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0.1 Problem 1

Problem 1: Performances specifications for a second order system

2
“y,

s2 + 2Cwps + w?

G(s) =

with 0 < { < 1 require that the maximum overshoot to a step input not
exceed 30% and that the settling time be less than 0.25 seconds. Using
the settling time approximation

32
s <Wna

find and sketch the region in the complex plane where the two poles need
to be located.

SOLUTION:
There are two inequalities to satisfy. The first is given by the settling time requirement
3.2
t, = <0.25 (1)
Cwy

The second is given by the overshoot requirement
n¢
e i? <03 2)
From (2), taking the log of both sides gives
s
Vi-e
Multiplying both sides by —1 changes the inequality from < to >
s

< 1n(0.3)

> —1n(0.3)

Simplifying gives

Squaring both sides and solving for C

2 (1204)\
-~ ( 7 )
% > 014688 (1- ()
1.146 88C% > 014688
2 > 012807



Since C has to be positive then the positive root is used giving

C > 0.35787

Back to the (1) specifications, which says
3.2
Cawy
Cw, >12.8

For each (; > 0.3578, we solve for w, from Cw, > 12.8. This will give full description of where
the poles are located.

<0.25

imaginary axis

A

X o - _|wny/1—-¢2

N real axis

Here is a plot of the (C, w,) space showing allowed values of C, w,,.

In69:= RegionPlot[l > z > 0.35787 &&zw > 12.8, {z, 0, 1}, {w, 0, 50}, GridLines -» Automatic, GridLinesStyle - LightGray, Frame - True,
FrameLabel -» {{"w,", None}, {"&", "Region of allowed & and w,"}}, BaseStyle » 14, Epilog - {
{Dashed, Line[{{0.3578, 0}, {0.3578, 35}}], Line[{{0, 12.8}, {1, 12.8}}1},
Text["£=0.358", {0.358, 0}],
Text["w,=12.8", {0.084, 14.9}]
]

Region of allowed ¢ and w),

50F

'n

out[69)=

By taking each point ({, w,) from the above plot, then the pole location with coordinates
—Cw, +w, V1 - (? is generated. The following shows the final result, showing the region where



the poles have to be located in order to meet the performance requirements.

In456]= p = Normal@RegionPlot[1l >z > 0.35787 &&zw > 12.8, {z, 0, 1}, {w, 0, 50}];
pts = DeleteDuplicates@Flatten[Cases[p, Polygon[x ] :» x, Infinity], 1];

data = {-First@# Last@#, Last@# Sqrt[l - (Firste@#) ~2]} & /@pts;

data2 = {-First@# Last@#, -Last@# Sqrt[l - (Firste#) ~2]} & /@pts;

ListPlot[Union[data, data2], AxesOrigin - {0, 0}, AxesLabel » {"Re", "Im"}

ImageSize - 500]

Out[460]=

Region of poles in complex S plane
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The above diagram shows the location of each pair of poles as a small dot. Complex poles
come in pair of conjugates. One pole will be above the real axis and its pair below the real

axis.



0.2 Problem 2

Problem 2: For the system shown in the figure below, find gains K
and K; so that the maximum overshoot of the output ¢(t) to a unit step
input r(t) is about 20% and that the rise time is approximately 0.05 sec-
onds. Find the resulting closed loop transfer function C(s)/R(s) and
simulate the step response in Matlab. In your solution, use the rise time

approximation

¢ o L= 04167C+2917¢°

r

wn

c(s)

SOLUTION:

The closed loop transfer function, in terms of K and K; can be found using either Mason
rule or simple block reduction. For this problem block reduction seems easier.

