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0.1 Problem 1
ECE 332 – Homework #5

Due Thursday, October 29, 2015

Problem 1: Performances specifications for a second order system

G(s) =
ω2

n

s2 + 2ζωns+ ω2
n

with 0 < ζ < 1 require that the maximum overshoot to a step input not
exceed 30% and that the settling time be less than 0.25 seconds. Using

the settling time approximation

ts ≈
3.2

ζωn

,

find and sketch the region in the complex plane where the two poles need
to be located.

Problem 2: For the system shown in the figure below, find gains K

and Kt so that the maximum overshoot of the output c(t) to a unit step
input r(t) is about 20% and that the rise time is approximately 0.05 sec-
onds. Find the resulting closed loop transfer function C(s)/R(s) and

simulate the step response in Matlab. In your solution, use the rise time
approximation

tr ≈
1− 0.4167ζ + 2.917ζ2

ωn

.

SOLUTION:

There are two inequalities to satisfy. The first is given by the settling time requirement

𝑡𝑠 =
3.2
𝜁𝜔𝑛

< 0.25 (1)

The second is given by the overshoot requirement

𝑒
− 𝜋𝜁

�1−𝜁2 < 0.3 (2)

From (2), taking the log of both sides gives

−
𝜋𝜁

√1 − 𝜁2
< ln (0.3)

Multiplying both sides by −1 changes the inequality from < to >
𝜋𝜁

√1 − 𝜁2
> − ln (0.3)

Simplifying gives

𝜋𝜁

√1 − 𝜁2
> ln �

1
0.3�

> 1.204

Squaring both sides and solving for 𝜁

𝜁2

1 − 𝜁2
> �

1.204
𝜋 �

2

𝜁2 > 0.14688 �1 − 𝜁2�

1.146 88𝜁2 > 0.14688
𝜁2 > 0.12807
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Since 𝜁 has to be positive then the positive root is used giving

𝜁 > 0.35787

Back to the (1) specifications, which says
3.2
𝜁𝜔𝑛

< 0.25

𝜁𝜔𝑛 > 12.8

For each 𝜁𝑖 > 0.3578, we solve for 𝜔𝑛 from 𝜁𝜔𝑛 > 12.8. This will give full description of where
the poles are located.

ωn

√
1− ζ2

imaginary axis

−ζωn

|ωn|

real axis

X

X

Here is a plot of the (𝜁, 𝜔𝑛) space showing allowed values of 𝜁, 𝜔𝑛.

In[69]:= RegionPlot[1 > z > 0.35787 && z w > 12.8, {z, 0, 1}, {w, 0, 50}, GridLines → Automatic, GridLinesStyle → LightGray, Frame → True,

FrameLabel → {{"ωn", None}, {"ξ", "Region of allowed ξ and ωn"}}, BaseStyle → 14, Epilog → {

{Dashed, Line[{{0.3578, 0}, {0.3578, 35}}], Line[{{0, 12.8}, {1, 12.8}}]},

Text["ζ=0.358", {0.358, 0}],

Text["ωn=12.8", {0.084, 14.9}]

}]

Out[69]=
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Region of allowed ξ and ωn

ζ=0.358

ωn=12.8

By taking each point (𝜁, 𝜔𝑛) from the above plot, then the pole location with coordinates
−𝜁𝜔𝑛±𝜔𝑛√1 − 𝜁2 is generated. The following shows the final result, showing the region where
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the poles have to be located in order to meet the performance requirements.

In[456]:= p = Normal@RegionPlot[1 > z > 0.35787 && z w > 12.8, {z, 0, 1}, {w, 0, 50}];

pts = DeleteDuplicates@Flatten[Cases[p, Polygon[x_] ⧴ x, Infinity], 1];

data = {-First@# Last@#, Last@# Sqrt[1 - (First@#)^2]} & /@ pts;

data2 = {-First@# Last@#, -Last@# Sqrt[1 - (First@#)^2]} & /@ pts;

ListPlotUnion[data, data2], AxesOrigin → {0, 0}, AxesLabel → {"Re", "Im"}(*AxesLabel→"-ξ ωn","ωn 1-ξ2 "*), PlotLabel → "Region of poles in complex S plane",

