oscillation is separately
conserved.

2. (10 points)
A uniform horizontal rectangular plate of mass M , length L, and width W rests with its
corners on four similar vertical springs with spring constant k. Assume that the center of
mass of the plate is restricted to move along a vertical line. Find the normal modes of
vibration and prove that their frequencies are in the ratio 1 :

√

3 :
√

3. (This problem is
simpler if you decide beforehand what the normal modes are and then use the appropriate
generalized coordinates so that the equations of motion are decoupled from the start.)

3. (15 points)
A pendulum of mass m and length l is attached to a support of mass M that can move on
a frictionless horizontal track as shown on the figure below. Find the normal frequencies
and the normal modes of (small) oscillations. Sketch the normal modes.

...continued on next page...

SOLUTION:

The motion in each normal mode is de-coupled from each other mode. Each motion is
a simple harmonic motion in terms of normal coordinates, and reduces to second order
di�erential equation of the form

𝜂̈𝑖 + 𝜔2
𝑖 𝜂𝑖 = 0 (1)

Where 𝑖 ranges over the number of modes. The number of modes is equal to the number of
independent degrees of freedoms in the system. Each mode oscillates at frequency 𝜔𝑖. Since
this is a simple harmonic motion, its energy is given by

𝐸𝑖 =
1
2
𝑚𝑖𝜂̇2𝑖 +

1
2
𝑘𝑖𝜂2𝑖 (2)

Where 𝑘𝑖 is the e�ective sti�ness of the mode and 𝜔2
𝑖 =

𝑘𝑖
𝑚𝑖
. Therefore 𝑘𝑖 = 𝑚𝑖𝜔2

𝑖 .

To show that 𝐸 is conserved, we need to show that 𝜕𝐸
𝜕𝑡 = 0. Hence from (2)

𝜕𝐸𝑖
𝜕𝑡

= 𝑚𝑖𝜂̇𝑖𝜂̈𝑖 + �𝑚𝑖𝜔2
𝑖 � 𝜂𝑖𝜂̇𝑖

But from (1) we see that 𝜂̈𝑖 = −𝜔2
𝑖 𝜂𝑖. Substituting into the above gives

𝜕𝐸𝑖
𝜕𝑡

= 𝑚𝑖𝜂̇𝑖 �−𝜔2
𝑖 𝜂𝑖� + �𝑚𝑖𝜔2

𝑖 � 𝜂𝑖𝜂̇𝑖

= 0

Therefore energy in each mode is constant.
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0.2 Problem 2

Mechanics

Physics 311
Fall 2015

Homework 10 (12/7/15, due 12/14/15)

1. (10 points)
Show that the total energy associated with each normal mode of oscillation is separately
conserved.

2. (10 points)
A uniform horizontal rectangular plate of mass M , length L, and width W rests with its
corners on four similar vertical springs with spring constant k. Assume that the center of
mass of the plate is restricted to move along a vertical line. Find the normal modes of
vibration and prove that their frequencies are in the ratio 1 :

√

3 :
√

3. (This problem is
simpler if you decide beforehand what the normal modes are and then use the appropriate
generalized coordinates so that the equations of motion are decoupled from the start.)

3. (15 points)
A pendulum of mass m and length l is attached to a support of mass M that can move on
a frictionless horizontal track as shown on the figure below. Find the normal frequencies
and the normal modes of (small) oscillations. Sketch the normal modes.

...continued on next page...

SOLUTION:

x

y

z

θ1

θ2

degrees of freedom: z, θ1, θ2

k

kk

k

MW

L

Kinetic energy is

𝑇 =
1
2
𝑀𝑧̇2 +

1
2
𝐼1𝜃̇2

1 +
1
2
𝐼2𝜃̇2

2

Where 𝐼1 is moment of inertia of plate around axis 𝑦, and 𝐼2 is moment of inertia of plate
around axis 𝑥. These are (from tables) :

