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1 Problem 1
Draw bifurcation diagrams for the normal form of the transcritical bifurcation: % =rx—x2, and of
the pitchfork bifurcation: % =rx—x°

Solution:

1.1 Part(a) transcritical bifurcation

For transcritical bifurcation d—f = f(r,x) = rx — x*. The critical points are x* =0 and x* = .

There are 3 cases to consider. r = 0,7 < 0 and r > 0.The the vector field plot is first made, using x as
the x-axis, and using x’ as the y-axis.

Using Mathematica,a plot of the 3 above cases was generated

r=0 case r=0 case r<0 case

Figure 1: plot for problem 1

To plot the Bifurcation diagram, we have to now use r as the x-axis and use x for the y-axis. This
was done by hand similar to what the textbook at page 50 shows.



X
stable
stable ¥ T
. .-‘. T RN EEE R r
l unstable
unstable ** ) r

Figure 2: second plot for problem 1

1.2 Part (b) pitchfork bifurcation

d . .
d—’: = rx—x°. The critical points are x (r - xz) =0, hence x* = 0 and x* = ++/r. When r = 0 then x’ = —x3.

So it approaches x = 0 from the right and approaches x = 0 from the left. Hence x* = 0 is stable in
this case. When r < 0, then only x* = 0 is fixed point (since we can’t have complex values). So this is
similar to 7 = 0 case. When r > 0 then there are 3 critical points now x* = 0, —+/r, v/r. The following
Bifurcation illustrates these cases (from textbook, Nonlinear Dynamics and Chaos, page 56)

stable

Stable s—f - - - - unstable

stable

Figure 3: pitchfork bifurcation



2 Problem 2

Find a 2D dynamical system that undergoes Hopf bifurcation, and explain why the Hopf bifurcation
occurs.

Solution:

Hopf bifurcation requires a minimum of 2D system to occur. Hopf bifurcation shows up when spiral
changes from stable to unstable (or vice versa) with a new periodic solution showing up. So Hopf
bifurcation considers when a 2D system with stable fixed point losses the stability at this point when
a parameter changes. So changes in the parameters, causes one of the eigenvalues of the Jacobian
to become positive, causing instability. An example from the textbook is given by

r=ur—r

0’ = w + br?
The phase portrait is shown in figure below from the text book. This shows that when u < 0, the
origin was stable. (spiral in). But when p > 0, a limit cycle show up with radius r = \/u and inside

this radius, it is spiral out, hence the origin became unstable, moving to the limit cycle, and outside
the limit cycle, it is stable and state trajectory moves towards the limit cycle. Here is the diagram
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n<0 pu >0
Figure 8.2.3
Figure 4: phase portrait

The eigenvalues of the Jacobian, evaluated at the origin (critical point) is shown to be A = y +iw. So
as u changes from negative to positive, the system moves from being stable to unstable.



3 Problem 4.4.6

4.4.6 The derivative df/dz of an analytic function is also analytic; it still depends on the
combination z = x + iy. Find df /dz if f=14z+2z>+ -« or f=z'? (away from z=0).

Figure 5: Problem description

. : . - : 11 .
Using the form f (z) = z2, taking derivative w.r.t. gives f’(z) = 2 T But z = x + iy, hence

1 1 kW) V=) 11 )
\/(x+iy) 2\/(x+iy)\/(x—iy) \/m 2

1
But ,/(x - iy) = z2 where Z is complex conjugate of z. Hence

1

f’(z):mzE

1
2

N -

f@) =

4 Problem 4.4.7

4.4.7 Are the following functions analytic?

(@) f=lz*=x*+y*
(b) f=Rez=x

(c) f=sin z=sin x cosh y + i cos x sinh y.

Can a function satisfy Laplace’s equation without being analytic?

Figure 6: the Problem statement

A function f (z) is analytic if it satisfies conditions as given in 4P, page 334



4P A function f(z) is aralytic at z = a if in a neighborhood of that point

(1) it depends on the combination z = x + iy and satisfies igf/0x = of [y
(2) its real and 1mag1nary parts are connected by the Cauchy-R:emann

equations u, = s, and u, = —s,
(3) it is the sum of a convergent power series ¢g +¢4(2 —a) + ¢3(z — a)? +-

Figure 7: Problem description

4.1 Part(a)
f=lP =22 +2

. Of . If .
Using 4P part(1), then i~ = i2x and el 2y. Hence they are not the same. Therefore not analytic.