ImageSize → 500

Out[460]=

-50 -40 -30 -20 -10
Re

-40

-20

20

40

Im
Region of poles in complex S plane

The above diagram shows the location of each pair of poles as a small dot. Complex poles
come in pair of conjugates. One pole will be above the real axis and its pair below the real
axis.
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0.2 Problem 2

ECE 332 – Homework #5

Due Thursday, October 29, 2015

Problem 1: Performances specifications for a second order system

G(s) =
ω2

n

s2 + 2ζωns+ ω2
n

with 0 < ζ < 1 require that the maximum overshoot to a step input not
exceed 30% and that the settling time be less than 0.25 seconds. Using

the settling time approximation

ts ≈
3.2

ζωn

,

find and sketch the region in the complex plane where the two poles need
to be located.

Problem 2: For the system shown in the figure below, find gains K

and Kt so that the maximum overshoot of the output c(t) to a unit step
input r(t) is about 20% and that the rise time is approximately 0.05 sec-
onds. Find the resulting closed loop transfer function C(s)/R(s) and

simulate the step response in Matlab. In your solution, use the rise time
approximation

tr ≈
1− 0.4167ζ + 2.917ζ2

ωn

.

SOLUTION:

The closed loop transfer function, in terms of 𝐾 and 𝐾𝑡 can be found using either Mason
rule or simple block reduction. For this problem block reduction seems easier.

K
Gp(s)

1+KtGp(s)
1

20s

E(s) B(s) C(s)

K
Gp(s)

1+KtGp(s)
1

20s

1+K
Gp(s)

1+KtGp(s)
1

20s

R(s)

R(s) C(s)

KGp

20s(1+KtGp)+KGp
R(s) C(s)
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Using 𝐺𝑝 =
100

1+0.2𝑠 the above becomes

𝐶 (𝑠)
𝑅 (𝑠)

=
𝐾 � 100

1+0.2𝑠
�

20𝑠 �1 + 𝐾𝑡
100

1+0.2𝑠
� + 𝐾 100

1+0.2𝑠

=
100𝐾

20𝑠 (1 + 0.2𝑠 + 100𝐾𝑡) + 100𝐾

=
100𝐾

4𝑠2 + (20 + 2000𝐾𝑡) 𝑠 + 100𝐾

=
25𝐾

𝑠2 + (5 + 500𝐾𝑡) 𝑠 + 25𝐾

The standard form is 𝜔2
𝑛

𝑠2+2𝜁𝜔𝑛𝑠+𝜔2𝑛
therefore by comparing to the above we find

𝜔2
𝑛 = 25𝐾

𝜔𝑛 = 5√𝐾 (1)

And

5 + 500𝐾𝑡 = 2𝜁𝜔𝑛

= 2𝜁 �5√𝐾�

𝜁 =
5 + 500𝐾𝑡

10√𝐾
(2)

Hence the transfer function is
𝐶 (𝑠)
𝑅 (𝑠)

=
𝜔2
𝑛

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2
𝑛

Where 𝜔𝑛 = 5√𝐾 and 𝜁 = 5+500𝐾𝑡
10√𝐾

. We now apply the user specifications in order to determine

𝐾 and 𝐾𝑡. From the overshoot requirement, we write

𝑒
− 𝜋𝜁

�1−𝜁2 ≤ 0.2 (3)

And from the rise time requirements we have

1 − 0.4167𝜁 + 2.917𝜁2

𝜔𝑛
= 0.05 (4)

From (3) and (4) we can now solve for 𝜔𝑛 and 𝜁 and this allow us to find 𝐾 and 𝐾𝑡 by using
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(1,2). From (3), taking logs and solving for 𝜁 gives

−
𝜋𝜁

√1 − 𝜁2
≤ ln (0.2)

𝜋𝜁

√1 − 𝜁2
≥ ln (5)