𝐼1 =
1
12
𝑀𝑊2

𝐼2 =
1
12
𝑀𝐿2

The potential energy is

𝑈 = 4 �
1
2
𝐾𝑧2� + 4

⎛
⎜⎜⎜⎜⎝
1
2
𝐾 �

𝑊
2
𝜃1�

2⎞⎟⎟⎟⎟⎠ + 4
⎛
⎜⎜⎜⎜⎝
1
2
𝐾 �

𝐿
2
𝜃2�

2⎞⎟⎟⎟⎟⎠

= 2𝐾𝑧2 + 2𝐾 �
𝑊
2
𝜃1�

2

+ 2𝐾 �
𝐿
2
𝜃2�

2

= 2𝐾𝑧2 +
1
2
𝐾𝑊2𝜃2

1 +
1
2
𝐾𝐿2𝜃2

2
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Where small angle approximation is used in the above. Hence the Lagrangian is

𝐿 = 𝑇 − 𝑈

=
1
2
𝑀𝑧̇2 +

1
2
𝐼1𝜃̇2

1 +
1
2
𝐼2𝜃̇2

2 − 2𝐾𝑧2 −
1
2
𝐾𝑊2𝜃2

1 −
1
2
𝐾𝐿2𝜃2

2

Equation of motion for 𝑧
𝜕𝐿
𝜕𝑧

= −4𝐾𝑧

𝜕𝐿
𝜕𝑧̇

= 𝑀𝑧̇

Hence

𝑀𝑧̈ + 4𝐾𝑧 = 0

Equation of motion for 𝜃1

𝜕𝐿
𝜕𝜃1

= −𝐾𝑊2𝜃1

𝜕𝐿
𝜕𝜃̇1

= 𝐼1𝜃̇1

Hence

𝐼1𝜃̈1 + 𝐾𝑊2𝜃1 = 0

Similarly, we find

𝐼2𝜃̈2 + 𝐾𝐿2𝜃2 = 0

Therefore

[𝑀] 𝒒̈ + [𝐾] 𝒒 = 0
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑀 0 0
0 𝐼1 0
0 0 𝐼1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑧̈
𝜃̈1

𝜃̈2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4𝐾 0 0
0 𝐾𝑊2 0
0 0 𝐾𝐿2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑧
𝜃1

𝜃2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Which leads to

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4𝐾 −𝑀𝜔2 0 0
0 𝐾𝑊2 − 𝐼1𝜔2 0
0 0 𝐾𝐿2 − 𝐼2𝜔2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0

4𝐾3𝐿2𝑊2 −𝑀𝐾2𝐿2𝜔2𝑊2 − 4𝐼1𝐾2𝐿2𝜔2 − 4𝐼2𝐾2𝜔2𝑊2 +𝑀𝐼1𝐾𝐿2𝜔4 +𝑀𝐼2𝐾𝜔4𝑊2 + 4𝐼1𝐼2𝐾𝜔4 −𝑀𝐼1𝐼2𝜔6 = 0
�𝐾𝐿2 − 𝜔2𝐼2� �𝐾𝑊2 − 𝜔2𝐼1� �𝑀𝜔2 − 4𝐾� = 0
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Therefore

𝜔1 =
�

𝐾𝐿2

𝐼2

𝜔2 =
�

𝐾𝑊2

𝐼1

𝜔3 = �
4𝐾
𝑀

Using 𝐼1 =
1
12𝑀𝑊2, 𝐼2 =

1
12𝑀𝐿2, the above become

𝜔1 = �
12

𝐾𝐿2

𝑀𝐿2
= 2

�
3
𝐾
𝑀

𝜔2 = �
12

𝐾𝑊2

𝑀𝑊2 = 2
�
3
𝐾
𝑀

𝜔3 = �
4𝐾
𝑀

= 2
�

𝐾
𝑀

Hence 𝜔1
𝜔2

= 1
1 ,

𝜔1
𝜔3

= √3,
𝜔2
𝜔3

= √3. Therefore

𝜔1 ∶ 𝜔2 ∶ 𝜔3 = 1 ∶ 1 ∶ √3

Or

𝜔1 ∶ 𝜔2 ∶ 𝜔3 =
1

√3
∶
1

√3
∶ 1
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0.3 Problem 3

Mechanics

Physics 311
Fall 2015

Homework 10 (12/7/15, due 12/14/15)

1. (10 points)
Show that the total energy associated with each normal mode of oscillation is separately
conserved.

2. (10 points)
A uniform horizontal rectangular plate of mass M , length L, and width W rests with its
corners on four similar vertical springs with spring constant k. Assume that the center of
mass of the plate is restricted to move along a vertical line. Find the normal modes of
vibration and prove that their frequencies are in the ratio 1 :

√

3 :
√

3. (This problem is
simpler if you decide beforehand what the normal modes are and then use the appropriate
generalized coordinates so that the equations of motion are decoupled from the start.)