4.2 Part(b)
f=Re(@@)=x

Of . of .
5 =i and el 0, hence not analytic.
4.3 Part(c)

f =sinxcoshy +icosxsinhy

=u (x,y) + v (x,y)
Since
== 1(cosxcoshy —zsmxsmhy) =icosxcoshy +sinxsinhy (1)

And

af ,

8_y =sinxsinhy +icosxcoshy (2)

We see that (1) and (2) are the same. Hence analytic.

Ju _Jv
dx  dy
u dJdu

dy  ox



5 Problem 4.4.17

4.417 For themap w=3(z +z ')in Fig. 4.15, what happens to points z=x > 1 on the real
axis? What happens to points 0 < x < 1? What happens to the imaginary axis z =1y?

Figure 8: Problem description
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Fig. 4.15. The map from z to w={(z +z~").

Figure 9: Problem description

5.1 Part (a)

The mapping w = % (z + z‘l) is

ﬁ
m
+
m
L
S
N

(r (cosO +isinO) + - (cos 6 —isin 9))

e
e

1(r2-1\ .
cosO +i— sin @
2 r

For example, for unit circle, r =1 and w = cos 0. Hence all points on unit circle map to X = cos 0.

NI’—‘ I\JIP—‘ NIF—‘ NI*—‘



i.e. the link between X = —1---1. To answer the question, it might be easier to write

|

w:%((x+iy)+

X +iy
_1 . x—iy
2 (x+ly)+(x+iy)(x—iy)]
1 . x -1y
=5 (x+zy)+(x2+y2)]
-1 x+iy+ —1 Y
20T )
Write as w = X +iY
w=1 X+ a +i ! Y- Y
20 (2+2)) 20 (2+4?)
Hence for point (x,0) it maps to w = %(x+§)+10= %(;@;1)' Sincex>1then%(%

point on X that are larger than X =1

5.2 Part(b)

+1

) maps to all

For 0 < x <1, then from w = % (x + %), we see that for example, of x =1/3 then X = % (% + 3) > 1.

5.3 Part(c)

For z = iy, then x = 0, and the mapping becomes

(1 1
w=1 > Yy y
Hence
v 1,1
So
y=0—-Y =00
y=1-Y=0
y=-1-Y=0

y>1-0<Y<1
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6 Problem 4.4.23

4.423 Solve Laplace’s equation in the 45° wedge if the boundary condition is u = 0 on both
sides y=0and y=x.

(a) Where does F(z) = z* map the wedge?
{(b) Find a solution with zero boundary conditions other than u=0.

Figure 10: the Problem statement

6.1 Part(a)

We need to transform to XY plane using conformal mapping to be able to solve it in the standard
Cartesian system instead of on the quarter circle. Since the angle is 45° we need to map it to the full
180°. So this mapping will work w* = ¢49. So a point on ¢*5° will map to 1% and point at ¢ will
map to ¢ hence the top half plane is where the new XY coordinates is. So we need to solve

Uxx +Uyy =0 1)
In the upper half plane, then transform the solution back to (x, y) space. Solution to (1) is U = aX+DbY.

Since Uyx = 0 and Uyy = 0, hence this solution satisfies (1). We now need to figure how to map this
back to (x, y). Using

(x + iy)
wh = (x + iy)4 = x* + 4ixdy — 6322 — dixy® +
= (x4 - 6x%y% + y4) +1 (4x3y - 4xy3)

w

Hence X = (x4 - 6x%y% + y4) and Y = 4x% — 4xy°. So the solution is

U=aX+bY =a (x4 - 6x2y? + y4) +b (4x3y - 4xy3)

Where a,b are constant found from boundary conditions.
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7 Problem 6.1.11

6.1.11 Find the solution with arbitrary constants C and D to

(a) W' —9%=0 (b) W —5u0+4u=0 (c) u'+2u +5u=0

Figure 11: the Problem statement

7.1 Part(a)
u’ -9u =0

This is constant coefficients second order ODE. It can solved by finding the zeros of its characteristic
equation A2 -9 = 0, hence A = +3, therefore the solution is

u(t) = De3t + Ce™3t
We notice this is not stable ode.
7.2 Part(b)

u’ —5u" +4u=0
This is also constant coefficients second order ODE. It can solved by finding the zeros of its charac-
teristic equation A2 -5) +4 = 0. Solution is A = {4,1}, therefore the solution is

u () = De* + Cet
This is also not stable ode.
7.3 Part(c)

' +2u" +5u=0
This is also constant coefficients second order ODE. It can solved by finding the zeros of its charac-

teristic equation A% + 21 + 5 = 0, Solution is: A = {-1 + 2i, -1 - 2i}, therefore the solution is

u (t) — De(—l+2i)t + Ce(—l—Zi)t

=t (DeZit + C—Zit)

