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1 Problem 4.1.1(d)

4.1.1 Find the Fourier series on —z <x < n for
(a) f(x)=sin’x, an odd function
Sf(x)=|sin x|, an even function
f(x) = x?, integrating either x* cos kx or the sine series for f=x
(d) f(x)=e*, using the complex form of the series.
What are the even and odd parts of f(x)=e¢* and f(x)=e™?

Figure 1: the Problem statement
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Substituting (2) into (1) gives

}g n(l_ k)$nh(n(1—ik»e%x

Here are few terms in the series generated using symbolic software:

ClearAll[x, k, n, f, ck]

cklk_, x_] := 1/(2 Pi) Integratel[Exp[x] Exp[-I k x], {x, -Pi, Pi}]

flk_, x_] := cklk, x]*Exp[I k x];

term[n_] := If[n == 0, N@f[0, x], N@Simplify@ComplexExpand[f[-n, x] + f[n, x]]]
tbl = Table[{k, Simplify@TrigToExp@ck(k, x1}, {k, -5, 5, 1}];

Grid[Join[{{"k", "C_k"}}, tbl], Frame -> All]
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Here is a plot of Fourier series of ¢* for k increasing range to compare with ¢*. To generate this plot
the terms with c_; + ¢, were added in order together to obtain a real valued function before plotting.
Plotting was done from x = -7 --- 7. We see as more terms are added, the approximation improves.
At 20 terms, the approximations became very good. Here is the plot

ck = 1/(2 Pi) Integratel[Exp[x] Exp[-I k1 x], {x, -Pi, Pil}]

flk_] := (ck /. k1 -> k)*Exp[I k x];

fs[n_] := Sum[Simplify([f[-k] + f[k]], {k, 1, n}] + £[0];

tbl = Table[Plot[{fs[n], Expl[x]}, {x, -Pi, Pi}, Frame -> True, Axes -> False,
FrameLabel -> {{"f(x)", None},

{"x", Row[{"Using " <> ToString[n] <> " terms"}]}},

PlotStyle -> {Dashed, Red}], {mn, 1, 20, 1}];

Grid[Partition[tbl, 4]]
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The even part of ¢* are given by —— = coshx and the odd part is
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Problem 4.1.2

= cosx and the odd part is

Figure 2: Plot for problem 4.1.1

eix_ —ix L.
=181nXx

—X .
= sinh x. For ¢*, the even

41.2 A square wave has f(x) = — 1 on the left side —m < x <0and f(x) = + 1 on the right

side 0 <x<m.

(1) Why are all the cosine coefficients a; =07
(2) Find the sine series Z b, sin kx from equation (6).

Figure 3: the Problem statement



2.1 Part (a)

Since f(-m) = —f (-m) then f (x) is an odd function. For an odd function all the a; = 0 since these go

with the even part.

2.2 Part(b)
by = % f F () sin (kx) dx

0 b
- %[ f () sin (kx) dx + Of F () sin (k) dx]

0 b
= %[ f — sin (kx) dx + f sin (kx) dx]

—7 0

Changing the limits of integration changes the sign, hence the above can be written as

by = %( f sin (kx) dx + f sin (kx) dx]

0 0
b

2
== f sin (kx) dx
T
0
2 [—coskx]77
0

7| k

m
-2
. [cos kx]]

-2
= — [coskm — cos 0]

1tk
2

=—(1-coskn) k=1,2,3,-
Ttk

Hence
4

& k=135
71 o k=246,

(o)
Hence using f (x) = Zbk sin kx, we can write the Fourier series of f (x) as
k=1

o0

fx) = Z %sinkx

k=1,3,---
4 4 4

= —sinx+ —sin3x+ —sinb5x + ---
e 3n 57

4 ( . 1 . 1 .
= —|sinx+ —sin3x+ —sinb5x + ---
b 3 5

Here is a plot showing the Fourier series approximation to the square wave from x = —

terms are added

«++ 7C AS more



Clear[f, k, x];
flx_, k_]
tbl = Partition[Tablel[

Plot[{Sign[x], f[x, k1}, {x, -Pi, Pi},
Exclusions -> None, PlotLabel -> Row[{"k=", k}],
PlotStyle -> {Thin, Red}], {k, 1, 20,2}], 3];
Grid[tbl, Frame -> All]

:= Sum[2/(Pi n) (1 - Cos[n Pi]) Sin[n x], {n, 1, k}]1;

k=i k=3

k=13
10 1.0
0.3 0.3

Figure 4: Plot for problem 4.1.2




3 Problem 4.1.3

4.1.3 Find this sine series for the square wave f in another way, by showing that
(a) df/dx=20(x)—28(x + =) extended periodically

(b) 28(x)—25(x+ )= % {cos x + cos 3x + ) from (10)

Integrate each term to find the square wave f.

