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1 Problem 1

Draw bifurcation diagrams for the normal form of the transcritical bifurcation: 𝑑𝑥
𝑑𝑡 = 𝑟𝑥 − 𝑥

2, and of

the pitchfork bifurcation: 𝑑𝑥
𝑑𝑡 = 𝑟𝑥 − 𝑥

3

Solution:

1.1 Part(a) transcritical bifurcation

For transcritical bifurcation 𝑑𝑥
𝑑𝑡 = 𝑓 (𝑟, 𝑥) = 𝑟𝑥 − 𝑥

2. The critical points are 𝑥∗ = 0 and 𝑥∗ = 𝑟.

There are 3 cases to consider. 𝑟 = 0, 𝑟 < 0 and 𝑟 > 0.The the vector field plot is first made, using 𝑥 as
the x-axis, and using 𝑥′ as the y-axis.

Using Mathematica,a plot of the 3 above cases was generated

Figure 1: plot for problem 1

To plot the Bifurcation diagram, we have to now use 𝑟 as the x-axis and use 𝑥 for the y-axis. This
was done by hand similar to what the textbook at page 50 shows.
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stable

stable

unstable

unstable

Figure 2: second plot for problem 1

1.2 Part (b) pitchfork bifurcation

𝑑𝑥
𝑑𝑡 = 𝑟𝑥− 𝑥

3. The critical points are 𝑥 �𝑟 − 𝑥2� = 0, hence 𝑥∗ = 0 and 𝑥∗ = ±√𝑟. When 𝑟 = 0 then 𝑥′ = −𝑥3.
So it approaches 𝑥 = 0 from the right and approaches 𝑥 = 0 from the left. Hence 𝑥∗ = 0 is stable in
this case. When 𝑟 < 0, then only 𝑥∗ = 0 is fixed point (since we can’t have complex values). So this is
similar to 𝑟 = 0 case. When 𝑟 > 0 then there are 3 critical points now 𝑥∗ = 0, −√𝑟,√𝑟. The following
Bifurcation illustrates these cases (from textbook, Nonlinear Dynamics and Chaos, page 56)

Figure 3: pitchfork bifurcation
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2 Problem 2

Find a 2D dynamical system that undergoes Hopf bifurcation, and explain why the Hopf bifurcation
occurs.

Solution:

Hopf bifurcation requires a minimum of 2D system to occur. Hopf bifurcation shows up when spiral
changes from stable to unstable (or vice versa) with a new periodic solution showing up. So Hopf
bifurcation considers when a 2D system with stable fixed point losses the stability at this point when
a parameter changes. So changes in the parameters, causes one of the eigenvalues of the Jacobian
to become positive, causing instability. An example from the textbook is given by

𝑟′ = 𝜇𝑟 − 𝑟3

𝜃′ = 𝜔 + 𝑏𝑟2

The phase portrait is shown in figure below from the text book. This shows that when 𝜇 < 0, the
origin was stable. (spiral in). But when 𝜇 > 0, a limit cycle show up with radius 𝑟 = √𝜇 and inside
this radius, it is spiral out, hence the origin became unstable, moving to the limit cycle, and outside
the limit cycle, it is stable and state trajectory moves towards the limit cycle. Here is the diagram
from the text

Figure 4: phase portrait

The eigenvalues of the Jacobian, evaluated at the origin (critical point) is shown to be 𝜆 = 𝜇± 𝑖𝜔. So
as 𝜇 changes from negative to positive, the system moves from being stable to unstable.



