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0.1 Problem 1

Problem 1: Determine the step, ramp and parabolic steady-state errors of the following
unity-feedback control systems. The forward-path transfer functions are given

Gl H(s) = — 000
@ GEIHE) = 51 1+ 10s)

ey o 1000
(0) GGIHE)= 035 +100)

K(1+2s)(1+4s)

(¢) Gls)H(s) = sT(sT+s+1)

(d) What relationships can you find betwceen the number of poles of G(s) at the origin and
the type of input signal for which therc is a constant steady-state error (# 0)? If there
is a relation, state it; il there is no relation, give the evidence (o support your claim.

SOLUTION:

In all of these systems, the feedback block diagram is configured as follows

feed forward path

R(s) +E()
H(s) — ™1 G(s) >Y(s)
controller plant
E(s) _ 1

R(s) = 1+H(s)G(s)

Since we are looking at steady state, we need to obtain the transfer function between E (s)
and R (s). Given that E(s) = R(s) — Y (s) and Y (s) = E(s) G(s) H(s) then we solve these two
equations for E (s) by eliminating Y (s) giving

E(s) =R(s)—E(s) G(s) H(s)

E(s)1+G(s)H(s)) = R(s)

E(s) 1

RGs) 1+GEH(E)
The above is is the transfer function used for the different R (s) signals: unit step u (t), ramp
t, and parabolic 2.

0.1.1 part (a)

1000

o109 Since the number of poles at zero is zero,

The open loop transfer function is

the system typﬂ is zero.

IThe system type is the number of poles at zero of the open loop transfer function G (s) H (s).



When the input is a unit step u(t), then R(s) = % Using the steady state error transfer
function found above gives

R (s)

E P S N A—
= I o)
1 1
1 1 1 (1 + ES) (1+10s) 1 (1 + BS) (1 +10s)
s 1000 s ] =- or
1+ e (1 + Es) (1+10s) +1000 5 s>+ 555 +1001

We see that the poles are located at s = 0,5 = —5.05 + 31.233i. Therefore this is stable E (s) as
the real parts of the poles are negative. We are allowed one pole at the origin. Applying the
final value theorem gives
e = lim e (t) = lim sE (s)
t—o0 s—0
1
1000
(1+0.1s)(1+10s)
1
1000
limg_,9(1+0.1s)(1+10s)
1

= 1+1000

= lim
=01 +

1+

Hence
1

s = 1001
When the input is a ramp, then R (s) = 512’ therefore

3 R(s)

T 1+ G(s)H(s)

3 1 1

- ;1 1000
(1+0.15)(1+10s)

E(s)

There are two poles at the origin and the other two poles are the same as above at s =
-5.05 + 31.233i. Since there are two poles at the origin, the final value is not defined (taken
from now on as infinity in order to be compatible with the text book result and notation).

Finally, when the input is 2, then R (s) = S% and

E(s) 2 1
§)= =0 ————————
31+ G(s)H(s)
2 1
-3 1000

(1+0.15)(1+10s)
2(1+0.1s) (1 + 10s)

= $(1+0.1s) (1 +10s) + 100083
2(1+0.1s) (1 +10s)

$3 (52 +10.1s +1001)




There are now three poles at the origin s = 0. As above, this means the final value is taken
as infinity.

0.1.2 part (b)

1000

The open loop transfer function is {106 100)°

There is one pole at the origin which means
the system type is one.

When the input is a unit step, then R(s) = % and

1 R (s)
E(s) = ——————
©) s1+ G(s)H(s)
1 1 ~ 1 ~ (1 +10) (s + 100) _ (1+10)(s +100)
T s 1000 1000 s(1+10)(s +100) + 1000 1152 + 1100s + 1000

SA+10)6+100)  © " (1+10)(s+100)
The poles are at s = -0.9175,5 = —99.08. This is stable E (s) and we can now apply the final
value theorem
ess = lim e (f) = lim sE (s)
t—o0 s—0
1

s
1000

s(1+10)(s+100)
1

=lims
s—0

1+ hms_,o

1000
s(1+10)(s+100)

Hence
ess =0
When the input is a ramp, then R(s) = 512 and

E(s) = R—(S)
1+ G(s)H(s)
1 1
-2 1000
s(1+10)(s+100)
1
) 10005
(1+10)(s+100)