Figure 5: the Problem statement

3.1 Part(a)
We first need to determine the Fourier series for 6 (x) and 6 (x + 7). For 6 (x) we find
1 [ 1
ag = ﬂ_fé(x)dx— >

VY
1 1
a = Efé (x) cos kxdx = p (since cos0=1)
=Tt

1 Tt
by = — f O0(x)sinkxdx =0 (since sin0 = 0)
T
-7

Hence

1 ~
o(x)=—+ E k
(%) 5 k:1ak cos kx

1 1 &
= E+%k§1€oskx
1

1
= — 4+ —(cosx + cos2x + cos3x + --+)
2n W

Now to determine Fourier series for 6 (x + 71)

T
1 1
aozﬂfé(x+n)dx:%
=Tt

k

T
1
ay = ;fé (x + 1) cos kxdx = % (since cos (—km) = coskm = (-1)")
=Tt

1 Tt
b, = ;fé (x)sinkxdx =0  (since sin(-km) =0)



Hence
1 [ee)
olx+m)=—+ k
(x +7) o Zak COS kx
1 (o)
= 2_ 2‘1( 1)k cos kx
1 1
= — 4+ —(—cosx +cos2x —cos3x + --+)
2n T
Therefore

) 1 1 1 1
20(x)=20(x+7)=2|— + — (cosx + cos2x + cos3x + ---) |- 2| — + — (—cosx + cos2x — cos 3x + -+-)
2n 0w 2n W

1 2 1 2
= — 4+ —(cosx + cos2x + cos3x + ---) — — + — (cosx — cos 2x + cos 3x — cos5x + ---)
T T T

2
—(2cosx +2cos3x +2cosbx + )
i

4
— (cosx + cos3x + cosbx + --+)
T

Hence

d 4

f — (cosx + cos3x + cosbx + -++)

dx m

Hence
1 1
fx) = (s1nx+§sm3x+ gs1n5x+ )

3.2 Part (b)

We first need to determine the Fourier series for 6 (x) and 6 (x + 7). For 6 (x) we find
s
1 ) 1
_ —ikx -
P —2nf6(x)e dx 7
=T

Hence

o(x) = i cpet*

k=—c0
00

— E ieikx
k}oo27z
1

(1 + otk oy ptkx 4 p=2ik 4 p2ik 4 )
271

1
= 2—(1 + 2 coskx + 2 cos 2kx + 2 cos 3kx + ---)
T

Now to determine Fourier series for 6 (x + 71)

bl

T
1 . 1 . 1
- + —ikx 4, — ikmt _ -
Ck o fé (x + ) e ™ dx 2716 o coskm o
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Hence
o k
(-1)
S(x+m) = oikx
( ™) k§oo 2m
1 . H .
= _— (1 - —¢* 4+ e—21x + 6213( —¢ 3ix _ 631;( + )
2n (
1 . . . . , ,
= 2_ (1 _ (e—zx + elx) + p2ix 4 p20x _ (e—Szx i €3lx) 4 )
i
1
= (1-2cosx+2cos2x—2cos3x + --+)
Therefore

1 1
20(x) —=20(x+m) =2 2—(1 +2cosx +2cos2x +2cos3x + ---)}—2[2— (1-2cosx+2cos2x—2cos3x+ --+)
T T

1 1
=—(1+2cosx+2cos2x+2cos3x+--)——(1—-2cosx+2cos2x—2cos3x + ---)
T Tt

1
— (4cosx +4cos3x +4cosbx+ )
T

4

%(cosx+0083x+c055x+ -er)
Hence

af 4

— (cosx + cos 3x + cosbx + --)
dx 7

Therefore

f ) 2 (s +1'3+1'5+
X) = —|sinx+ =sin3x + = sin5x + ---
s 3 5

Which is the same as above using the a;, b, method.