6

3 Problem 4.4.6

Figure 5: Problem description

Using the form 𝑓 (𝑧) = 𝑧
1
2 , taking derivative w.r.t. gives 𝑓′ (𝑧) = 1

2
1

𝑧
1
2
. But 𝑧 = 𝑥 + 𝑖𝑦, hence

𝑓′ (𝑧) =
1
2

1

��𝑥 + 𝑖𝑦�
=
1
2

��𝑥 − 𝑖𝑦�

��𝑥 + 𝑖𝑦���𝑥 − 𝑖𝑦�
=
1
2
��𝑥 − 𝑖𝑦�

�𝑥2 + 𝑦2
=
1
2
1
|𝑧|�

�𝑥 − 𝑖𝑦�

But ��𝑥 − 𝑖𝑦� = 𝑧̄
1
2 where 𝑧̄ is complex conjugate of 𝑧. Hence

𝑓′ (𝑧) =
1
2 |𝑧|

𝑧̄
1
2

4 Problem 4.4.7

Figure 6: the Problem statement

A function 𝑓 (𝑧) is analytic if it satisfies conditions as given in 4P, page 334
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Figure 7: Problem description

4.1 Part(a)

𝑓 = |𝑧|2 = 𝑥2 + 𝑦2

Using 4P part(1), then 𝑖𝜕𝑓𝜕𝑥 = 𝑖2𝑥 and
𝜕𝑓
𝜕𝑦 = 2𝑦. Hence they are not the same. Therefore not analytic.

4.2 Part(b)

𝑓 = Re (𝑧) = 𝑥

𝑖𝜕𝑓𝜕𝑥 = 𝑖 and
𝜕𝑓
𝜕𝑦 = 0, hence not analytic.

4.3 Part(c)

𝑓 = sin 𝑥 cosh 𝑦 + 𝑖 cos 𝑥 sinh 𝑦
= 𝑢 �𝑥, 𝑦� + 𝑖𝑣 �𝑥, 𝑦�

Since

𝑖
𝜕𝑓
𝜕𝑥

= 𝑖 �cos 𝑥 cosh 𝑦 − 𝑖 sin 𝑥 sinh 𝑦� = 𝑖 cos 𝑥 cosh 𝑦 + sin 𝑥 sinh 𝑦 (1)

And
𝜕𝑓
𝜕𝑦

= sin 𝑥 sinh 𝑦 + 𝑖 cos 𝑥 cosh 𝑦 (2)

We see that (1) and (2) are the same. Hence analytic.

𝜕𝑢
𝜕𝑥

=
𝜕𝑣
𝜕𝑦

𝜕𝑢
𝜕𝑦

= −
𝜕𝑣
𝜕𝑥
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5 Problem 4.4.17

Figure 8: Problem description

Figure 9: Problem description

5.1 Part (a)

The mapping 𝑤 = 1
2
�𝑧 + 𝑧−1� is

𝑤 =
1
2 �
𝑟𝑒𝑖𝜃 +

1
𝑟
𝑒−𝑖𝜃�

=
1
2 �
𝑟 (cos𝜃 + 𝑖 sin𝜃) + 1

𝑟
(cos𝜃 − 𝑖 sin𝜃)�

=
1
2 ��

𝑟 +
1
𝑟 �

cos𝜃 + 𝑖 �𝑟 −
1
𝑟 �

sin𝜃�

=
1
2 �

𝑟2 + 1
𝑟 � cos𝜃 + 𝑖 1

2 �
𝑟2 − 1
𝑟 � sin𝜃

For example, for unit circle, 𝑟 = 1 and 𝑤 = cos𝜃. Hence all points on unit circle map to 𝑋 = cos𝜃.
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i.e. the link between 𝑋 = −1⋯1. To answer the question, it might be easier to write