(1 +10) (s +100)

~ &2 (1 +10) (s + 100) + 1000s
(1 +10) (s + 100)

s (1152 + 11005 + 1000)

There is one pole at the origin s = 0 and the other two poles are the same at s = -0.9175,5 =



-99.08. This is stable. Applying the final value theorem gives

€ss = tli)r?oe (t) = ll_r)% sE (s)

1 1
= lim 51 1000
s(1+10)(s+100)
=lim —5 —
(1+10)(s+100)

B (1 +10) (s +100)

= 111m

s—0 s (1 +10) (s + 100) + 1000
_ (1+10)(100)
B 1000

Hence
es =1.1
When the input is a 2, then R (s) = 553 and

R (s)
T 1+ G(s)H(s)
2 1
3 1000
s(1+10)(s+100)
2

100052
(1+10)(s+100)

_ (2)(11) (s +100)
"~ s2(11s + 2100)
There are now two poles at the origin. Therefore final value is taken as infinity.

E(s)

s% +

0.1.3 part (c)

K(1+2s)(1+4s)

The open loop transfer function is ETERY

. There are two poles at the origin which means

the system type is 2.



When the input is a unit step, then R(s) = % and

3 R(s)
T 1+G(s)H(s)
1 1
5 K(1+2s)(1+4s)

1+ sz(s2+s+1)

1
K(142s)(1+4s)
5(52+s+1)
s (52 +5+ 1)

s2(s2+5+1) + K(1+25)(1+4s)

E(s)

We have to now assume that E (s) is stable to be able to apply the final value theorem as this
depends on the value of k which is not given in the problem. Therefore

€ss = tligloe(t) = 1}1—{% sE (s)

. 1 1

= il_{%s gl K(1+25)(1+45)
52(52+s+1)

. A (52 +s+ 1)
= 11m

520 82 (s2+5+1) + K(1 +25) (1 + 4s)
B 0
K

Which means
s =0
When the input is a ramp, then R(s) = é Applying the final value theorem gives

s = tli_)rgloe(t) = il_I)% SE (s)

ndl 1
= s 21, Ka2)(ies)
sz(sz+s+1)
=i 1
- SI_I)%S 2 K(1+25)(1+4s)
(s2+s+1)
(52 +5+ 1)
=lims
590 (52(s2+5+1) + K(1 +25) (1 +4s)
1
= lims|—=
50° K)

Hence



When the input is #? then R (s) = 553 and

ess = tli_}ngge(t) = %1_1)% sSE (s)

] 2 1
= Hus 5_31 K(1+25)(1+45)
52(52+s+1)
2 (52 +5+ 1)
=lims| -
590 | $52(s2+5+1) + K(1+25) (1 +4s)
=1 21
~ 5ok
Hence
2
e i
SS K

0.1.4 Part (d)

Summary of results from the above parts is

G(s)H(s) | system type (number of poles at origin) | e, step | e, ramp | ey
t(a) 1000 0 T o o
part{a (01901105 1001 -
+2s)(1+4s
part(c) m 2 0 0 E

From the above table, we see that as the system type (number of poles at origin of the open
loop G (s) H (s)) increases, then the system can handle more signal types while still producing
zero steady state error (this is good). The input signal that gives constant (non zero) steady
state error per system type is summarized below.

System type (open loop number of poles at origin) | Input that gives constant nonzero e
0 step (to)
1 ramp (tl)
2 parabolic (t2)

So the relation between number of poles at origin of open loop and the type of signal that
gives constant non zero steady state error can be written as

if the system type is m then nonzero constant e is generated by signal #".



0.2 Problem 2

Problem 2: Consider the linear control system shown

o Kl o

- 100 >y
R -0 B +T T 005 T 1005 1 )

A Lo AT

and let R()=1.5t. What is the steady state crror?