4 Problem 4.1.4

414 At x=m/2 the square wave equals 1. From the Fourier series at this point find the
alternating sum that equals =:

Figure 6: the Problem statement

From above we found that the Fourier series for square wave is
fx) = é (sinx + 1 sin 3x + 1 sin 5x + )
T 3 5
Therefore at x = §> the above becomes

4 1 1
1= 2 [sin 2 + = sin32 + = sin5e + -
7 (Mg TRy T ey
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Hence

5 Problem 4.1.5

4.1.5 From Parseval’s formula the square wave sine coefficients satisfy

n(b? + b3 + ---)=.r If{lezdx=j 1dx=2n.

—-= TR

Derive another remarkable sum n% =8(1 +§+ 3%+ ).

Figure 7: the Problem statement

We found that only the by survive for the Fourier series of the wave function. They are

4

| & k=135
71 o k=246,

Applying Parseval’s formula leads to
2,12 12 2
n(B+b+ bR+ ) = f|f(x)| dx =2n

Where we used only the odd by terms since all others are zero. The above becomes
G+
=) +|=—] +|=—]| + - |=2n
Tt 3n 51
Ly 42+1 42+ =2
"\ n? \3 n? \5 -

o ] o

Hence



12

6 Problem 4.1.8

4.1.8 Suppose f has period T instead of 2z, so that f(x) =f(x + T).Its graph from —T/2 to
T/2 is repeated on each successive interval and its real and complex Fourier series are

2nx . 2mx X
fx)=as+a, cos —- + by $in— -+ = Y eIt
— o

Multiplying by the right functions and integrating from —T/2 to T/2, find &, by, and ¢,.
Figure 8: the Problem statement

ps. In the solution below, I was using T when I should be using g in all the limits. Need to correct
later. Or just let period be 2T then the math works ok.

In this problem, the basic idea is to observe that when the period was 27 then

fx) = Eak coskx + Zbk sin kx

k= 0 k=1

(x) E Ck eikx

k=—c0

Now when the period is a general value T we use (z?nk) in place of just k. So the above becomes

f) = Eakcos(—x) Ebksm(—x) 1)
Fo= 3 aeT) )

k=—c0

We now need to determine ay, by, ¢, using (1) and (2) in similar way we did when the period was 27.

To find a;, we multiply (1) by cos (mZTRx) where m is some integer between 1--- 0o, and integrating

from -T to T gives

T T T
21 ad 21 2n i . 21 21
[f (x) cos (me) dx = fZak cos (ka) cos (me) dx + f;bk sin (ka) cos (me) dx
— 27 27 27
z_:f”k cos ( —x) cos ( ?x) dx + I;fbk sin (kFx) cos ( Tx) dx

Due to orthogonality between the sin and cos, all the product of sin cos vanish, and only one term
in the product of cos cos remain which is the one when k = m, hence the above reduces to

T T
21 21 2n
[f (x) cos (m?x) dx = lam cos (m?x) cos (m?x) dx
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Since m is arbitrary, we can rename it back to k to keep the same naming as before.

T T
ff (x) cos (kz?nx) dx = fak cos? (kanx) dx (3)
T T
When k = 0 we find
T T
ff (x) dx = faodx
T T
= 2a,T

Hence

T
1
a0=ﬁ£f(x)dx

s
Notice, when T = 7, the above reduces to a5 = %ff (x)dx. Now to find a;, for k > 1, then from (3)

=Tt

T T
2 2

ff (x) cos (k—nx) dx = fak cos? (k—nx) dx

< T T

= akT

Hence

a = %f_TTf(x) cos (kanx) dx

T
Notice that when T = 7t the above reduces to a; = %ff(x) cos(kx) dx as before.