𝜋𝜁

√1 − 𝜁2
≥ 1. 6094

𝜋2𝜁2 ≥ (1. 6094)2 �1 − 𝜁2�

𝜋2𝜁2 ≥ 2.5902 − 2.5902𝜁2

�𝜋2 + 2.5902� 𝜁2 ≥ 2.5902

𝜁 ≥
�

2.5902
�𝜋2 + 2.5902�

Hence

𝜁 ≥ 0.456

Any 0.456 ≤ 𝜁 < 1 can be used. In order to find 𝜔𝑛, let us choose

𝜁 = 0.46

For the rest of the calculations . From (4) we find

1 − 0.4167 (0.46) + 2.917 (0.46)2

𝜔𝑛
= 0.05

𝜔𝑛 =
1.425 6
0.05

Therefore

𝜔𝑛 = 28.512 rad/sec

Now that we found 𝜁 and 𝜔𝑛 , we use (1,2) to find the gains. From (1)

𝜔𝑛 = 5√𝐾

𝐾 =
𝜔2
𝑛
25

=
28.5122

25
Therefore

𝐾 = 32.517

And from (2)

𝜁 =
5 + 500𝐾𝑡

10√𝐾

0.46 =
5 + 500𝐾𝑡

10√32.517
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Hence

𝐾𝑡 = 0.04246

The final transfer function is
𝐶 (𝑠)
𝑅 (𝑠)

=
25𝐾

𝑠2 + (5 + 500𝐾𝑡) 𝑠 + 25𝐾

=
25 (32.517)

𝑠2 + (5 + 500 (0.04246)) 𝑠 + 25 (32.517)
Or

𝐶(𝑠)
𝑅(𝑠) =

812.93
𝑠2+26.23𝑠+812.93

Matlab is used to simulate the step response, and to also verify the user requirements are
met.

close all;
clear all;
s = tf('s');
sys = 812.93/(s^2+26.23*s+812.93);
step(sys)
grid

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

1.2
Step Response

Time (seconds)

A
m

pl
itu

de

The step information was also verified using the command stepinfo() which showed the
specifications was indeed met.

stepinfo(sys)

RiseTime: 0.0549
SettlingTime: 0.2916
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SettlingMin: 0.9225
SettlingMax: 1.1963

Overshoot: 19.6310
Undershoot: 0

Peak: 1.1963
PeakTime: 0.1229
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0.3 Problem 3

Problem 3: A system with adjustable gain K and open loop transfer

function

G(s) =
Ks(20s2 + 1)

s4 + 5s2 + 10s+ 15

connected in a classical unity feedback configuration. Use the Routh-

Hurwitz criterion to find the range of K for which closed loop stability is
assured.

Problem 4: Consider the system with open loop transfer function

G(s) =
K

s(1 + Ts)

is connected in a unity feedback configuration. Given a > 0, the speci-
fication is that all closed loop poles have real part less than −a. Show

how the Routh-Hurwitz criterion can modified to address this problem.
Subsequently, for T = 1, find and sketch the region in the (a,K) plane
associated with closed loop stability.

Problem 5: An automatic depth control system for a submarine is de-

picted in the figure below. The depth is measured by a pressure trans-
ducer. For what values of K will the systern be stable? Take H(s) = 1

and submarine transfer function

G(s) =
(s+ 2)2

s2 + 0.01

SOLUTION:

𝐺 (𝑠) =
𝐾𝑠 �20𝑠2 + 1�

𝑠4 + 5𝑠2 + 10𝑠 + 15
In classical unity feedback, the closed loop transfer function 𝑇 (𝑠) is

𝑇 (𝑠) =
𝐺 (𝑠)

1 + 𝐺 (𝑠)

=
𝐾𝑠 �20𝑠2 + 1�

�𝑠4 + 5𝑠2 + 10𝑠 + 15� + 𝐾𝑠 �20𝑠2 + 1�

=
𝐾𝑠 �20𝑠2 + 1�

𝑠4 + 20𝐾𝑠3 + 5𝑠2 + (10 + 𝐾) 𝑠 + 15
Applying Routh-Hurwitz to the denominator 𝐷 (𝑠) = 𝑠4 + 20𝐾𝑠3 + 5𝑠2 + (10 + 𝐾) 𝑠 + 15 gives