𝑤 =
1
2 �
�𝑥 + 𝑖𝑦� +

1
𝑥 + 𝑖𝑦�

=
1
2

⎛
⎜⎜⎜⎜⎝�𝑥 + 𝑖𝑦� +

𝑥 − 𝑖𝑦
�𝑥 + 𝑖𝑦� �𝑥 − 𝑖𝑦�

⎞
⎟⎟⎟⎟⎠

=
1
2

⎛
⎜⎜⎜⎜⎝�𝑥 + 𝑖𝑦� +

𝑥 − 𝑖𝑦
�𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

=
1
2

⎛
⎜⎜⎜⎜⎝𝑥 + 𝑖𝑦 +

𝑥
�𝑥2 + 𝑦2�

− 𝑖
𝑦

�𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

Write as 𝑤 = 𝑋 + 𝑖𝑌

𝑤 =
1
2

⎛
⎜⎜⎜⎜⎝𝑥 +

𝑥
�𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ + 𝑖

⎛
⎜⎜⎜⎜⎝
1
2

⎛
⎜⎜⎜⎜⎝𝑦 −

𝑦
�𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

Hence for point (𝑥, 0) it maps to 𝑤 = 1
2
�𝑥 + 1

𝑥
� + 𝑖0 = 1

2
� 𝑥

2+1
𝑥
�. Since 𝑥 > 1 then 1

2
� 𝑥

2+1
𝑥
� maps to all

point on 𝑋 that are larger than 𝑋 = 1

5.2 Part(b)

For 0 < 𝑥 < 1, then from 𝑤 = 1
2
�𝑥 + 1

𝑥
�, we see that for example, of 𝑥 = 1/3 then 𝑋 = 1

2
� 1
3 + 3� > 1.

5.3 Part(c)

For 𝑧 = 𝑖𝑦, then 𝑥 = 0, and the mapping becomes

𝑤 = 𝑖 �
1
2 �
𝑦 −

1
𝑦��

Hence

𝑌 =
1
2 �
𝑦 −

1
𝑦�

So

𝑦 = 0 → 𝑌 = ∞
𝑦 = 1 → 𝑌 = 0
𝑦 = −1 → 𝑌 = 0
𝑦 > 1 → 0 < 𝑌 < 1
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6 Problem 4.4.23

Figure 10: the Problem statement

6.1 Part(a)

We need to transform to 𝑋𝑌 plane using conformal mapping to be able to solve it in the standard
Cartesian system instead of on the quarter circle. Since the angle is 450 we need to map it to the full
1800. So this mapping will work 𝑤4 = 𝑒4𝑖𝜃. So a point on 𝑒𝑖450 will map to 𝑒𝑖1800 and point at 𝑒𝑖00 will
map to 𝑒𝑖00, hence the top half plane is where the new 𝑋𝑌 coordinates is. So we need to solve

𝑈𝑋𝑋 + 𝑈𝑌𝑌 = 0 (1)

In the upper half plane, then transform the solution back to �𝑥, 𝑦� space. Solution to (1) is 𝑈 = 𝑎𝑋+𝑏𝑌.
Since 𝑈𝑋𝑋 = 0 and 𝑈𝑌𝑌 = 0, hence this solution satisfies (1). We now need to figure how to map this
back to �𝑥, 𝑦�. Using

𝑤 = �𝑥 + 𝑖𝑦�

𝑤4 = �𝑥 + 𝑖𝑦�
4
= 𝑥4 + 4𝑖𝑥3𝑦 − 6𝑥2𝑦2 − 4𝑖𝑥𝑦3 + 𝑦4

= �𝑥4 − 6𝑥2𝑦2 + 𝑦4� + 𝑖 �4𝑥3𝑦 − 4𝑥𝑦3�

Hence 𝑋 = �𝑥4 − 6𝑥2𝑦2 + 𝑦4� and 𝑌 = 4𝑥3𝑦 − 4𝑥𝑦3. So the solution is

𝑈 = 𝑎𝑋 + 𝑏𝑌 = 𝑎 �𝑥4 − 6𝑥2𝑦2 + 𝑦4� + 𝑏 �4𝑥3𝑦 − 4𝑥𝑦3�

Where 𝑎, 𝑏 are constant found from boundary conditions.
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7 Problem 6.1.11

Figure 11: the Problem statement

7.1 Part(a)

𝑢′′ − 9𝑢 = 0

This is constant coe�cients second order ODE. It can solved by finding the zeros of its characteristic
equation 𝜆2 − 9 = 0, hence 𝜆 = ±3, therefore the solution is

𝑢 (𝑡) = 𝐷𝑒3𝑡 + 𝐶𝑒−3𝑡

We notice this is not stable ode.