—Tt

Now we find by, similarly. We multiply (1) by sin (mz?nx) where m is some integer between 1 --- co, and

integrating from -T to T gives

T T T
. 21 ad 2\ . 271 ) . 27\ . 21
[f (x) sin (me) dx = IZ;JT‘ak cos (ka) sin (me) dx + I;lbk sin (ka) sin (mFx) dx

Due to orthogonality between the sin and cos, all the products of sin cos vanish, and only one term
in the product of sinsin remain which is the one when k = m, hence the above reduces to

T T
. 27 3 , 2n |\ . 2n
[f (x) sin (m?x) dx = lbm sin (m T x) sin (m T x) dx

Since m is arbitrary, we can rename it back to k to keep the same naming as before.

T T

2 2
f F(x)sin (k—”x) dx = f by sin2 (k—nx) dx
-T T -T T

= ka

Hence

by = % f TTf (x) sin (sznx) dx
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Notice that when T = 7t the above reduces to b, = % f f (x) sin (kx) dx as before. We now find cy.

=Tt

fo) = 2 e T

2n

Multiplying both side by e_i(mT)x and integrating over the period
T
f f(x) e_Z dx = E f cke x _l T )xdx
T k=—coZr

All terms other than ones which k = m remain. Hence the above becomes
T

f f (x)e dx = f cmei(mz%)xe_i(m%)xdx

=T
T

= fcmdx

-T
Therefore, since m is now arbitrary, we rename it back to k and simplifying

ff (x)e dx =2Tc;
RN =y
ag==— [ F)e VT dx
2T:£

7 Problem 4.1.10

4110 What constant function is closest in the least square sense to f=cos*x? What
multiple of cos x is closest to f=cos®x?

Figure 9: the Problem statement

The 4, term in the Fourier series of cos? x is the constant term. Hence it is the constant that is closest
to cos? x in the square sense. Therefore
1,
ay =7 f cos” xdx
=Tt

1 Tt
= — f cos? xdx
27
=Tt
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3

To find the multiple of cosx which is closest to cos®x, we find 4; term in the Fourier series of cos®x

since that is the term which has a; cosx in it. Hence

us

1

a = —fcos3xcos xdx
T

T

45

8 Problem 4.1.11

41141 Sketch the graph and find the Fourier series of the even function f=1—|x|/x
(extended periodically) in cither of two ways: integrate the square wave or compute (with

ap=1%)
a,‘=%Jﬁ_t f(x)coskxdx=zjm(l—i)coskxdx.

Figure 10: the Problem statement

The function we are approximating using Fourier series is

f[x_] := Piecewise[{{1 + x/Pi, x < 0}, {1 - x/Pi, x >= 0}}];
Plot[f[x], {x, -Pi, Pi}]

04| \
02 \;
L . LN

3

Figure 11: Plot for problem 4.1.11
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Since it is even, we only need to determine a;

s

1 [ 2 x
;ff(x) cos kxdx = —f(l - ;) cos kxdx

Tt

3

2 (1-cos kmt
T kn
Hence

fx)=a9+ Zak cos kx
k=1

2 (1-cosTt 2 (1--cos2m 2 (1-cos3m
+ —|cosx+ —|—|cos2x+ —|——— ] cos3x + ---
T e T T

In
2 2 (2 2( 2
—]cosx+ —|—|cos3x+ —|—|cosbx + ---
(n) 7'((977) n(ZSn)

4 4

COSX + — COS3X + —— cos5x + -
972 57

Here is a plot showing the approximation as more terms are added. The label of each plot show the

number of terms used. The more terms we use, the better the approximation

ck = (2/Pi) Integrate[(1 - x/Pi) Cos[k x], {x, 0, Pi}];

upTo[n_, x_] := (1/2) + Sum[(ck /. k -> m)* Cos[m x], {m, 1, n}];
tbl = Table[Plot [upTo[m, x], {x, -Pi, Pi},

PlotLabel -> Row[{"terms used =", m}]], {m, O, 18, 2}];
Grid[Partition[tbl, 3], Frame -> All]
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Figure 12: Plot for problem 4.1.11 part 2

9 Problem 4.1.16

4.1.16 If the boundary condition for Laplace’s equation is uy=1for 0 <8 <7 and i, =0
for —n < 8 <0, find the Fourier series solution u(r, f) inside the unit circle. What is u at the

origin?
Figure 13: the Problem statement

The first step is to obtain the gy, by coefficients by expanding the boundary value of the solution using
Fourier series. On the boundary