3. (15 points)
A pendulum of mass m and length l is attached to a support of mass M that can move on
a frictionless horizontal track as shown on the figure below. Find the normal frequencies
and the normal modes of (small) oscillations. Sketch the normal modes.

...continued on next page...

SOLUTION:

M

x

m

θ
lθ̇l

U = 0

Kinetic energy is

𝑇 =
1
2
𝑀𝑥̇2 +

1
2
𝑚 ��𝑥̇ + 𝑙𝜃̇ cos𝜃�

2
+ �𝑙𝜃̇ sin𝜃�

2
�

=
1
2
𝑀𝑥̇2 +

1
2
𝑚 �𝑥̇2 + 𝑙2𝜃̇2 cos2 𝜃 + 2𝑥̇𝑙𝜃̇ cos𝜃 + 𝑙2𝜃̇2 sin2 𝜃�

=
1
2
𝑀𝑥̇2 +

1
2
𝑚 �𝑥̇2 + 2𝑥̇𝑙𝜃̇ cos𝜃 + 𝑙2𝜃̇2�

And potential energy is

𝑈 = −𝑚𝑔𝑙 cos𝜃
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Hence the Lagrangian

𝐿 = 𝑇 − 𝑈

=
1
2
𝑀𝑥̇2 +

1
2
𝑚 �𝑥̇2 + 2𝑥̇𝑙𝜃̇ cos𝜃 + 𝑙2𝜃̇2� + 𝑚𝑔𝑙 cos𝜃

Now we find equations of motions. For 𝜃
𝜕𝐿
𝜕𝜃

= −𝑚𝑥̇𝑙𝜃̇ sin𝜃 − 𝑚𝑔𝑙 sin𝜃

𝜕𝐿
𝜕𝜃̇

=
1
2
𝑚 �2𝑥̇𝑙 cos𝜃 + 2𝑙2𝜃̇�

= 𝑚 �𝑥̇𝑙 cos𝜃 + 𝑙2𝜃̇�
𝑑
𝑑𝑡
𝜕𝐿
𝜕𝜃̇

= 𝑚 �𝑥̈𝑙 cos𝜃 − 𝑥̇𝑙𝜃̇ sin𝜃 + 𝑙2𝜃̈�

Hence

𝑑
𝑑𝑡
𝜕𝐿
𝜕𝜃̇

−
𝜕𝐿
𝜕𝜃

= 0

𝑚 �𝑥̈𝑙 cos𝜃 − 𝑥̇𝑙𝜃̇ sin𝜃 + 𝑙2𝜃̈� + 𝑚𝑥̇𝑙𝜃̇ sin𝜃 + 𝑚𝑔𝑙 sin𝜃 = 0
𝑚𝑥̈𝑙 cos𝜃 + 𝑚𝑙2𝜃̈ + 𝑚𝑔𝑙 sin𝜃 = 0 (1)

Now we find equation of motion for 𝑥
𝜕𝐿
𝜕𝑥

= 0

𝜕𝐿
𝜕𝑥̇

= 𝑀𝑥̇ + 𝑚 �𝑥̇ + 𝑙𝜃̇ cos𝜃�

𝑑
𝑑𝑡
𝜕𝐿
𝜕𝑥̇

= 𝑀𝑥̈ + 𝑚 �𝑥̈ + 𝑙𝜃̈ cos𝜃 − 𝑙𝜃̇2 sin𝜃�

Hence
𝑑
𝑑𝑡
𝜕𝐿
𝜕𝑥̇

−
𝜕𝐿
𝜕𝑥

= 0

𝑀𝑥̈ + 𝑚 �𝑥̈ + 𝑙𝜃̈ cos𝜃 − 𝑙𝜃̇2 sin𝜃� = 0
𝑥̈ (𝑀 + 𝑚) + 𝑚𝑙𝜃̈ cos𝜃 − 𝑚𝑙𝜃̇2 sin𝜃 = 0 (2)

Now we can write them in matrix form [𝑀] 𝒒̈ + [𝐾] 𝒒 = 0, from (1) and (2) we obtain, after
using small angle approximation cos𝜃 ≈ 1, sin𝜃 ≈ 𝜃 and also 𝜃̇2 ≈ 0