E(s) G B(s) C
R p(s) |1 ;(3)
(8) —0 11 K.Gp(s) "| 30s g
_Gp(s) 1
1+K:Gp(s) 20s
R(s) —» + gpfs()’ - > C(s)
WK IR o) 208

KG
R(s) > 203(1+KtG1;)+KGp > C(s)




100

—— the above becomes
1+0.2s

Using G, =

Cs) K(rz)

R(s) 100 100
20s (1 + K 1+O.25) Koz
~ 100K
~ 20s (1 +0.2s + 100K;) + 100K
3 100K
452 + (20 + 2000K;) s + 100K
~ 25K
524 (54 500K;)s + 25K
)2
The standard form is “"__ therefore by comparing to the above we find
s%+20w,s+wi
w? = 25K
w, = 5VK 1)

And
5+ 500K, = 2Cw,
o]
5 + 500K,
(=—-

2
I~ 2)

Hence the transfer function is

Cls) _ w;
R(s) 2+ 2Lw,s + w?
5+500K; T .
Where v, = 5VK and { = ovK We now apply the user specifications in order to determine
K and K;. From the overshoot requirement, we write
__nt
e -2 <02 (3)

And from the rise time requirements we have

1-0.4167C +2.917¢?

Wy,

=0.05 (4)

From (3) and (4) we can now solve for w, and C and this allow us to find K and K; by using



(1,2). From (3), taking logs and solving for C gives
7iC

<1n(0.2)

:ﬂ
™Y

™
N

> In (5)

j
Y
N

Tt
Vi-22
22 > (1.6094)" (1 - ©?)
2% > 2.5902 - 2.5902(>
(m? +2.5902) 22 > 2.5902
2.5902
(m? +2.5902)

>1.6094

Hence

C > 0.456
Any 0.456 < C <1 can be used. In order to find w,, let us choose

=046

For the rest of the calculations . From (4) we find

1 - 0.4167 (0.46) + 2.917 (0.46)>

Wy,

=0.05

14256
©0.05

Wy

Therefore

w,, = 28.512 rad/sec

Now that we found C and w,,, we use (1,2) to find the gains. From (1)

a)n=5\/E

(Wi _ 285122

T 25 25

Therefore

K =32.517

And from (2)
‘= 5 + 500K;

10VK

5 + 500K,

10v32.517

0.46 =



Hence
K; = 0.04246
The final transfer function is
C(s) 25K
R(s) s2+(5+500K;)s + 25K
25(32.517)

= 52+ (5 + 500 (0.04246)) s + 25 (32.517)

Cs) 812.93
R(s) ~ s2+26.235+812.93

Matlab is used to simulate the step response, and to also verify the user requirements are
met.

close all;
clear all;
s =tf('s");
sys = 812.93/(s72+26.23*s+812.93) ;
step(sys)
grid
Step Response
1.2 ; : ‘
l |- =
0.8
3
2
Z 06
=
<
0.4+
0.2+

O Il Il Il Il Il Il Il
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Time (seconds)

The step information was also verified using the command stepinfo() which showed the
specifications was indeed met.

stepinfo(sys)

RiseTime: 0.0549
SettlingTime: 0.2916



SettlingMin:
SettlingMax:
Overshoot:
Undershoot:
Peak:
PeakTime:

0.9225
1.1963
19.6310
0
1.1963
0.1229
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0.3 Problem 3

Problem 3: A system with adjustable gain K and open loop transfer

function

Ks(20s* + 1)

G(s)

T s 4552 +10s+ 15

connected in a classical unity feedback configuration.

assured.

SOLUTION:

G(s) =

Ks (2052 +1)

s+ 552 +10s +15

Use the Routh-
Hurwitz criterion to find the range of K for which closed loop stability is

In classical unity feedback, the closed loop transfer function T (s) is

_ G(s)
T 14+G(s)

T(s)

Ks (2052 + 1)

(s* + 552 +10s + 15) + Ks (2052 +1)

Ks (2052 + 1)

"~ 5%+ 20Ks3 + 552 + (10 + K)s + 15
Applying Routh-Hurwitz to the denominator D (s) = s* + 20Ks® + 552 + (10 + K) s + 15 gives

st 1 5 |15
s 20K (10 + K)
2 201<(5;8;<10+1<) 15
(20K(5)—(10+K))
R ) (10+K)—20K(15)
§ ! 2 20K(5)—(10+K) 0 0
20K
s0 15
Simplifying gives
st 1 5 |15
s 20K (10 + K)
) %( (99K — 10) 15
s | —o5z (5901K2 — 980K +100) 0
s0 15

11
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For stability, we need the first column to be positive. Hence the conditions are

20K >0

1 (99K - 10) > 0
20K

T (5901I<2 — 980K + 100) >0

The first just says that K > 0. The second says 99K -10 > 0 or K > g. Now for the third

condition

TR (5901I<2 — 980K + 100) >0

) 10 . . 1
Sln.ce K> o is required, then ——
This means the above becomes

is negative quantity since 10 —99K is negative for K > g.