1 0<0<m
0 -m<6<0

1 ¢ 1
= — [do==
%o 2n0f 2

Ug =

Hence
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And
s
1 1. n
a, = —fcos k6dO = — [sinkO], =0
oy kr 0

And
1

-1
— [~ coskO] =0 = — [coskm — cos 0]

us
1r.
by = ;!smk@d@ = 0 =

(22 2
"\ w 3% 5]

Only odd values of k survive. Now that we found the Fourier coefficient, we use them in the solution
given in equation (22), page 276 on the book
u(r,0) = ag + byrsin O + byr3 sin 30 + bsr® sin® O + ---
1 2

==+ —|rsin6+ 1r3sin?>9+ 1r5s,1n56+
2 7 3 5

At the origin, let r =0

1
M(O,Q): E

10 Problem 4.1.19

4.1.19 A plucked string goes linearly from f(0)=0 to f{p)=1 and back to f(n)=0. The
linear part f= x/p reaches to x = p, followed by f=(zn — x)/(n — p} to x = n. Sketch f as an

odd function and find a plucking point p for which the second harmeonic sin 2x will not be
¢ heard (b, =0).

Figure 14: the Problem statement

A sketch of the function (string) is below.

Clear[x, £, pl;

flx_, p_] := Piecewise[{{(-x - Pi)/(Pi - p), x < -p},
{x+p)/p -1, -p <x <0}, {x/p, 0 < x < p},

{(x - Pi)/(p - Pi), p < x < Pi}}]

Plot[f[x, .8 Pi], {x, -Pi, Pi}, Frame -> True,
FrameLabel -> {{"f(x)", None}, {x, "problem 4.1.19"}}]




problem £.1.1%
wof T T .
03+ .
E qof
=05k i
10l i
-3 -2 | 0 1 2 3

Figure 15: Plot for problem 4.1.19

Since f (x) is odd, we only need to determine by

2 [ ,
b, = %‘!‘f (x) sin kxdx

P n
= %[ffsinkxdx+fx_nsinkxdx]
T Op pp—n

_ g(sinkp—kpcoskp . k(n—p) coskp +sinkp—sinkn]

& Kp K2 (m-p)
2 (n sinkp — psin kn)
B k?pm (7’( - p)
For k=2
(n sin2p —psin 2n)
2" 2pm (7’( - p)
_ msin2p
- 2pm (n - p)
For zero, we need
0=msin2p
sin2p =0

Hence

_r
P=3

19
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11 Problem 4.1.20

41.20 Show that P,=x2—1% is orthogonal to Py=1 and P,=x over the interval
—1<x< 1. Can you find the next Legendre polynomial by choosing ¢ to make x* —¢x
orthogonal to Py, P,, and P,?

Figure 16: the Problem statement

1
Two functions f, g are if the inner product is zero f f(x)g(x)dx =0. Hence
-1

And

Now let P3 = x® — cx, we want this to be orthogonal to Py, P;, P,. Hence

1 4

1 o1

X X 1 1 1 1
PyPodx = |2 —cxdx == -c=| =(--cz|-[>-c=
[30dx fx cxdx (4 62)_1 (4 CZ) (4 CZ)

-1
0=0

This equation did not help us find c. We try the next one

1 1 1
¥ x8 1 1 1 1 2 2
= 3 _ =|— —-Cc— =|l=-—-Cc=]|—-|— -] ==—-=
[ngldx—f(x cx)xdx (5 03)1 (5 63) (5+c3) 53¢

-1 -

Hence
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12 Problem 4.1.26

41.26 If f has the double sine series X by, sin kx sin Iy, show that Poisson’s equation
— Uy, — Uy, = f is solved by the double sine series u = XX by, sin kx sin Iy/(k* + [*). This is the
solution with u =0 on the boundary of the square —mw <X, y <.

Figure 17: the Problem statement

The proposed solution is
( ) Ezbkl sin kx sin ly 1)
(k2 +2)
To see if this solves
~llyy — Uy = f = D Y businkxsinly (1A)

we will take (1) and substitute in the LHS of Poisson equation (1A) and see if we get the RHS of
(LA) which is f.

du 22 byik cos kx sin ly

ax (k2 + )

22 g
And

”zﬁﬁ%ﬁﬁﬁfw

a;zzzwmﬁfgm@ .