SOLUTION:
Let the first input R (s) be U, (s) and the second input (the constant 0.25) be U, (s), then

Y(s) = |(2 + %) E(s)+ U, (s)]G(s)

And
E(s) = Uy (s) =Y (s)
Hence

E(s) = U (s) - [(2 + %) E(s) + U, (s)]G(s)
UCH YR ECECRAEES
E(s) (1 + (2 + é) G(s)) = Uy (s)— Uy (s) G(s)

Us (5) ~ Uz (5) G (s) "
1+(2+§)G(s)

E(s) =

To obtain the error transfer function from E (s) to Uj (s), the input U, (s) is set to zero. To
obtain the error transfer function from E (s) to U, (s), the input Uj (s) is set to zero. Applying

these to (1) gives

EQ| 1
Uy (), 14 (2 + %) G (s)
& 3 -G (s)

Uz ()19 14 (2 + %) G(s)



In Matrix form,

Uy (s)
U, (s)

1 —G(s)
E(s) = (1+(2+§)G(5) 1+(2+§)G(S))

But U (s) = 15—25 and U, (s) = %, and the above becomes

100 5 15
1 (0.05s+1) 2

E(s) = ’
ST I ey |

s/ (0.05s+1)% s/ (0.055+1)% s

Hence

1 210

|

15 (0.05s + 1) 10000

E(s) =

s 0.0025s3 + 0.152 + 201s + 100.0 53 + 40s2 + 80400s + 40000

10

The poles of the first term are —19.751 + 282.83i ,s = —0.497,s = 0, Hence this is stable and

have at most one pole at origin. Then using F.V.T. gives

€ss; = il_{% sE1 (s)

, (0.05s + 1)
=1lim1.5
550 0.002583 + 0.1s2 + 201s + 100
=0.015

For E, (s), the poles are at , s = —19.75 + 282.83i,s = —0.498, Hence this is stable. Therefore

using F.V.T. gives
ssy = ll_{% sE (s)
10000s

550 53 + 4052 + 804005 + 40000
=0

Hence

s = E_{% SE (s)

=0.015-0
=0.015
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0.3 Problem 3

Problem 3; Consider the closed loop system

.

and assume the following:
(i) The steady state error for a step inpul is zero.

$
(ii) The denominator of the closed loop transfer function o) (also called the

R(s)
characteristic polynomial of the closed loop system) is s +ds’ +6s+4.
Find the transfer function G(s). Also find the steady state error if the input is a unit ramp.
(Hint: Let n(s) and d(s) be the numerator and denominator of G(s). Express the closed
loop transfer function as a function of n(s) and d(s) )

SOLUTION:
Let G(s) = ZIES; The closed loop transfer function is

Y(s)  G(Gs) % N
R(s)_1+G(s)_1+%S;_D(S)+N(S)

S

We are given that D (s) + N (s) = s> + 452 + 65 + 4. The error transfer function is
EGs) 1 1 D(s)
R(s) 1+G (s) 1+ NES; D(s) + N(s)

D(s

Substituting for D (s) + N (s) in the above with the given polynomial results in
E(s) _ D(s)
R(s) s3+4s2+6s+4

(1)

We are told that lim,_,ysE (s) = 0 when R (s) = % Applying this to (1) gives

1 D (s)
E(s) = -
) §s3+4s2 +65+4
E (s) above is stable since the poles are at —2,-1 + i with another pole at zero. Hence F.V.T.

can be applied to E (s)

=lims (1 D)

s—0 \s83+4s2+65+4
. D(s)
=lim —~=
s—0 4

We are also told that the above is zero. Hence
D (s)
s—0 4
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The above implies that D (s) must contain only s terms and no constant terms, since we
want D (s) = 0 when s = 0.

Assuming proper transfer function G (s) where degree of N (s) < degree of N (s), then D (s)

2 _ 0. But D (s) can

can be s° or s° +4s%, or s° +4s” +6s, since any of these will give lim,_,o —-

not be s? for example, else G (s) will not proper G (s) .

There are actually an infinite number of D (s) polynomials which meets this condition (if we
use fractions for the coefficients). Below is an example of two possible D (s) choices and the
corresponding G (s)

Dy (s) = s° + 4s2 + 65
Then

4
$3+452+6s

G@s) =

For steady state when input is ramp, using the above G (s) gives
1 % +4s%+6s
(5_253 +4s2 + 65+ 4
s?+4s5+6
T 0P +452+ 65+ 4

e, = lims
s—0

Hence

e, =1.5

Another choice is D, (s) = s + 4s2. Using this, G (s) = Gord Using this, and when the input

) $3+4s2”
is ramp then

ess = lim

1 s3 + 452
S —_—
s263 4452 + 65+ 4
. s2 +4s
= lim
s—0 83 + 452 + 65 +4
=0

So the steady state error for ramp depends on which G (s) is used.