7.2 Part(b)

𝑢′′ − 5𝑢′ + 4𝑢 = 0

This is also constant coe�cients second order ODE. It can solved by finding the zeros of its charac-
teristic equation 𝜆2 − 5𝜆 + 4 = 0. Solution is 𝜆 = {4, 1}, therefore the solution is

𝑢 (𝑡) = 𝐷𝑒4𝑡 + 𝐶𝑒𝑡

This is also not stable ode.

7.3 Part(c)

𝑢′′ + 2𝑢′ + 5𝑢 = 0

This is also constant coe�cients second order ODE. It can solved by finding the zeros of its charac-
teristic equation 𝜆2 + 2𝜆 + 5 = 0, Solution is: 𝜆 = {−1 + 2𝑖, −1 − 2𝑖}, therefore the solution is

𝑢 (𝑡) = 𝐷𝑒(−1+2𝑖)𝑡 + 𝐶𝑒(−1−2𝑖)𝑡

= 𝑒−𝑡 �𝐷𝑒2𝑖𝑡 + 𝐶−2𝑖𝑡�

Which can be written as
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𝑢 (𝑡) = 𝑒−𝑡 (𝑑 cos 2𝑡 + 𝑐 sin 2𝑡)

8 Problem 6.1.12

Figure 12: Problem description

8.1 Part(a)

From the solutions, we see that roots of the characteristic equation are {1, −1}, which means the
characteristic equation is

𝑝 (𝜆) = (𝜆 − 1) (𝜆 + 1) = 𝜆2 − 1

Which implies the ODE is 𝑢′′ − 𝑢 = 0

8.2 Part(b)

Since the solution contains no damping (no 𝑒−𝑡 term), and only contain oscillation, then it means
the ode much contain only friction term, hence the ode is of the form

𝑢′′ + 𝑞𝑢 = 0

Since oscillation frequency is 2, then 𝜆1 = 2𝑖, 𝜆2 = −2𝑖 so to be able to contain the sin/cos shown as
the solutions. Hence

𝑝 (𝜆) = (𝜆 − 2𝑖) (𝜆 + 2𝑖) = 𝜆2 + 4

Therefore

𝑢′′ + 4𝑢 = 0

8.3 Part(c)

Let

𝑢 (𝑡) = 𝐴𝑢1 + 𝐵𝑢2
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Where 𝐴,𝐵 are constants of integration. Then 𝑢 (𝑡) = 𝐴 + 𝐵𝑡 or 𝑢′ = 𝐵 or 𝑢′′ = 0

8.4 Part(d)

Since the solution contains damping (has 𝑒−𝑡 term), and since oscillation oscillation exist, then the
solution must be of form

𝑢′′ + 𝑝𝑢′ + 𝑞𝑢 = 0

The roots of the characteristic equation are therefore 𝜆1 = −1 + 𝑖, 𝜆2 = −1 − 𝑖. Hence

𝑝 (𝜆) = (𝜆 − (−1 + 𝑖)) (𝜆 − (−1 − 𝑖)) = 𝜆2 + 2𝜆 + 2

Therefore the ODE is

𝑢′′ + 2𝑢′ + 2𝑢 = 0

9 Problem 6.2.2

Figure 13: the Problem statement

9.1 Part(1)

Since eigenvalues of 𝐴 are real and positive, then not stable

9.2 Part(2)

Since eigenvalues of 𝐴 are real and negative, then stable

9.3 Part(3)

(real) skew symmetric matrix always have pure imaginary eigenvalues. Hence phase plane is circles.
This is called marginally stable.
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9.4 Part(4)

And example of negative definite is

⎡
⎢⎢⎢⎢⎣
−1 0
0 −1

⎤
⎥⎥⎥⎥⎦ , and skew symmetric is

⎡
⎢⎢⎢⎢⎣
0 2
−2 0

⎤
⎥⎥⎥⎥⎦, hence

⎡
⎢⎢⎢⎢⎣
−1 0
0 −1

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣
0 2
−2 0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
−1 2
−2 −1