⎛
⎜⎜⎜⎜⎝
𝑀 + 𝑚 𝑚𝑙
𝑚𝑙 𝑚𝑙2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥̈
𝜃̈

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0 0
0 𝑚𝑔𝑙

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥
𝜃

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Now assuming solution is 𝒒 (𝑡) = 𝒂𝑒𝑖𝜔𝑡, then the above can be rewritten as
⎛
⎜⎜⎜⎜⎝
−𝜔2 (𝑀 + 𝑚) −𝜔2𝑚𝑙

−𝜔2𝑚𝑙 𝑚𝑔𝑙 − 𝑚𝑙2𝜔2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑎1
𝑎2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠ (1)
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These have non-trivial solution when

det
⎛
⎜⎜⎜⎜⎝
−𝜔2 (𝑀 + 𝑚) −𝜔2𝑚𝑙

−𝜔2𝑚𝑙 𝑚𝑔𝑙 − 𝑚𝑙2𝜔2

⎞
⎟⎟⎟⎟⎠ = 0

𝑀𝑙2𝑚𝜔4 − 𝑔𝑙𝑚2𝜔2 −𝑀𝑔𝑙𝑚𝜔2 = 0

𝜔2 �𝑀𝑙2𝑚𝜔2 − 𝑔𝑙𝑚2 −𝑀𝑔𝑙𝑚� = 0

Hence 𝜔 = 0 is one eigenvalue and 𝜔 = �
𝑔
𝑙
𝑚+𝑀
𝑀 is another.

𝜔1 = 0

𝜔2 = �
𝑔
𝑙
(𝑀+𝑚)

𝑀

Now that we found 𝜔𝑖 we go back to (1) to find corresponding eigenvectors. For 𝜔1, (1)
becomes ⎛

⎜⎜⎜⎜⎝
0 0
0 𝑚𝑔𝑙

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑎11
𝑎21

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Hence from the second equation above

0𝑎11 + 𝑚𝑔𝑙𝑎21 = 0

So 𝑎11 can be any value, and 𝑎21 = 0. So the following is a valid first eigenvector

𝒂1 =
⎛
⎜⎜⎜⎜⎝
𝑎11
0

⎞
⎟⎟⎟⎟⎠

For 𝜔2 (1) becomes
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− �𝑔𝑙
(𝑀+𝑚)

𝑀
� (𝑀 + 𝑚) − �𝑔𝑙

(𝑀+𝑚)
𝑀

�𝑚𝑙

− �𝑔𝑙
(𝑀+𝑚)

𝑀
�𝑚𝑙 𝑚𝑔𝑙 − 𝑚𝑙2 �𝑔𝑙

(𝑀+𝑚)
𝑀

�

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑎12
𝑎22

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first equation we find

− �
𝑔
𝑙
(𝑀 + 𝑚)

𝑀 � (𝑀 + 𝑚) 𝑎12 − �
𝑔
𝑙
(𝑀 + 𝑚)

𝑀 �𝑚𝑙𝑎22 = 0

(𝑀 + 𝑚) 𝑎12 + 𝑚𝑙𝑎22 = 0

Hence 𝑎12 = − 𝑚𝑙
(𝑀+𝑚)𝑎22. So the following is a valid second eigenvector

𝒂2 =

⎛
⎜⎜⎜⎜⎜⎝
− 𝑚𝑙
(𝑀+𝑚)𝑎22
𝑎22

⎞
⎟⎟⎟⎟⎟⎠

Therefore

𝑥 = 𝑎11𝜂1 + 𝑎12𝜂2
𝜃 = 𝑎21𝜂1 + 𝑎22𝜂2
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Where 𝜂𝑖 are the normal coordinates. Using relation found earlier, then

𝑥 = 𝑎11𝜂1 (2)

𝜃 = −
𝑚𝑙

(𝑀 + 𝑚)
𝑎22𝜂1 + 𝑎22𝜂2 (3)

Hence from (2)

𝜂1 = −
𝑥
𝑎11

And now (3) can be written as

𝜃 = −
𝑚𝑙

(𝑀 + 𝑚)
𝑎22

𝑥
𝑎11

+ 𝑎22𝜂2

Therefore

𝜂2 =
𝜃
𝑎22

+
1
𝑎11

𝑚𝑙𝑥
(𝑀 + 𝑚)