0.4 Problem 4

Problem 4: Two feedback systems are shown in Figure | and Figure 2.

v
—

Figure 2: Feedback System 2

(a) Let K, = |. Determine the values of K, for system | and K, and K, for system 2 so
that both of the systems exhibit zero steady error to step inputs and such the steady
state error o a unit ramp is 1 in both cases.

(b) Suppose K, changes from 1 to 1+8. Show that the steady state error with this
perturbed K, is still zero to a unit step input, for Figure 1. Also show that this is not
the case for Figure 2.

(¢} A control engineer would prefer the system in Figure I to the one in Figure 2. Do you
agree with this statement? Justify.

SOLUTION:

0.4.1 Part(a)

For system 1. Using K, = 0 we first obtain expression for E (s) and Y (s)
E(s) =R(s)—Y(s)

Y@= E(S)(%)(Alsl-kl)

Solving for E (s) from the above two equations gives

E(s) =R(s) - (E (s) L)

s(4s+1)
K; B
E(s)(1+—s(4s+1))—R(s)

s(4s+1)

E(S):R(S)m
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When R (s) = % we want e,, = 0, therefore

es =0 = li_I)%SE (s)

) s(ds+1)
0=Ilm——>——"—r
s—0s(4s+1) + K
. s(ds+1)
=lim ———
s—0 Kl
0
=%

The above is true for any K; since the numerator is already zero. Considering now the ramp

input. When R (s) = 512 we want e, = 1, hence

es =1= li_I)%SE (s)

.1 s(4s+1)
1=lims=————
s—0 8§23 (45 + 1) + Ky
4s+1
=lim ———
s—0s(4s+1)+ Ky
1
=%
Therefore

Klzl

For system 2

E(s) =R(s) - Y(s) 1)
But

Y(s)=U(s)K; (2)

45 +1
And

U(s) =R(s) Ky - Y (s)
Hence (2) becomes

K3
4s +1

Y(s) = (R(s)Kp =Y (5))

K,Ks
4s +1
KoKs
Y (s) = R(s) 4S—+}<3
4s+1
KyK;

RO Tk (3)

Kz \
Y(s)(1+ 4s+1) = R(s)
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Substituting (3) into (1) gives

KyK
EO=RE-RO LT
_ KKy
E(s)—R(s)(l —4s+1+K3) (4)

When R (s) = % we want e,, = 0, hence

ess =0 = ii_I)%SE (s)

1 K>K
0= nms_(1_$)

s—0 S 45+1+K;
_q KyK3
14K,
For the above to be true, then
KoK3
Tk, = 1 (5)

We now obtain a second equation from the ramp condition. When R (s) = 512 we want e =1,
hence

ess =1 = limsE (s)

s—0
1 K>K
1=lims=[1-—2%
s—0 §2 4S+1+K3
o1 KK,
=lim-|{1-————
s—0 § 4s +1+ Kj
. 1 4S+1+K3—(K2K3)
= lim -
s—=0 S 4S+1+K3

Replacing K;Kj3 in the above with 1 + K3 found in (5) gives

o 1 (4s+1+Kz3—-(1+k3)
1=1lim-
4s+1+ Kj

1 4s
:hm— s —
s—0 S 4S+1+K3

4
 limg_,o (4s +1 + K3)
L 4
- 1+K3

Hence 1+ K3 =4 or




Now that we found K3 we go back to (5) and solve for K,

K>K3
1+K;
_ 1+ K3
2 = K
B 1+3
3
Hence
4
K, = 3
Summary
Ky | Ky | K3
system1| 1 | NA|NA
system 2 | N/A g 3

0.4.2 Part (b)

For system 1.

