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0.1 Problem 1

1. Derive a model for the open-loop transfer function for the system whose frequency
response plots are given on the last page. Turn in the plot with the straight-line Bode
approximations of phase and log gain drawn on top of the true Bode plot. Will the
closed-loop system be stable with negative unity-feedback? What are the gain and

phase margins? .

Bode plot for Problem 1.
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SOLUTION:

The first step is to find number of poles and number of zeros. Looking at the phase plot, we
see that at high frequency the phase is —270°. Therefore, there are 3 more poles than zeros.
(A pole adds —90° at high frequency and zero adds +90°). Now we look at the magnitude
plot and look for any slope change in the positive direction. There is none. The slope starts



at —20 dB/decade and remains negative going to —40 dB/decade, then —60 dB/decade.

This implies there are no zeros since a zero makes the slope positive. We now know that
there are 3 poles and no zeros.

Next we look at where the phase starts. We see it starting at —90°. This means this is type
1 system (i.e. one pole at the origin.). So now we can say that our system has this general
form

K
G(s) =
s (1 + i) (1 + i)
T1 T2
A pole at zero always starts at 40 dB at low frequency since 20log L= 20 log w, and using

w = 0.01 as the small frequency value (by convention), we obtain —20 log0.01 = 40 dB. It
drops by —20 dB/decade. Now we need to find the locations of the break points 7; and 7,
(also called corner frequencies).

To find 7; we draw an asymptotic lines between the first segment which has slop of -20
dB/decade and the next segment which has slope of —40 dB per decade and look for the
intersection point. We find it is 7; = 1 rad/sec as illustrated below. Similarly between the
second segment which has slope of —40 dB/decade and the third segment which has slope
of —60 dB/decade we find the intersection to be around 7; = 10 rad/sec



Bode plot for Problem 1.
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Now that we found the corner frequencies, our system has this form

G(s) = K
N s(1+s)(1+%)

The only thing left is to determine gain K. This is done by looking at low frequency. By
convention this is w = 0.01 rad/sec. At w = 0.1 we see the gain is about 45 dB, and since the
slope is —20 dB/decade we go back one decade, and conclude that magnitude at w = 0.01
rad/sec must be 65 dB.

Since pole at zero at 40 dB, then the difference, which is 25 dB, must be due to the gain K.
Hence we solve for K from

20logK =25

25
K =102 =17.78



Therefore our system is now complete. The open loop transfer function is

17.78

GO = D)

Now we Draw the magnitude straight line approximation (this below was drawn by hand
using drawing program. This is not computer generated)

|G(jw)| db : ’/Odb per decade |
\ \
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Now we draw the phase straight line approximation. Phase goes down by —45° for each pole,
starting one decade before the corner frequency, and ending one decade after the corner

frequency. This is only for the approximation factors in the form L. For the exact pole Lit
1 ; S

starts at —90° and remains over the whole frequency range. For 7; = 1 rad/sec, we start from
0.1 up to 10 rad/sec. For t; =10 rad/sec, we start from 1 rad/sec up to 100 rad/sec. Using this
information, below is sketch of the phase straight line approximation.
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Below is the straight line approximation on top of the true bode plot as required to show.

s=tf('s'); sys=17.78/(sx(1+s)*(1+s/10))
bode (sys)
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Since the open loop is stable as it has poles at {0, -1, 0.1}, then the closed loop will be stable
if there is zero net clock wise encirclement around -1. This translates to having positive

is unity and positive gain margin with phase is

phase margin when magnitude of |G (ja)gc)

-180°.

To find the gain margin and the phase margins, we first plot our approximation of the system

found above: G (s) = % using the bode command. Here it is, showing on it the w,,
S S 0

frequency (where phase is —-180°) and the corresponding |G (ja)pc) in dB found, which we

will use to find the gain margin from



HWS8, problem 1, approximation of the system
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We see that at -180°, the frequency is 3.2 rad/sec. This is called w,.. Going back to the

magnitude plot, we see that at w,. then |G (prc) 5 4 dB. This means the gain margin

GMdB is
GMdB = —4 dB

Notice that GMp is negative of |G (ja)pc)

which is

5 The reason is due to the definition of GM 3,

GMdB =20 logm |(;(];w)
pc

|G(j“)PC)|dB

But |G (ja)pc) =10 20 . Substituting this in the above gives
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1

|G(j“’PC)|dB
10 20
|G(jmp,;)|dB
=-20log ;10 20

- |G (ja’m)
= |G (j“)w) B

GM,p = 20 log10

5 log,,10

Therefore, GMy;, is the negative of |G (ja)pc) "

as read from bode plot. Since GM ;5 < 0 then

closed loop is not stable |. To find the phase margin. we find the frequency w,, which is

where magnitude plot is at 0 dB. We see that the frequency is w,,, = 4 rad/sec as shown in
the plot below.