Which can be written as
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u(t) = et (dcos2t + csin 2t)

8 Problem 6.1.12

6.1.12 Find an equation u” + pu’ + qu = 0 whose solutions are

(a) e'e! (b) sin 2t,cos 2t c) 1.t (d) e "sinte ‘cost

Figure 12: Problem description

8.1 Part(a)

From the solutions, we see that roots of the characteristic equation are {1,-1}, which means the
characteristic equation is

pAD=A-1)A+1)=2A2-1
Which implies the ODE is " —u =0

8.2 Part(b)

Since the solution contains no damping (no ¢ term), and only contain oscillation, then it means
the ode much contain only friction term, hence the ode is of the form

u +qu=0

Since oscillation frequency is 2, then A; = 2i, 1, = —2i so to be able to contain the sin/cos shown as
the solutions. Hence

p(A)=(A=-2i)(A+2)=A2+4

Therefore

u’ +4u=0
8.3 Part(c)
Let

u(t) = Auq + Buy



Where A, B are constants of integration. Then u(t) = A+Btoru’ =Boru” =0

8.4 Part(d)

13

Since the solution contains damping (has e~ term), and since oscillation oscillation exist, then the

solution must be of form

u’ +pu’ +qu=0

The roots of the characteristic equation are therefore A; = -1 +1i,1, = -1 —i. Hence

pAD)=A-(1+))A-(-1-1) = A2 42142
Therefore the ODE is

u’ +2u' +2u=0

9 Problem 6.2.2

6.2.2 What types of critical points can u' = Au have if
(I) A is symmetric positive definite
(2) A is symmetric negative definite
(3) A is skew-symmetric
(4) A 1s negative definite plus skew-symmetric (choose example).

Figure 13: the Problem statement

9.1 Part(1)

Since eigenvalues of A are real and positive, then not stable

9.2 Part(2)

Since eigenvalues of A are real and negative, then stable

9.3 Part(3)

(real) skew symmetric matrix always have pure imaginary eigenvalues. Hence phase plane is circles.

This is called marginally stable.
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9.4 Part(4)

-1 0
And example of negative definite is lo 1], and skew symmetric is [
0 2| |-1 2
2 0 |2 1

The eigenvalues are found from

A+1 =2

a1 =0or(A+1)°+4 =0, hence (1 +1)> = 4 or A +1 = +2i,
+

therefore A = -1 +2i

Hence the eigenvalues have negative real part and imaginary parts. This is stable, and spiral due to
the sin/cos which will result in the solution. It will spiral in, since the real part is negative.

10 Problem 6.2.12

6.2.12 With internal competition the predator-prey system might be
Wy =y — U2 —buty, Uy =y — U3+ cuyu,
Find all equilibrium points and their stability (for ¢ <1 and ¢ > 1). Which points make

sense biologically?

Figure 14: the Problem statement

’ _ 2 _
uy = ug —ug — buquy = Fq (ug,up)

r _ 2 _
Uy = Uy — uj + cuquy = Fp (g, up)

We first need to find critical points by solving F; (1, u;) = 0 and F, (uy, 1) =0

From Fy (41, up) = 0 we obtain

ul(l—ul—bu2)=0

Hence u; =0 or u; =1 - bu,. looking at the second equation F, (1y,u;) = 0 which gives

Uy (1 —uy +cup) =0

Hence u, =0 or uy =1 + cuy.
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Considering the case of 1y =0, then u, =1, and when u; =1 - buj,, then
Uy =1+ c(l-buy)
=1+c—-cbuy

Uy +chuy, =1+c¢

1+c
Un =
27 1+cb
And when u, = 0 then u; =1 and when u, = 11+_+ch then uy =1-bu, =1- b11+—+ccb. Hence the critical

points are

U1 =0,u, =0
up=0,uy, =1
up=1,u, =0

b-1) 1+c
e+’ T 1

u =

To find stability, we evaluate the Jacobian at each of the critical points. The Jacobian is

& @ 9(u1—u%—bu1uz) &(ul—u%—buluz) 1 . .

] —|dup  duy| _ duq dup _ ( - 2M1 - Mz) —buy
& & B(uz—u%+cu1uz) Q(uz—u%ﬂ:uluz) cily 1- 2M2 + cuy
du;  duy E E

10
At point 1; = 0,u; = 0 we obtain | = [0 1J this has eigenvalues A =1 (double). Hence not stable

node.
-b

1] which has eigenvalues: {1 —b,-1}. Hence if b > 1 then
C —

1
At point u; =0,u; =1 we obtain | = [

both are stable. (negative), hence stable node. But if b < 1 then one is stable and the other is not.
Which means unstable saddle point.