E(s) =R(s)—Y(s)

Ki1+6

Hence

5
E(s):R(s)—(E(s)%iS-:_l)

K1 1+6)

= R(s)

s 45 +1

E(S)(1+

1
Ky 1+0

E(s) = R(s)

s 4s+1
4s +1
_R@) s(4s+1)

s(4s+1)+K;(1+0)
When R (s) = % then

s = ll_{% SE(s)

s(ds+1)
= lim
s—0s(4s+1)+K;(1+0)
_ limg_,ps(4s +1)
K (1+9)
B 0
K (1+90)

16
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The above is zero for any K; and any perturbation 6 since the numerator is already zero.
This is the same condition we found in part(a). Perturbing K; has no effect on the result of

ess for step input.

For system 2

E(s) =R(s) - Y (s)

But
1+6

4s +1

Y(s) = U(s)Ks
And

U(s) =R(s)Ky, —Y(s)
Replacing U (s) into (2)

1+6
4s +1

Y(s) = (R(s) Kz = Y (s)) Kg

K3 (1 + 6)) _ R(S) K2K3 (1 + 6)
45s+1 | 45 +1
K5K3(140)
Y($) = R6) — i
1+ 4s+1
K2K3 (]. + 6)

45 +1+K3(1+0)

Y (s) (1 +

= R(s)

Substituting Y (s) from (3) into (1) gives

KyK5 (1 + 0)
45+1+K3(1+0)
KyK5 (1 +0)
- 4s+1+K3(1+6))

E(s) =R(s)—R(s)

= R(s) (1

When R (s) = %and using the F.V.T. gives
ess = lim sE (s)

5s—0
1 (1 KoK3 (1 + 6) )

= lims-
20 s\ a5+ 1+ Ka(1+0)

. K2K3 (1 + 6)
=lim|(1-

s—0 4S+1+K3(1+5)
KyK3 (1 +6)
1+K3(1+06)

For the above e, to be zero, then the condition is that

K2K3 (1 + 6) _
1+K;(1+06)

(1)

(2)

3)

(4)
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or
KoK3(1+68) =1+Ks(1+0)
1

Keks=Ka =175

Using K; = g and K; = 3 found in part (a) then the above becomes

But this is impossible since the RHS must be either larger than one or smaller than one
(depending on the sign of 6). This means if K is perturbed from unity, then it is no longer
possible to obtain zero steady state error for a step input with the same k;, k3.

0.4.3 Part(c)

I agree. For first system, it gives e, = 0 for a step input regardless of the value of K; or K,
as was shown in part (b) above. But for system two, e;; = 0 for step input only when using
specific values of K;. Any small change in K, the steady state error is no longer zero. In
other words, system one is more robust in this regard to changes in K; and it is therefore
the preferred system.



0.5 Problem 5

Problem 5: A importunt problem for television camera systems is the jumping and
wobbling of the picture due to movement of the camera. This effect occurs when the
camera is mounted on a moving truck or airplane. A system has been designed (shown
below) which is intended to reduce the effect of rapid scanning motion. A maximum
scanning motion of 25% is expected.

amplifier motor
Km
v, > vy
camera STy +1 bellows
speed speed

tachometer

25
(a) Determine the stcady state crror of the system for a step input V,(s)=—. Assume
s
that T, is “negligible” and K, =K, =1.
(b) Determine the necessary loop gain K K, when a 1° /sec steady state error is
allowable. (Same assumptions as Part (a))

(¢) Show that the step response of the system is of the form
k
v ()=— l—c“”}
W=t

under the assumptions in Part (a). Express k and q in terms of the system parameters.
(d) The scttling time is defined as the lime it takes for the step response to be within 2%
of the steady state valuc. Given the expression of the step response determined in Part
(), derive the expression for the settling time of v, . Also, find the loop gain K K|
so that the settling time of v, is less than or equal to 0.04 sec. Take T, =0.4sec as

the motor time constant.

SOLUTION:

0.5.1 Part (a)

E(s)

We first need to find .
Ve(s)

From the block diagra

K
Vi (s) = E() K, #
m

And

K
E@) =Ve®) | — |- KV )
8

19

(1)

(2)

Notice that the problem is saying E (s) is the variable to the left of the amplifier K, and this solution is

based on this and not on using E (s) = V,,(s) - V. (s)
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Replacing V,, (s) in (2) with (1) gives
K, K,
E(S)=VC(S)( )_KtE(S)Ka(1+ )