HWS, problem 1, approximation of the system
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At w,,,, the phase is ~188°. Subtracting 180° from this phase gives —7°. Hence
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phase margin = —7°

Phase margin must be positive for stable closed loop stable.| The closed loop is not stable.

Note that both the phase margin and the gain margin must be positive for stable closed
loop system.
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0.2 Problem 2

2. Given the fomud loop transfer function for a negative unity-feedback system

) = (s+5)(s+3)
G(s) = s(e+1)(#+s+4)

(a) investigate the stability of the system using both Nyquist and Bode in Matlab,
(b) find the gain and phase margins from each method and their corresponding
crossover frequencies. Display the gain and phase margins on the plots where

they occur.
SOLUTION:
The open loop
Gl = S (s(-si- :)5()sis++s3j- 4)
has poles at s = 0,5 = -1 and s = —% + ?]’, therefore it is stable. So we expect the closed

loop to be stable only if the Nyquist plot has a net of zero clockwise encirclement around -1.
When looking at the bode plot, the rules are these. The closed loop is stable, if both these
conditions are met:

is negative as read
db

1. The gain margin GMy, is positive. Or in other words, if |G (ja)gc)
from the bode plot.

2. The phase margin is positive.

0.2.1 Part(a)

Here is Nyquist plot

s=tf('s');
sys=(s+5) *(s+3) /(s*(s+1) *(s~2+s+4) ) ;
nyquistl(sys)




It shows there is one encirclement around —-1. We can zoom in to make sure:
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The above shows that the closed loop is not stable. We will now look at Bode plot. Here is
the result, where I showed the gain and phase margins on the generated Matlab plot. This
shows that the gain margin is negative, hence not stable, and it also shows that the phase
margin is negative, also indicating it is not stable.
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We can also ask Matlab to give us the margins and the corresponding break frequencies.
Matlab was correct and found that the closed system is also not stable:

>> [gm,pm,gwc,pwc]=margin(sys)
Warning: The closed-loop system is unstable.
> In ctrlMsgUtils.warning (line 25)
In DynamicSystem/margin (line 65)
gm =

0.4254

pm =

-42.9450

gwc =

1.9239

pwc =

2.4785

Notice that Matlab gives the gain margin GM in linear value. We see it says GM = 0.4254
above, which is -7.42 dB. Since it is negative, then closed loop is not stable.
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0.2.2 Part(b)

We can display the cross over frequencies using Matlab either by using the margin command
or using the GUI by using the mouse as shown below. First we find the frequency where the
phase is ~180°, this is called w,.. We see it is 1.93 rad/sec. Then using the mouse, we locate
this frequency on the magnitude plot and read |G(jw)| in dB. We see that |G(jw)| in dB is
positive, hence GM is negative, and closed loop is not stable.
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To determine the stability using phase margin, we do the reverse. We locate the frequency
where the magnitude is zero dB using the mouse. This is called wg,. We see it is at 2.48
rad/sec. Then on the phase plot, we locate the phase at this frequency using the mouse. We
see it is —228°. Adding -180° gives —48°. Since this is negative, then the close loop is not
stable.
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Using Nyquist to determine stability, we plot Nyquist. Then make a unit circle around the
origin to locate the gain and phase margin, as illustrated below
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Locating gain and phase margin on Nyquist plot

Plotting the Nyquist plot using Matlab, and zooming in, and making a unit circle (Circle
was added by hand on top of the Matlab Nyquist plot), one can measure the gain and phase

margin as below
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0.3 Problem 3

3. The 'block diagram shown in Figure 1 represents a model of a hydroelectric alternator,
turbine, and penstock with transfer function G\ (s) being given by"

. 25(1 + 5s)
(85 +49.2775% + 25.7725 + 2.526)

Gi(s) =

The parameter values are T = 1, K = 0.05, M = 10, and D =1 with L{s) = 0.

L(s)
Rla) o T-7s +[l)+ 1 Cs)
¥ ! 1+0.57s | Ms+D o

1
K

Figure 1: Hydroelectric System Block Diagram

(a) Using the Bode plots, genereated using Matlab if you wish, find the maximum
value of K to retain stability.

(b) Find the gain margin, phase margin and the corresponding crossover frequencies
and label them on the Bode plots.

SOLUTION:

0.3.1 Part (a)

The open loop transfer function is

Gs) = 25(1 + 5s) 1-Ts 1 1
)= §3 +42.277s2 + 25.772s +2.526 \1 + 0.5Ts | \Ms + D ] \ K
We start with T=1,M=10,D=1,K =1.