To sketch the mode shapes. Looking at 𝒂1 =
⎛
⎜⎜⎜⎜⎝
𝑎11
0

⎞
⎟⎟⎟⎟⎠ and 𝒂2 =

⎛
⎜⎜⎜⎜⎜⎝
− 𝑚𝑙
(𝑀+𝑚)𝑎22
𝑎22

⎞
⎟⎟⎟⎟⎟⎠ and normalizing we

can write

⎛
⎜⎜⎜⎜⎝
1
0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝
− 𝑚𝑙
(𝑀+𝑚)
1

⎞
⎟⎟⎟⎟⎟⎠

So in the first mode shape, the mass 𝑀 moves with the pendulum fixed to it in the same
orientation all the time. So the whole system just slides along 𝑥 with 𝜃 = 0 all the time. In
the second mode, 𝑥 move by −𝑚𝑙

(𝑀+𝑚) factor to 𝜃 motion. For example, for 𝑀 ≪ 𝑚 , then mode

2 is

⎛
⎜⎜⎜⎜⎝
−𝑙
1

⎞
⎟⎟⎟⎟⎠, hence antisymmetric mode. If 𝑀 = 𝑚 then we get

⎛
⎜⎜⎜⎜⎝
− 𝑙
2
1

⎞
⎟⎟⎟⎟⎠ antisymmetric, but now the

ratio changes. So the second mode shape is antisymmetric, but the ratio depends on the
ratio of 𝑚 to 𝑀.

0.3.1 Appendix to problem 3

This is extra and can be ignored if needed. I was not sure if we should use 𝑠 = 𝑙𝜃 as the
generalized coordinate instead of 𝜃 in order to make all the coordinates of same units. So
this is repeat of the above, but using 𝑠 = 𝑙𝜃 transformation. Starting with equations of motion

𝑥̈ (𝑀 + 𝑚) + 𝑚𝑙𝜃̈ cos𝜃 − 𝑚𝑙𝜃̇2 sin𝜃 = 0

𝑚𝜃̈ + 𝑚𝑥̈
cos𝜃
𝑙

+ 𝑚
𝑔
𝑙

sin𝜃 = 0

Will now use 𝑠 = 𝑙𝜃 transformation, and use 𝑠 as the second degree of freedom, which is the
small distance the pendulum mass swings by. This is so that both 𝑥 and 𝑠 has same units of
length to make it easier to work with the shape functions. Hence the equations of motions
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become

𝑥̈ (𝑀 + 𝑚) + 𝑚𝑙
𝑠̈
𝑙

cos �𝑠
𝑙
� − 𝑚𝑙

𝑠̇2

𝑙2
sin �

𝑠
𝑙
� = 0

𝑚
𝑠̈
𝑙
+ 𝑚𝑥̈

cos � 𝑠𝑙 �
𝑙

+ 𝑚
𝑔
𝑙

sin �
𝑠
𝑙
� = 0

We first apply small angle approximation, which implies cos 𝑠
𝑙 → 1, sin � 𝑠

𝑙
� → 𝑠

𝑙 and also
𝑠̇2

𝑙2 → 0, therefore the equations of motions becomes

𝑥̈ (𝑀 + 𝑚) + 𝑚𝑠̈ = 0

𝑚
𝑠̈
𝑙
+ 𝑚𝑥̈

1
𝑙
+ 𝑚

𝑔
𝑙
𝑠
𝑙
= 0

And now we write the matrix form⎛
⎜⎜⎜⎜⎝
𝑀 + 𝑚 𝑚
𝑚 𝑚

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥̈
𝑠̈

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0 0
0 𝑚𝑔

𝑙

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥
𝑠

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Now assuming solution is 𝒒 (𝑡) = 𝒂𝑒𝑖𝜔𝑡, then the above can be rewritten as
⎛
⎜⎜⎜⎜⎝
−𝜔2 (𝑀 + 𝑚) −𝜔2𝑚

−𝜔2𝑚 𝑚𝑔
𝑙 − 𝑚𝜔2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑎1
𝑎2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠ (1)

These have non-trivial solution when

det
⎛
⎜⎜⎜⎜⎝
−𝜔2 (𝑀 + 𝑚) −𝜔2𝑚

−𝜔2𝑚 𝑚𝑔
𝑙 − 𝑚𝜔2

⎞
⎟⎟⎟⎟⎠ = 0

−
1
𝑙
�𝑔𝑚2𝜔2 −𝑀𝑙𝑚𝜔4 +𝑀𝑔𝑚𝜔2� = 0

𝜔2 �
𝑔𝑚2

𝑙
− 𝑀𝑚𝜔2 +𝑀

𝑔
𝑙
𝑚� = 0

𝜔2 �𝑀𝜔2 − �
𝑔
𝑙
(𝑚 +𝑀)�� = 0

Hence 𝜔 = 0 is one eigenvalue and 𝜔 = �
𝑔
𝑙
(𝑀+𝑚)

𝑀 is another.