1+STg STy,
K K
E(s) |1+ KK m =V g
(S)( TR “(1+51m)) C(S)(1+51g)
Kg
E(S) _ (1+srg)
Ve (s) 1+KtKﬂ(1f§ )

Hence

E(s) _ [1l4sty Kg
Ve(s) — \1+s1g | 1457, +KK Ky

When V,(s) = %,Kg = K; =1 then E (s) from above becomes

25 (1 + s1,, 1
E(s) = —
s \1+st, | (1+K,Kp) + 57
The above E (s) has one pole at the origin, and has a pole at s = ;—] and a pole at s = —w.
8 m

Hence this is stable (assuming K,K,, > -1). Applying F.V.T. gives

€ss = ll_{% sE (s)

1+ 1
:lim25( ST’")

s—0 1+s7 ) 1+ KKyp) + 575
Hence
25
“TI1TKK,

0.5.2 Part(b)

When e, is one degree per second, then from the above
25

1=——
1+K,K,

K,K,, = 24
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0.5.3 Part(c)
Vip(s)

Vie(s)
(2) into (1) found in part (a) above to obtain an expression for V (s)

K, K,
Vi) = (V(Q@A_ )—Kﬁ@@ﬂ&4l+ﬂ )
g m

K, K.K KK K
W@@+ﬁ4ﬂ:m@ gL
1+ 51y, (1+STg) (1 +st,,)

To find the step response, we find the closed loop

Hence the closed loop transfer function is
KoKoKp
Vi (s) _ (1+57g)(l+s7m)
Vo) 14 KuKiKe

1+sty,
1 KeKaKi
(1 + STg) 1+ STm) + K, KK,
Using same assumptions as part (a), and now using that 7, is negligible so that —— (1+ j ~1
S'L'g
in the above and using V, (s) = - since we are told in this part it is a step input (should we

have used 2 agaln here? It is not clear, but it says step input so I thlnk - should be used in
this part), then the above simplifies to

no=(3) g
s] (1 +st,)+K,K,
1 KK,
T s(1+K,K,) +st,,
KK, 1 1
wéﬁﬁﬁﬁ)

Tm

We now need to find the inverse Laplace transform. Using partial fractions

K,K,, 1 1 _ é N B (3)
T ) Sgy (1+1<m1<u) s o4 (1+Km1<ﬂ)
Tm Tm
Hence
. K,K,, 1 K,K,,
A =lim 1+K,,K, = 1+K.K
s—=0\ T, —= +5s + K, K,
And
B I K,K,1 K,K, 1 K,K,,
= 1m - = = —
s “0KnKa) Ty S Ty KK 1+K,K,

Tm Tm
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Now that we found A, B using partial fractions, we replace these values in (3) to obtain V, (s)
KK, 1 KK, 1

5 T+K,K (4)

1+K,K;s 1+K,K, nla

Tm

Vy(s) =

Now we can apply inverse Laplace transform. Hence

K K K K _L+KmKa
vy (1) = am e )y ()
1+K,K, 1+K,K,
K,K,, _L+KiKq
= — |1 - Tm t
1+K,K, ( ¢ u(t)
Let
_ 1+K,K,
==
and
k — KaKm
Tm

Then v, () can be written as required

v, (1) = S (1 - e‘qt) u(t)

0.5.4 Part(d)

We first need to find the steady state v (t). From (4) found above in part (c)
KK, 1 KK, 1
1+K,K,s 1+K,K,*KnKa |

Tm

Vy(s) =

Then applying F.V.T. assuming stability

Vy, (o0) = lirrol sV (s)
S—

i o| KeK 1 KiK,, 1
s—>0 [1+K,K;s 1+K,K, 3l |
KK, "
1+K,K,
_k
g

Let the settling time be t,, then we want to solve for ¢, from
vp (£s) = 0.98V, (c0)
k k
= (1-e7%) = 0.98-
q q
1-e7 =0.98
e~ = 0.02



Taking natural logs on both sides gives
—qts = In (0.02)
gt, = 3.912

Hence

3.912

T (1+KyK,
tm

Using t,, = 0.4 seconds in the above gives
. 1.5648
* 1+K,K,
For t; < 0.04 then
1.5648 < 0.04
1+K,K,) ~
1.5648

0.04
1+K,K, >39.12

1+K,K, >

Hence

KK, > 3812
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