𝑠4 1 5 15
𝑠3 20𝐾 (10 + 𝐾) 0
𝑠2 20𝐾(5)−(10+𝐾)

20𝐾 15 0

𝑠1
(20𝐾(5)−(10+𝐾))

20𝐾 (10+𝐾)−20𝐾(15)
20𝐾(5)−(10+𝐾)

20𝐾

0 0

𝑠0 15

Simplifying gives

𝑠4 1 5 15
𝑠3 20𝐾 (10 + 𝐾) 0
𝑠2 1

20𝐾
(99𝐾 − 10) 15 0

𝑠1 1
10−99𝐾

�5901𝐾2 − 980𝐾 + 100� 0 0
𝑠0 15
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For stability, we need the first column to be positive. Hence the conditions are

20𝐾 > 0
1
20𝐾

(99𝐾 − 10) > 0

1
10 − 99𝐾

�5901𝐾2 − 980𝐾 + 100� > 0

The first just says that 𝐾 > 0. The second says 99𝐾 − 10 > 0 or 𝐾 > 10
99 . Now for the third

condition
1

10 − 99𝐾
�5901𝐾2 − 980𝐾 + 100� > 0

Since 𝐾 > 10
99 is required, then

1
10−99𝐾 is negative quantity since 10− 99𝐾 is negative for 𝐾 > 10

99 .
This means the above becomes

5901𝐾2 − 980𝐾 + 100 < 0

Notice the change of inequality from > to < since we multiplied both sides by a negative
quantity (10 − 99𝐾) to cancel it out. But 5901𝐾2 − 980𝐾 + 100 < 0 can not be satisfied with a
positive 𝐾 > 10

99 . For example, using the minimum allowed 𝐾 which is 10
99 , then the value of

5901𝐾2 − 980𝐾 + 100 becomes

5901 �
10
99�

2

− 980 �
10
99�

+ 100 = 61.218

But it needs to be negative. So there does not exist 𝐾 which makes the closed loop stable.
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0.4 Problem 4

Problem 3: A system with adjustable gain K and open loop transfer

function

G(s) =
Ks(20s2 + 1)

s4 + 5s2 + 10s+ 15

connected in a classical unity feedback configuration. Use the Routh-

Hurwitz criterion to find the range of K for which closed loop stability is
assured.

Problem 4: Consider the system with open loop transfer function

G(s) =
K

s(1 + Ts)

is connected in a unity feedback configuration. Given a > 0, the speci-
fication is that all closed loop poles have real part less than −a. Show

how the Routh-Hurwitz criterion can modified to address this problem.
Subsequently, for T = 1, find and sketch the region in the (a,K) plane
associated with closed loop stability.

Problem 5: An automatic depth control system for a submarine is de-

picted in the figure below. The depth is measured by a pressure trans-
ducer. For what values of K will the systern be stable? Take H(s) = 1

and submarine transfer function

G(s) =
(s+ 2)2

s2 + 0.01

SOLUTION:

Given 𝐺 (𝑠) = 𝐾
𝑠(1+𝑇𝑠) then the closed loop transfer function is

𝐺𝑐𝑙𝑜𝑠𝑒𝑑 (𝑠) =
𝐺

1 + 𝐺

=
𝐾

𝑠 (1 + 𝑇𝑠) + 𝐾

=
𝐾

𝑇𝑠2 + 𝑠 + 𝐾
Therefore 𝐷 (𝑠) = 𝑇𝑠2 + 𝑠 + 𝐾. For the closed loop poles with real part to be less than −𝑎, let
𝑠1 = 𝑠 + 𝑎. Then 𝑠 = 𝑠1 − 𝑎. We apply Routh-Hurwitz to 𝐷 (𝑠) but with 𝑠 = 𝑠1 − 𝑎. The new
denominator polynomial becomes