⎤
⎥⎥⎥⎥⎦

The eigenvalues are found from �
𝜆 + 1 −2
2 𝜆 + 1

� = 0 or (𝜆 + 1)2+4 = 0, hence (𝜆 + 1)2 = −4 or 𝜆+1 = ±2𝑖,

therefore 𝜆 = −1 ± 2𝑖

Hence the eigenvalues have negative real part and imaginary parts. This is stable, and spiral due to
the sin/cos which will result in the solution. It will spiral in, since the real part is negative.

10 Problem 6.2.12

Figure 14: the Problem statement

𝑢′1 = 𝑢1 − 𝑢21 − 𝑏𝑢1𝑢2 = 𝐹1 (𝑢1, 𝑢2)
𝑢′2 = 𝑢2 − 𝑢22 + 𝑐𝑢1𝑢2 = 𝐹2 (𝑢1, 𝑢2)

We first need to find critical points by solving 𝐹1 (𝑢1, 𝑢2) = 0 and 𝐹2 (𝑢1, 𝑢2) = 0

From 𝐹1 (𝑢1, 𝑢2) = 0 we obtain

𝑢1 (1 − 𝑢1 − 𝑏𝑢2) = 0

Hence 𝑢1 = 0 or 𝑢1 = 1 − 𝑏𝑢2. looking at the second equation 𝐹2 (𝑢1, 𝑢2) = 0 which gives

𝑢2 (1 − 𝑢2 + 𝑐𝑢1) = 0

Hence 𝑢2 = 0 or 𝑢2 = 1 + 𝑐𝑢1.
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Considering the case of 𝑢1 = 0, then 𝑢2 = 1, and when 𝑢1 = 1 − 𝑏𝑢2, then

𝑢2 = 1 + 𝑐 (1 − 𝑏𝑢2)
= 1 + 𝑐 − 𝑐𝑏𝑢2

𝑢2 + 𝑐𝑏𝑢2 = 1 + 𝑐

𝑢2 =
1 + 𝑐
1 + 𝑐𝑏

And when 𝑢2 = 0 then 𝑢1 = 1 and when 𝑢2 =
1+𝑐
1+𝑐𝑏 then 𝑢1 = 1 − 𝑏𝑢2 = 1 − 𝑏 1+𝑐

1+𝑐𝑏 . Hence the critical
points are

𝑢1 = 0, 𝑢2 = 0
𝑢1 = 0, 𝑢2 = 1
𝑢1 = 1, 𝑢2 = 0

𝑢1 = −
(𝑏 − 1)
𝑏𝑐 + 1

, 𝑢2 =
1 + 𝑐
1 + 𝑐𝑏

To find stability, we evaluate the Jacobian at each of the critical points. The Jacobian is

𝐽 =

⎡
⎢⎢⎢⎢⎢⎢⎣

𝜕𝐹1
𝜕𝑢1

𝜕𝐹1
𝜕𝑢2

𝜕𝐹2
𝜕𝑢1

𝜕𝐹2
𝜕𝑢2

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝜕�𝑢1−𝑢21−𝑏𝑢1𝑢2�

𝜕𝑢1

𝜕�𝑢1−𝑢21−𝑏𝑢1𝑢2�

𝜕𝑢2
𝜕�𝑢2−𝑢22+𝑐𝑢1𝑢2�

𝜕𝑢1

𝜕�𝑢2−𝑢22+𝑐𝑢1𝑢2�

𝜕𝑢2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡
⎢⎢⎢⎢⎣
(1 − 2𝑢1 − 𝑏𝑢2) −𝑏𝑢1

𝑐𝑢2 1 − 2𝑢2 + 𝑐𝑢1

⎤
⎥⎥⎥⎥⎦

At point 𝑢1 = 0, 𝑢2 = 0 we obtain 𝐽 =
⎡
⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎦ this has eigenvalues 𝜆 = 1 (double). Hence not stable

node.