𝜔1 = 0

𝜔2 = �
𝑔
𝑙
(𝑀+𝑚)

𝑀

Now that we found 𝜔𝑖 we go back to (1) to find corresponding eigenvectors. For 𝜔1, (1)
becomes ⎛

⎜⎜⎜⎜⎝
0 0
0 𝑚𝑔

𝑙

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑎11
𝑎21

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

0𝑎11 + 𝑚
𝑔
𝑙
𝑎21 = 0
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Hence from the second equation above

0𝑎11 + 𝑚
𝑔
𝑙
𝑎21 = 0

So 𝑎11 can be any value, and 𝑎21 = 0. So the following is a valid first eigenvector

𝒂1 =
⎛
⎜⎜⎜⎜⎝
𝑎11
0

⎞
⎟⎟⎟⎟⎠

For 𝜔2 (1) becomes
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− �𝑔𝑙
(𝑀+𝑚)

𝑀
� (𝑀 + 𝑚) − �𝑔𝑙

(𝑀+𝑚)
𝑀

�𝑚

− �𝑔𝑙
(𝑀+𝑚)

𝑀
�𝑚 𝑚𝑔

𝑙 − 𝑚�𝑔
𝑙
(𝑀+𝑚)

𝑀
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑎12
𝑎22

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first equation we find

− �
𝑔
𝑙
(𝑀 + 𝑚)

𝑀 � (𝑀 + 𝑚) 𝑎12 − �
𝑔
𝑙
(𝑀 + 𝑚)

𝑀 �𝑚𝑎22 = 0

(𝑀 + 𝑚) 𝑎12 + 𝑚𝑎22 = 0

Hence 𝑎12 = − 𝑚
(𝑀+𝑚)𝑎22. So the following is a valid second eigenvector

𝒂2 =
⎛
⎜⎜⎜⎜⎝
− 𝑚
(𝑀+𝑚)𝑎22
𝑎22

⎞
⎟⎟⎟⎟⎠

Therefore

𝑥 = 𝑎11𝜂1 + 𝑎12𝜂2
𝜃 = 𝑎12𝜂1 + 𝑎22𝜂2

Where 𝜂𝑖 are the normal coordinates. Using relation found earlier, then

𝑥 = 𝑎11𝜂1 (2)

𝜃 = −
𝑚

(𝑀 + 𝑚)
𝑎22𝜂1 + 𝑎22𝜂2 (3)

Hence from (2)

𝜂1 = −
𝑥
𝑎11

And now (3) can be written as

𝜃 = −
𝑚

(𝑀 + 𝑚)
𝑎22

𝑥
𝑎11

+ 𝑎22𝜂2

Therefore

𝜂2 =
𝜃
𝑎22

+
𝑚𝑥

(𝑀 + 𝑚)
1
𝑎11

To sketch the mode shapes. Looking at 𝒂1 =
⎛
⎜⎜⎜⎜⎝
𝑎11
0

⎞
⎟⎟⎟⎟⎠ and 𝒂2 =

⎛
⎜⎜⎜⎜⎝
− 𝑚
(𝑀+𝑚)𝑎22
𝑎22

⎞
⎟⎟⎟⎟⎠ and normalizing we

can write
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⎛
⎜⎜⎜⎜⎝
1
0

⎞
⎟⎟⎟⎟⎠ ,
⎛
⎜⎜⎜⎜⎝
− 𝑚
(𝑀+𝑚)
1

⎞
⎟⎟⎟⎟⎠

So in the first mode shape, the mass 𝑀 moves with the pendulum fixed to it in the same
orientation all the time. So the whole system just slides along 𝑥 with 𝜃 = 0 all the time. In
the second mode, 𝑥 move by −𝑚