𝐷 (𝑠1) = 𝑇 (𝑠1 − 𝑎)
2 + (𝑠1 − 𝑎) + 𝐾

Expanding gives

𝐷 (𝑠1) = 𝑇 �𝑠21 + 𝑎2 − 2𝑠1𝑎� + 𝑠1 − 𝑎 + 𝐾

= 𝑇𝑠21 + 𝑠1 (1 − 2𝑇𝑎) + �𝑇𝑎2 − 𝑎 + 𝐾�

Routh table applied to the above polynomial is

𝑠21 𝑇 𝑇𝑎2 − 𝑎 + 𝐾
𝑠11 1 − 2𝑇𝑎 0
𝑠01 𝑇𝑎2 − 𝑎 + 𝐾

We need all entries in the first column to be same sign (positive in this case, since 𝑇 = 1)
for stability to hold (This is in addition to having the poles be with real part less than −𝑎).
For 𝑇 = 1 the above becomes

𝑠2 1 𝑎2 + 𝑎 + 𝐾
𝑠1 1 − 2𝑎 0
𝑠0 𝑎2 − 𝑎 + 𝐾
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The conditions for stability are

1 − 2𝑎 > 0
𝑎 (1 − 𝑎) + 𝐾 > 0

The first condition gives 𝑎 > 1
2 . The second condition gives

𝐾 > 𝑎2 − 𝑎

Here is plot of the region in the (𝑎, 𝐾) plane associated with closed loop stability.

Out[1]=
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0.5 Problem 5

Problem 3: A system with adjustable gain K and open loop transfer

function

G(s) =
Ks(20s2 + 1)

s4 + 5s2 + 10s+ 15

connected in a classical unity feedback configuration. Use the Routh-

Hurwitz criterion to find the range of K for which closed loop stability is
assured.

Problem 4: Consider the system with open loop transfer function

G(s) =
K

s(1 + Ts)

is connected in a unity feedback configuration. Given a > 0, the speci-
fication is that all closed loop poles have real part less than −a. Show

how the Routh-Hurwitz criterion can modified to address this problem.
Subsequently, for T = 1, find and sketch the region in the (a,K) plane
associated with closed loop stability.

Problem 5: An automatic depth control system for a submarine is de-

picted in the figure below. The depth is measured by a pressure trans-
ducer. For what values of K will the systern be stable? Take H(s) = 1

and submarine transfer function

G(s) =
(s+ 2)2

s2 + 0.01

SOLUTION:

The closed loop transfer function is

𝑇 (𝑠) =
𝐾𝐺 (𝑠) 1𝑠

1 + 𝐻𝐾𝐺 (𝑠) 1𝑠

Replacing 𝐻 (𝑠) = 1 and 𝐺 = (𝑠+2)2

𝑠2+0.01 the above becomes

𝑇 (𝑠) =
𝐾(𝑠+2)2

𝑠2+0.01
1
𝑠

1 + 𝐾(𝑠+2)2

𝑠2+0.01
1
𝑠

=
𝐾 (𝑠 + 2)2

𝑠 �𝑠2 + 0.01� + 𝐾 (𝑠 + 2)2

=
𝐾 (𝑠 + 2)2

𝑠3 + 𝐾𝑠2 + (0.01 + 4𝐾) 𝑠 + 4𝐾
The Routh table for 𝐷 (𝑠) = 𝑠3 + 𝐾𝑠2 + (0.01 + 4𝐾) 𝑠 + 4𝐾 is

𝑠3 1 0.01 + 4𝐾
𝑠2 𝐾 4𝐾
𝑠1 4𝐾 − 3.99 0
𝑠0 4𝐾
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Therefore for stability we need

𝐾 > 0
4𝐾 > 3.99
4𝐾 > 0

The first and the third conditions give 𝐾 > 0. From the second condition, 𝐾 > 3.99
4 = 0.9975.

Therefore

𝐾 > 0.9975

To verify, here is the step response for 𝑘 = 0.9974 and 𝑘 = 0.9976, showing one is unstable
and the second is stable.

close all; clear all;
s = tf('s');
G = (s+2)^2/(s^2+0.01);

k = .9974;
sys = feedback(k*G*1/s,1);
subplot(2,1,1);
step(sys);
title(sprintf('k=%f',k)); grid

subplot(2,1,2);
k = .9976;
sys = feedback(k*G*1/s,1);
step(sys);
title(sprintf('k=%f',k)); grid
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