At point 𝑢1 = 0, 𝑢2 = 1 we obtain 𝐽 =
⎡
⎢⎢⎢⎢⎣
1 − 𝑏 0
𝑐 −1

⎤
⎥⎥⎥⎥⎦ which has eigenvalues: {1 − 𝑏, −1}. Hence if 𝑏 > 1 then

both are stable. (negative), hence stable node. But if 𝑏 < 1 then one is stable and the other is not.
Which means unstable saddle point.

At point 𝑢1 = 1, 𝑢2 = 0 we obtain 𝐽 =
⎡
⎢⎢⎢⎢⎣
−1 −𝑏
0 1 + 𝑐

⎤
⎥⎥⎥⎥⎦, eigenvalues: 𝑐 + 1, −1. Hence if 𝑐 < −1 then both are

stable, and we have stable node. If 𝑐 > −1 then one is stable and the other is not, so we have unstable
saddle.
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11 Problem 6.2.13

Figure 15: the Problem statement

𝑢′𝑟 = −𝑎𝑢𝑟 − 𝑏𝑢𝑟𝑢𝑚 + 𝑐𝑢𝑟𝑢𝑝 = 𝐹1 �𝑢𝑟, 𝑢𝑚, 𝑢𝑝�

𝑢′𝑚 = −𝑑𝑢𝑚 + 𝑒𝑢𝑟𝑢𝑚 = 𝐹2 �𝑢𝑟, 𝑢𝑚, 𝑢𝑝�

𝑢′𝑝 = 𝑓𝑢𝑝 − 𝑔𝑢2𝑝 − ℎ𝑢𝑟𝑢𝑝 = 𝐹3 �𝑢𝑟, 𝑢𝑚, 𝑢𝑝�

We first need to find critical points by solving 𝐹1 �𝑢𝑟, 𝑢𝑚, 𝑢𝑝� = 0 and 𝐹2 �𝑢𝑟, 𝑢𝑚, 𝑢𝑝� = 0 and 𝐹3 �𝑢𝑟, 𝑢𝑚, 𝑢𝑝� =
0. Solving using computer algebra gives

eq1:=-a*u[r]-b*u[r]*u[m]+c*u[r]*u[p]=0;
eq2:=-d*u[m]-e*u[r]*u[m]=0;
eq3:=f*u[p]-g*(u[p])^2-h*u[r]*u[p]=0;
solve({eq1,eq2,eq3},{u[r],u[p],u[m]});

𝑢𝑚 = 0, 𝑢𝑝 = 0, 𝑢𝑟 = 0

𝑢𝑚 = −
𝑎
𝑏
, 𝑢𝑝 = 0, 𝑢𝑟 = −

𝑑
𝑒

𝑢𝑚 = 0, 𝑢𝑝 =
𝑓
𝑔
, 𝑢𝑟 = 0

𝑢𝑚 = −
𝑎𝑒𝑔 − 𝑑𝑐ℎ − 𝑐𝑓𝑒

𝑒𝑏𝑔
, 𝑢𝑝 =

ℎ𝑑 + 𝑓𝑒
𝑒𝑔

, 𝑢𝑟 = −
𝑑
𝑒

𝑢𝑚 = 0, 𝑢𝑝 =
𝑎
𝑐
, 𝑢𝑟 = −

𝑎𝑔 − 𝑐𝑓
𝑐ℎ

We now need to find the Jacobian and evaluate it at each of the above points to determine the type
of stability.

jac:=Matrix([[diff(eq1,u[r]),diff(eq1,u[m]),diff(eq1,u[p])],
[diff(eq2,u[r]),diff(eq2,u[m]),diff(eq2,u[p])],
[diff(eq3,u[r]),diff(eq3,u[m]),diff(eq3,u[p])]]);
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Which gives