) = 25(1 + 55) 1-s 1
) T B ¥ 4227752 + 257725 + 2.526 \1 + 055 ) \ 105 + 1

at corresponding —180°.

And make a bode plot, then find the |G (ja)pc)

18
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HWS8, problem 3
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But the phase do not cross —180°. This indicates an infinite gain margin. Similarly we find
that the phase margin is infinite. Hence we conclude that we can make K as close to zero
(since it is in denominator) as we want, while keeping the system stable and can make it as
large as we want. Note that we are assuming that gain itself can only be positive here.

0.3.2 Part (b)

Both the gain and the phase margin are infinite. There is no corresponding crossover
frequencies.
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0.4 Problem 4

Problem 4; The open loop transfer function of a position control system is
_ K(1+01s)
G = ST 025)1+ 0%9)
Assume a negative unity feedback configuration.

(a) Sketch the Bode diagram for K = 1 (Do Not Use MATLAB). Find the gain margin,
gain-crossover frequency, phase margin and the phase-crossover frequency for the
system.

(b) Use MATLAB to check your plot

(c) Determine the value of K which will satisfy the following design criteria

1. A phase margin of 55°.
2. A gain margin of 26 dB.

SOLUTION:

0.4.1 part(a)

S
(1+5)
s(+3)(1+353)
For the magnitude, the corner frequencies are at s = 0,5 = 5,5 = 2.5 for the poles and s =10
for the zeros. The pole at zero starts at 40 dB (we use w = 0.01 as starting point by convention)
with slope of —20 dB/decade. Each pole in the denominator adds a —20 dB/decade slope,
while each zero adds +20 dB/decade. Here is the magnitude plot approximation

G(s) =
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For the phase, since this is type 1 system, it starts at —90° at the w = 0.01. This stays for all
the range of frequencies. At w =5 and w = 2.5, A —45° slope is added. This slope extends
one decade before the corner frequency up to one decade above it. At w =10 rad/sec, we
add +45Y for the zero. Here is the result
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Now to answer the part about the gain and phase margins. For this, we show both |G (]a))|
and phase plot that we sketched above in one diagram and mark on them the gain and
phase related quantities. This is the result.
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In next part, we use Matlab to get accurate margin values, which shows that gain margin
is 30 dB and phase margin is 64°. The gain cross over frequency is 7 rad/sec and the phase
cross over frequency is 0.92 rad/sec. The closed loop is stable.

0.4.2 Part(b)
Using Matlab
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clear

s=tf('s');

sys=tf( (1+s/10)/(s*(1+s/5)*(1+s/2.5)));
bode (sys) ;

grid

[gm,pm,gcw,pcw] =margin(sys)
gm =

30.0007

pm =

64.4735

gew =

7.0711

pcw =

0.9260

HW 8, problem 4, part(b)
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0.4.3 Part(c)
Part(1)

For phase margin of 55 we want the phase at —-125° to correspond to 0 dB in the magnitude
plot. At phase —125° the frequency is 1.3 rad/sec from the plot. At this frequency the magni-
tude is —3.55 dB and not zero dB. Hence positive gain margin of 3.55 dB. We want to shift
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this up to 0 dB. So we need to solve for additional gain from

20log, K = 3.55

k=10l2)
=15

Hence

K=15

To verify, here is the Matlab margin command, which shows the phase margin is indeed
now 55° when using K = 1.5

clear

s=tf('s');

K=1.5;

sys=tf( Kx (1+s/10)/(s*(1+s/5)*(1+s/2.5)));
bode (sys) ;

grid
[gm,pm,gcw,pcw]=margin(sys)
gm =

20.0005

pm =

55.3798

gew =

7.0711

pcw =

1.2991

Part(2)

At -180° in the phase plot, we want the corresponding gain margin to be 26 dB which
means we want |G (ja)gc)| = -26 dB. Currently, we see that at —180°, the frequency is 7.1. The
magnitude is —30 dB at this frequency. We want magnitude to be —26 dB instead. Hence we

4
want to shift up by 4 dB the magnitude plot, or K = 10(ﬁ) =1.585

K =1.585

To verify, here is the Matlab margin command, which shows the gain margin is close to 26
dB now using K =1.585. (Matlab gives gm =18.92 which is 25.54 dB)
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clear

s=tf('s');

K=1.585;

sys=tf( Kx (1+s/10)/(s*(1+s/5)*(1+s/2.5)));
[gm,pm,gcw,pcw] =margin(sys)
gm =

18.9279

pm =

54.0559

gew =

7.0711

pcw =

1.3568

>> 20%1og10(gm)

25.5420
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