5901K2 - 980K + 100 < 0

Notice the change of inequality from > to < since we multiplied both sides by a negative

quantity (10 — 99K) to cancel it out. But 5901K? — 980K + 100 < 0 can not be satisfied with a
positive K > g. For example, using the minimum allowed K which is 19 then the value of

99°
5901K2 — 980K + 100 becomes

5901 10)* 980 10 +100 = 61.218
99 99 o

But it needs to be negative. So there does not exist K which makes the closed loop stable.
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0.4 Problem 4
Problem 4: Consider the system with open loop transfer function

K
Gls) = s(1+Ts)
is connected in a unity feedback configuration. Given a > 0, the speci-
fication is that all closed loop poles have real part less than —a. Show
how the Routh-Hurwitz criterion can modified to address this problem.
Subsequently, for 7" = 1, find and sketch the region in the (a, K) plane
associated with closed loop stability.

SOLUTION:
Given G (s) = S(TKTS) then the closed loop transfer function is
G
Gclosed (S) - 1+G
B K
s(1+Ts)+K
3 K
T2 +s5+K

Therefore D (s) = Ts? + s + K. For the closed loop poles with real part to be less than —a, let
s1 = s +a. Then s = s; —a. We apply Routh-Hurwitz to D (s) but with s = s; —a. The new
denominator polynomial becomes

D(s;) = T(s1 —a)’ + (51— a) + K
Expanding gives
D(s;) = T(s% + a? —ZSla) +s5;-a+K
= Ts} + 51 (1-2Ta) + (Ta? - a + K)
Routh table applied to the above polynomial is

s2 T Ta*>-a+K
si| 1-2Ta 0
$ | Ta>-a+K

We need all entries in the first column to be same sign (positive in this case, since T = 1)
for stability to hold (This is in addition to having the poles be with real part less than —a).
For T =1 the above becomes

2 1 a2+a+K
st 1-2a 0
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The conditions for stability are

1-2a>0
a(l-a)+K>0

- . 1 . .
The first condition gives a > . The second condition gives

K>a2-a

Here is plot of the region in the (g, K) plane associated with closed loop stability.

Region of allowed a and K

400
300}
out[1]= [

100F




0.5 Problem 5

Problem 5: An automatic depth control system for a submarine is de-
picted in the figure below. The depth is measured by a pressure trans-
ducer. For what values of K will the systern be stable? Take H(s) =1
and submarine transfer function

(s 2)?

() = 0,01
R(s) + o) |
des.rid i 4—@*’_5 depth
dépth T dctuator ‘ . Y(s)

H(S)
Presswe mea so rem ent

SOLUTION:
The closed loop transfer function is
KG(s)
T(s) = ———
1+ HKG (s) -
2
Replacing H(s) =1 and G = ;;:;Ll the above becomes
K(s+2)° 1
24001 s
T(s) = K(s+2)? 1
s2+0.01 5
~ K(s+2)°
5(s2+0.01) +K(s +2)°
K(s +2)°

3+ Ks?2+(0.01 + 4K) s + 4K
The Routh table for D (s) = s + Ks? + (0.01 + 4K) s + 4K is

s3 1 0.01 + 4K
52 K 4K

s! | 4K -3.99 0

sV 4K

15
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Therefore for stability we need

K>0
4K >3.99
4K >0
The first and the third conditions give K > 0. From the second condition, K > % = 0.9975.
Therefore
K > 0.9975

To verify, here is the step response for k = 0.9974 and k = 0.9976, showing one is unstable
and the second is stable.

close all; clear all;

s =tf('s");

G = (s+2)72/(s72+0.01);
k = .9974;

sys = feedback(k*Gx1/s,1);

subplot(2,1,1);
step(sys);
title(sprintf ('k=%f"',k)); grid

subplot(2,1,2);

k = .9976;

sys = feedback(k*G*1/s,1);
step(sys);

title(sprintf ('k=%f',k)); grid



Amplitude

Amplitude
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a0t k=0.997400
0
5 | ' I I I
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Time (seconds) x10°
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