𝐽 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑏𝑢𝑚 + 𝑐𝑢𝑝 − 𝑎 −𝑏𝑢𝑟 𝑐𝑢𝑟
−𝑒𝑢𝑚 −𝑒𝑢𝑟 − 𝑑 0
−ℎ𝑢𝑝 0 −2 𝑔𝑢𝑝 − ℎ𝑢𝑟 + 𝑓

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

At point 𝑢𝑚 = 0, 𝑢𝑝 = 0, 𝑢𝑟 = 0, 𝐽 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑎 0 0
0 −𝑑 0
0 0 𝑓

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
so assuming all 𝑎, 𝑑, 𝑓 are positive, this shows this

point is not stable. It is unstable spiral since one of the eigenvalues is positive.

At point 𝑢𝑚 = −
𝑎
𝑏 , 𝑢𝑝 = 0, 𝑢𝑟 = −

𝑑
𝑒 , 𝐽 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑏 𝑎𝑏 − 𝑎 𝑏 𝑑𝑒 −𝑐 𝑑𝑒
𝑒 𝑎𝑏 𝑒 𝑑𝑒 − 𝑑 0
0 0 ℎ 𝑑𝑒 + 𝑓

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2𝑎 𝑏 𝑑𝑒 −𝑐 𝑑𝑒
𝑒 𝑎𝑏 0 0
0 0 ℎ 𝑑𝑒 + 𝑓

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, eigenvalues

are �−𝑎 − √𝑎 (𝑎 + 𝑑), √𝑎 (𝑎 + 𝑑) − 𝑎,
1
𝑒
�𝑓𝑒 + 𝑑ℎ��. So for positive parameters √𝑎 (𝑎 + 𝑑) − 𝑎 > 0, hence

not stable .

At 𝑢𝑚 = 0, 𝑢𝑝 =
𝑓
𝑔 , 𝑢𝑟 = 0, 𝐽 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐𝑓𝑔 − 𝑎 0 0

0 −𝑑 0
−ℎ𝑓𝑔 0 −2 𝑔𝑓𝑔 + 𝑓

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, eigenvalues: −𝑑, −𝑓, − 1

𝑔
�𝑎𝑔 − 𝑐𝑓� . Therefore,

for positive parameters, this is stable node.

12 Problem 6.2.19

Figure 16: the Problem statement

𝑢′ = −𝑎𝑢𝑣 = 𝐹1 (𝑢, 𝑣)
𝑣′ = 𝑎𝑢𝑣 − 𝑏𝑣 = 𝐹2 (𝑢, 𝑣)

The critical points are 𝑢 = 𝑎𝑛𝑦, 𝑣 = 0.

12.1 Part(a)

If 𝑢 > 𝑏
𝑎 , then we write 𝑢 = 𝑏+𝜀

𝑎 for 𝜀 > 0. Substituting in 𝑣′ = 𝑎𝑢𝑣 − 𝑏𝑣 results in
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𝑣′ = 𝑎
𝑏 + 𝜀
𝑎

𝑣 − 𝑏𝑣

= 𝑏𝑣 + 𝜀𝑣 − 𝑏𝑣
= 𝜀𝑣

Hence 𝑣′ > 0 and the epidemic spreads.

12.2 Part(b)

If 𝑢 < 𝑏
𝑎 , then we write 𝑢 = 𝑏−𝜀

𝑎 for 𝜀 > 0, Substituting in 𝑣′ = 𝑎𝑢𝑣 − 𝑏𝑣 results in

𝑣′ = 𝑎
𝑏 − 𝜀
𝑎

𝑣 − 𝑏𝑣

= 𝑏𝑣 − 𝜀𝑣 − 𝑏𝑣
= −𝜀𝑣

Hence 𝑣′ < 0 and the epidemic slows down.

12.3 Part(d)

From second equation, 𝑣 (𝑡) = 𝐴𝑒∫(𝑢(𝑡)𝑎−𝑏)𝑑𝑡, hence when 𝑢 (𝑡) = 𝑏
𝑎 , then 𝑣 (𝑡) = 𝑘. A constant 𝑢0.
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