(𝑀+𝑚) factor to 𝜃 motion. For example, for 𝑀 ≪ 𝑚 , then mode

2 is

⎛
⎜⎜⎜⎜⎝
−1
1

⎞
⎟⎟⎟⎟⎠, hence antisymmetric mode. If 𝑀 = 𝑚 then we get

⎛
⎜⎜⎜⎜⎝
−1
2
1

⎞
⎟⎟⎟⎟⎠ antisymmetric, but now

the ratio changes. So the second mode shape is antisymmetric, but the ratio depends on
the ratio of 𝑚 to 𝑀.

first mode shape

second mode shape

s = lθ
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0.4 Problem 4

4. (15 points)
Consider the simple model for the carbon dioxide molecule CO2 shown below. Two end
particles of mass m are bound to the central particle M via a potential function that is
equivalent to two springs with spring constant k. Consider motion in one dimension only,
along the x-axis. Find the normal frequencies and the normal modes. Make a rough sketch
of the normal modes.

SOLUTION:

m mk k

x1 x2 x3

M

Kinetic energy

𝑇 =
1
2
𝑚𝑥̇21 +

1
2
𝑀𝑥̇22 +

1
2
𝑚𝑥̇23

Potential energy

𝑈 =
1
2
𝑘 (𝑥2 − 𝑥1)

2 +
1
2
𝑘 (𝑥3 − 𝑥2)

2
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Hence the Lagrangian

𝐿 = 𝑇 − 𝑈

=
1
2
𝑚𝑥̇21 +

1
2
𝑀𝑥̇22 +

1
2
𝑚𝑥̇23 −

1
2
𝑘 (𝑥2 − 𝑥1)

2 −
1
2
𝑘 (𝑥3 − 𝑥2)

2

EQM for 𝑥1
𝜕𝐿
𝜕𝑥1

= 𝑘 (𝑥2 − 𝑥1)

𝜕𝐿
𝜕𝑥̇1

= 𝑚𝑥̇1

𝑑
𝑑𝑡

𝜕𝐿
𝜕𝑥̇1

= 𝑚𝑥̈1

Therefore

𝑚𝑥̈1 − 𝑘 (𝑥2 − 𝑥1) = 0
𝑚𝑥̈1 + 𝑘𝑥1 − 𝑘𝑥2 = 0 (1)

EQM for 𝑥2
𝜕𝐿
𝜕𝑥2

= −𝑘 (𝑥2 − 𝑥1) + 𝑘 (𝑥3 − 𝑥2)

𝜕𝐿
𝜕𝑥̇2

= 𝑀𝑥̇2

𝑑
𝑑𝑡

𝜕𝐿
𝜕𝑥̇2

= 𝑀𝑥̈2

Therefore

𝑀𝑥̈2 + 𝑘 (𝑥2 − 𝑥1) − 𝑘 (𝑥3 − 𝑥2) = 0
𝑀𝑥̈2 + 𝑘𝑥2 − 𝑘𝑥1 − 𝑘𝑥3 + 𝑘𝑥2 = 0

𝑀𝑥̈2 + 2𝑘𝑥2 − 𝑘𝑥1 − 𝑘𝑥3 = 0 (2)

EQM for 𝑥3
𝜕𝐿
𝜕𝑥3

= −𝑘 (𝑥3 − 𝑥2)

𝜕𝐿
𝜕𝑥̇3

= 𝑚𝑥̇3

𝑑
𝑑𝑡

𝜕𝐿
𝜕𝑥̇3

= 𝑚𝑥̈3

Therefore

𝑚𝑥̈3 + 𝑘 (𝑥3 − 𝑥2) = 0
𝑚𝑥̈3 + 𝑘𝑥3 − 𝑘𝑥2 = 0 (3)
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Now we can write equations (1,2,3) in matrix form [𝑀] 𝒒̈ + [𝐾] 𝒒 = 0 to obtain
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑚 0 0
0 𝑀 0
0 0 𝑚

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥̈1
𝑥̈2
𝑥̈3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑘 −𝑘 0
−𝑘 2𝑘 −𝑘
0 −𝑘 𝑘

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now assuming solution is 𝒒 (𝑡) = 𝒂𝑒𝑖𝜔𝑡, then the above can be rewritten as
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑘 − 𝑚𝜔2 −𝑘 0
−𝑘 2𝑘 −𝑀𝜔2 −𝑘
0 −𝑘 𝑘 − 𝑚𝜔2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑎3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

These have non-trivial solution when

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑘 − 𝑚𝜔2 −𝑘 0
−𝑘 2𝑘 −𝑀𝜔2 −𝑘
0 −𝑘 𝑘 − 𝑚𝜔2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0

𝜔2 �𝑘 − 𝑚𝜔2� �−𝑀𝑚𝜔2 +𝑀𝑘 + 2𝑘𝑚� = 0

Hence we have 3 normal frequencies. One of them is zero.