Substituting (2) and (3) in the LHS of (1A) gives

_ byk? sin kx sin Iy by sin (kx) 12 sin ly
) (k2 + ) 2 (k2 +12)

~ byk? sin kx sin Iy + by sin (kx) I? sin ly
-L2 (k2 +12)

_ (bkl sin kx sin ly) (k2 + lz)

) (k2 +12)

= Z Ebkl sin kx sin ly

C k
Which is f. Hence u (x, y) Zzhk’ 51:2 xl:mly is the solution verified.

Thxx T Uy
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13 Problem 4.3.3

4.3.3 Find the inverse transforms of

(a) f(k)=8(k) (b) f(k)=e ™ (separate k<0 from k> 0).

Figure 18: the Problem statement
13.1 Part(a)

F) = ;—n f 5 (k) ek
k=—c0

1. 1
— | ikx -
C2n ¢ ]k=0 2n
13.2 Part(b)
fx) = i f e kleikx gy
2n
k=—co
1( 7 r;
= f etk dk + f e‘keik"dk]
2n
\k=—co 0
1( 7 r;
_ f ML+ g 4 f (L+i) g
2n
Vc=—c0 0
1 ([ eka+in 7 k(-1+i0) 1%
= — . + . 1)
2 (| 1+ ix . —1+1xO
Looking at the first integral result
k+in) T 1 ool +i) 1
1+ix]_m=1+ix_ T+ix  1+ix

Where we looked at real part of ¢+ =0 so that we can make e-(*% to be zero.

Looking at the second integral result

ok(=1+ix) 0 po0(=1+ix) 1 1

T1+ix|
0

“1+ix —-1+ix  -1+ix

Where we looked at real part of (1% =0 so that we can make e*("1*% to be zero. Hence, using



the above two results in (1) gives

1( 1 1
f@”‘?'1+m_—1+m)
1

1
1+m+1—m)
(1—-ix)+ (1 +ix)

(1 +ix) (1 -ix) )

Il
8-
e e

14 Problem 4.3.5
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435 Verify Plancherel’s energy equation for f= 4 and f= ¢~ Infinite energy is allowed.

Figure 19: the Problem statement

14.1 Part(a)
For f(x) =6 (x)

Zﬂjéz (x)dx =2m }1_151010 fé (%) gy (x) dx
Where g, (x) is sequence of Gauss;;on functions. The I;IiIS above becomes
2nf62 (x)dx =2n nh_r)lol0 2, (0)
But lim,,_,, g, (0) = o hence N
anéz (x)dx = o0
Now f (k) =1 for the Dirac delta. Hence -

fm:fawmw

(o)

= f e kxdx

oikx A 1 ‘ ‘ 1
_ — _— (p-ikoo _ ,+ikeo) _ _— _ —
‘L%] = ) = 0y =0

—00

Hence verified for 6 OK.



14.2 Part(b)

2
For f(x) =e 2 then

[ee]

/

= 2nfe‘x2dx
0

)

e 2

dx

2nf If @)f dx = 2m

A

2
2

Il
A
NI w

Now f (k) for the above function is

Fk) = f F(x) ety

Hence

K2 2
e 2V2n| dk

[1roof - [
= 2nf e_g

2
dk

Which is the same as before. Hence verified.

15 Problem 4.3.6
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436 What are the half-widths W, and W, of the bell-shaped function f=e™*"? and its
transform? Show that equality holds in the uncertainty principle.

Figure 20: the Problem statement



For f(x) = eié

A o0 , o 2 K2
Now f (k) = f_oof(x) e~y = f_oo ¢ 2 e *dx = ¢" 2 /27, hence
00 oA 2
e f_mk |f(k)2| dx
[ 1f o] dx
f_ k?le 2 v2n
N

2n fo K2e ¥ dx

2
dx

2

242m| dx

27 fo e dx
=

_a !
Vo2
2

Hence

1 /1 1
WeWk=y2v2 =3

But uncertainty principle says that W, W > % Hence verified OK.