-1 -b
At point u; =1,u; = 0 we obtain | = [ 0 1 l, eigenvalues: c +1,-1. Hence if ¢ < -1 then both are
+C

stable, and we have stable node. If ¢ > —1 then one is stable and the other is not, so we have unstable

saddle.
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11 Problem 6.2.13

6.213 According (o Braun, reptiles, mammals, and plants on the island of Komodo have
populations governed by

’

u, = — au, — bu,, + cuu,
W, = —du,, + e,

B R
Uy = fuy — gy — huu,,.

Who is eating whom? Find all equilibrium solutions u*.

Figure 15: the Problem statement

uyp = —au, — buyity, + cuuy, = Fy (u,, Uy, up)

uy, = —du, + eu,u,, = F (u,, Uy, up)

’

w), = fu, - gub — hu,u, = Fs (u,, Uy, up)

We first need to find critical points by solving F; (u,, Uy, up) =0andF, (ur, Uy, up) =0and F; (ur, Uy, up) =
0. Solving using computer algebra gives

eql:=-a*ulr]-b*ulr]*ulm]+c*ulr]*ulp]l=0;
eq2:=-d*ul[m] -e*ulr]*u[m]=0;
eq3:=f*ulpl-g*(ulpl) ~2-h*ulrl*ulpl=0;
solve({eql,eq2,eq3},{ulr] ,ulp],ulml});

Uy =01, =0,u,=0
a

Uy = =7 Uy = 0,u,= -
Uy =01, = g,u, =0
aeg —dch —cfe hd + fe d
m — = /upz /urz__
ebg eg
a ag—cf
um = O,up = E’u” = —T

We now need to find the Jacobian and evaluate it at each of the above points to determine the type
of stability.

jac:=Matrix([[diff(eql,ulr]),diff(eql,ulm]),diff(eql,ulpl)],
[diff(eq2,ulr]),diff(eq2,ulm]),diff (eq2,ulpl)],
[diff(eq3,ulr]),diff(eq3,ulm]),diff(eq3,ulpl)1]);
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Which gives
—buy, +cu,—a  —bu, cu,
J= —elUyy, —eu, —d 0
—hu, 0 —2gu, —hu, + f
-a 0 O
At point u,, =0, u,=0,u,=0,]=| 0 -d 0 |so assuming all a,d, f are positive, this shows this
0 0 f

point is not stable. It is | unstable spiral |since one of the eigenvalues is positive.

b2 -a e 4 2a b2 =t
. a d ba d ¢ ¢ a ¢ ¢ .
At point u, = —glp = 0,u, = > J= es e- - d 0 =1 ¢ 0 0 , eigenvalues
d d
0 0 h; +f 0 0 h; +f

are {—a —+a(a+d),\a(@+d) -a, % (fe + dh)}. So for positive parameters Va(a+d) -a > 0, hence
not stable .
c;: -a 0 0
At u, =0, u, = ;:,u, =0,] = 0 —d 0 , eigenvalues: —d, —f,—é (ag—cf) . Therefore,
—hg 0 -2 g£ +f
for positive parameters, this is stable node.

12 Problem 6.2.19

6.219 (Epidemic theory). Suppose u(t) people are healthy at time ¢ and v(¢) are infected. If
the latter become dead or otherwise immune at rate b and infection occurs at rate a, then
W= —aun, v =auv— bv

(a) Show that v' >0 if u> b/a, so the epidemic spreads.

(b) Show that ¢’ <0 if u < b/a, so the epidemic slows down. (It never starts if u, < b/a.)
{c) Show that E=u+v—{b/a)logu is constant during the epidemic.

(d) What is v,,,, (When u=b/a) in terms of u,?

Figure 16: the Problem statement
u' = —auv = F; (u,v)
,U/

=auv—bv =F, (u,v)

The critical points are u = any,v = 0.

12.1 Part(a)

If u> g, then we write u = h% for ¢ > 0. Substituting in v' = auv — bv results in



b+¢

v =a v—Dbo
=bv+ev-bo
=¢cv

Hence v’ > 0 and the epidemic spreads.

12.2 Part(b)

Ifu< Z, then we write u = b%& for e > 0, Substituting in v’ = auv — bv results in

b-¢
v =a——v-bv
a

=bv-¢cv-bo

= —¢€v
Hence v" < 0 and the epidemic slows down.

12.3 Part(d)

From second equation, v (t) = Ael ®a-0)dt hence when u (f) = g, then v (f) = k. A constant u.

18
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