𝜔1 = 0

𝜔2 = �
𝑘
𝑚

𝜔3 = �
𝑘
𝑀 + 2𝑚
𝑀𝑚

For each normal frequency, there is a corresponding eigen shape vector. Now we find these
eigen shapes. For 𝜔1, and from (4)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑘 −𝑘 0
−𝑘 2𝑘 −𝑘
0 −𝑘 𝑘

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑎3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence

𝑘𝑎1 − 𝑘𝑎2 + 0𝑎3 = 0
−𝑘𝑎1 + 2𝑘𝑎2 − 𝑘𝑎3 = 0

0𝑎1 − 𝑘𝑎2 + 𝑘𝑎3 = 0

Or

𝑎1 − 𝑎2 = 0
−𝑎1 + 2𝑎2 − 𝑎3 = 0

−𝑎2 + 𝑎3 = 0

Hence 𝑎1 = 𝑎2 and 𝑎2 = 𝑎3. So

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
is first eigenvector. Now we find the second one for 𝜔2.
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From (4) and using 𝜔 = �
𝑘
𝑚
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑘 − 𝑚 𝑘
𝑚 −𝑘 0

−𝑘 2𝑘 −𝑀 𝑘
𝑚 −𝑘

0 −𝑘 𝑘 − 𝑚 𝑘
𝑚

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑎3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −𝑘 0
−𝑘 2𝑘 −𝑀 𝑘

𝑚 −𝑘
0 −𝑘 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑎3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence

−𝑘𝑎2 = 0

−𝑘𝑎1 + �2𝑘 −𝑀
𝑘
𝑚� 𝑎2 − 𝑘𝑎3 = 0

−𝑘𝑎2 = 0

Or

𝑎2 = 0

−𝑎1 + 𝑎2 �2 −
𝑀
𝑚 � − 𝑎3 = 0

𝑎2 = 0

hence 𝑎2 = 0 and 𝑎1 = −𝑎3. So

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
is second eigenvector. Now we find the third one for 𝜔3.

From (4) and using 𝜔 = �𝑘𝑀+2𝑚
𝑀𝑚

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑘 − 𝑚 �𝑘𝑀+2𝑚
𝑀𝑚

� −𝑘 0

−𝑘 2𝑘 −𝑀�𝑘𝑀+2𝑚
𝑀𝑚

� −𝑘

0 −𝑘 𝑘 − 𝑚 �𝑘𝑀+2𝑚
𝑀𝑚

�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑎3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑘 − 𝑘𝑀+2𝑚
𝑀 −𝑘 0

−𝑘 2𝑘 − 𝑘𝑀+2𝑚
𝑚 −𝑘

0 −𝑘 𝑘 − 𝑘𝑀+2𝑚
𝑀

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑎3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence

𝑘 �1 −
𝑀 + 2𝑚

𝑀 � 𝑎1 − 𝑘𝑎2 = 0

−𝑘𝑎1 + 𝑘 �2 −
𝑀 + 2𝑚

𝑚 � 𝑎2 − 𝑘𝑎3 = 0

−𝑘𝑎2 + 𝑘 �1 −
𝑀 + 2𝑚

𝑀 � 𝑎3 = 0
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Or

�1 −
𝑀 + 2𝑚

𝑀 � 𝑎1 − 𝑎2 = 0

−𝑎1 + �2 −
𝑀 + 2𝑚

𝑚 � 𝑎2 − 𝑎3 = 0

−𝑎2 + �1 −
𝑀 + 2𝑚

𝑀 � 𝑎3 = 0

Solution is: 𝑎1 = 𝑎3, 𝑎2 = − 2
𝑀𝑚𝑎3 So

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−2𝑚

𝑀
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is third eigevector. To sketch the mode shapes,

will use the following diagram

η1 η2 η3mode 1

0

1

mode 2

mode 3
− 2m

M

−1
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