16 Problem 4.3.7

25

437 What is the transform of xe *72? What about x2e *"/2, using 4L?

Figure 21: the Problem statement
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16.1 Part(a)

2 K2

X ~ 00 X2 .
Using 4L(1), let f(x) = e 2, which has f (k) = f_ . e ze*dx = \/2rte” Z , hence dd—x f (x) will have the

transform ik f (k), therefore,
d
7(—]‘ (x)) = 7(—xe 2 ) ikvV2me 2

2
Therefore xe” 2 has the transform —ikv2me 2

16.2 Part(b)

2 2 2

X N X \'2
Let f(x) = xe 2, which has f (k) = —ik\2re 2 from part(a). But di f(x) = ¢ 2 —x2 7. Hence the
transform of % fx) =ik f (k). Therefore

2
ﬁ’(e 2 —x%” 2) 1k(—lk\/_e 2)
x2 x
) o)t
xz K
But 37(6_2) =+2me 2, hence

¥2 K2
y(xe 2) V2me 3 —kz\/Z_ne_7

k2
) =V2me 2 (1 - kz)
Therefore

J(xez) \/_62(1 K)

17 Problem 4.3.10

4310 Solve the differential equation

j—;+au=5{x)

by taking Fourier transforms to find (k). What is the solution u (the Green's function for
this equation)?

Figure 22: the Problem statement
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Let 1 (k) be the Fourier transform of u (x). Using 7| (Z—Z) = iki1 (k) and .7 () = 1, then applying Fourier
transform on the ODE gives
ik (k) + afr (k) =1
Solving for i (k)
ii(k)(a+ik) =1
1
2k = a+ ik
Hence, from page 310 in text book, it gives the inverse Fourier transform for the above as

u(x):{ e x>0

0 x<0

18 Problem 4.3.21

4.3.21 Apply Fourier transforms to [*, e ™ lu(y)dy — 2u(x) =f(x) to show that the
solution is u= —1f + ig, where g comes from integrating f twice. (Its transform is
g=1/iw)*) If f =e ' find u and verily that it solves the integral equation.

Figure 23: the Problem statement

Comparing the integral equation

[t lu(y)dy - 200 = 1)

with the one in the textbook, page 322 in example one, where the Fourier transform of

fe‘|x—y|u (y) dy = f (x)
Is given as
2 R
1) = f @)
The only difference is that in this problem we have an extra —2u (x) term, whose Fourier transform is
—2#1 (w). Hence the Fourier transform for (1) becomes

it () - 21t () = f ()

1+ w?



Solving for i (w)

We need to write the above as I (w) = %lf + %g. Hence

1

—2w2

@) = 5 f @)+ 5 @)

Let f (x) = e™™, then

Flw) = f F(x) e vy

(o)

— fe—lxle—ia)xdx

—00

0 0

= f e‘e ' dx + f e Xe 1 Wxdx

—00 0

ex(l—im)
:[l—iw]_

1 1
l1-iw 1+4+iw
(1 +iw) -1 -iw)
T (1 -iw) 1+ iw)
2
1+ w?

0

e—x(1+ia)) >

1+
@ 1y

Hence using (2)

-1, 1 .
it(w) = —fl@)+ ——f (@)

-1 2 N 1 2
2 1+w?2 2?21+ w?

Hence

Using tables u (x) = %1 [x|.

28

2)
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19 Problem 4.3.27

43.27 Take Fourier transforms in the equation d*G/dx* —2a*d*G/dx* + a*G =4 to find
the transform G of the fundamental solution. How would it be possible to find G?

Figure 24: the Problem statement

The equation is

#G() | ,d*G(v)
- 2a

dx* dx2

L;’;f (ik)" g (k) hence G’ (x) = l’kg k),G" (x) = _kzg k),G"" (x) =

(ik)4 gk) = k4g (k). Therefore the Fourier transform of the above differential equation is

kg (k) +2a2Kk23 (x) + a*g (k) = 1

+a*G(x) =06

Taking Fourier transform, and using

Solving for g (k)

g (k) (k4 + 2022 + at) =1
) 1
&k = k4 + 2a2k2 + a4
1
(k2 +a)

To find G (x) we need to find the inverse Fourier transform.

(o)

1

1
_Eiw+@2

G (%) ek dk

With the help of computer, I obtained the following result
(1 +alx)

G(x) = Te*a x|
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