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1 Problem 1.6.2

1.6.2 Write down the incidence matrices 4, and A, lor the [ollowing graphs:

1 4

2 2 egin

For which right sides does 4, x = have a solution? Which vectors are in the nullspace of
AT?

Figure 1: the Problem statement

In the incidence matrices, the rows indicate the edges, and the columns are the nodes. We put -1
for the node that the edge leaves and +1 for the node that the edges arrives at. Arrows are used to
indicate direction.

-1 41 0 0 O
-1 +1 0 O 0O -1 +1 0 O
0 -1 1 0 0 0 -1 4 0
A= , Ay =
0 0 -1 +# 0O 0 0 -1 +1
1 0 0 -1 0O 0 -1 0 +1
-1 0 41 0 O

We first note that matrix A; rank r =3,m =4,n = 4.

In A;x = b, the vectors b have to be in the column space of A;. These are vectors in R” = R*, that
span space of dimension r = 3. Since there is a cycle (starting from node 1 we end up at node 1
again by following the edges), this means that all the potentials at each node must be the same. But
if the potential at each node is the same, then there can be no flow of current. Since flow of current
represent the edge, it means each edge will have zero value. So b must be all vectors/edges that add
up to [0,0,0,0] vector. For the case of AlT, we obtain the matrix

-1 0 0 1
+1 -1 0 O
AT =
0 41 -1 0
0 0 +1 -1

N(AlT) in the space of R™ = R* with vectors that span dimension space m—r =4-3 =1. So a line. So
one basis vector is all what is needed.

And now we ask about the nodes of this graph. What values can they have? This is the graph
associated with this matrix



1 4
1‘
2 4
) la A
3

Figure 2: graph associated with this matrix

We now ask, what values should the nodes have in order for the edges to have zero flow in them? It
is clear the nodes must all be equal [1,1,1,1] since if the potential is same at each node, then there
will be no flow (i.e. zero potential difference) on the edges. Therefore

N(AT) =[1,1,1,1]

We also know from fundamental theory of linear algebra, that R (A) is orthogonal to N (AT) .

2 Problem 1.6.3

1.6.3 The previous matrix 4, should have n — 1 independent rows; which are they? There

should also be m —n + 1 independent vectors in the nullspace of 43, one from each loop;
which are they?

Figure 3: Problem description

The matrix A, has rank r = 4,m = 6,n = 5. The number of independent rows (edges) is n —1 or
5 -1 =4 which is its rank. These can be read from the graph directly. Any 4 edges, as long as they



do not complete a cycle, will qualify. Hence the edges that meet this condition are
6,5,4,2
6,5,4,1
6,5,3,2
6,5,3,1
6,4,3,2
6,4,3,1
5,4,2,1
53,21
4,3,2,1
Notice that we could not have selected for example 6,5, 4,3 since 5,4,3 are in one loop.

The N(Ag) has m —r = 6 —4 = 2 dimensions. Now we take the edges on each loop. Since the loop is
the null space. Since there are two loops, this give us the two independent rows. The left loop has

edge (1) + edge (2) — edge (6) = [1,1,0,0,0, 1] 1)

Second loop has

edge (3) + edge (4) — edge (5) = [0,0,+1,+1,-1,0]

In other words, we put a 0 for the edge that is not there and put a +1 for the edge the goes one
direction and -1 for the edge that goes in the opposite direction. For example, in (1) we put 1 for
edge(1) since edge(1) is in the loop. We put 0 for edge (3) since edge (3) is not in the loop at all.
We put -1 for edge(6) since it goes in the opposite direction from the others. It is arbitrary which
direction is positive and which is negative, as long as one is consistent. Notice the above two basis
vectors span N (Ag) and live inside R® since m = 6 in this case.

3 Problem 1.6.5

1.6.5 If A4 is the incidence matrix of a connected graph and Ax = 0, show that x, = x, = -
= x,. Each row of Ax =0 is an equation x; - x; = 0; how do you prove that x; = x;, even
when no edge goes from node j to node k?

Figure 4: Problem description

Since Ax =0 then we set up the equations from incidence matrix one for each edge as follows



Xk X

® >0

Xj =Xk =0
Figure 5: plot for prob 1.6.5

If we assign one node any arbitrary value, say x; =1, then x; =1 as well. But then any node on the
other side of x;, say x; will now have value 1 as well. By transitivity, all other nodes will end up with
the same value assigned to the first node. Hence all nodes have the same value.

For the case of a two nodes not connect. Assume the nodes are x; and x; and that there is no edge
between them. Now assume there is an edge x;x, and edge x,x; and edge x3x,. Since x, = x; since
Ax = 0 then this implies x3 = x, = x; as well. This also implies x4 = x3 = x, = x; or x; = x4 even
though there is no direct edge.

4 Problem 1.6.6

1.6.6 In a graph with N nodes and N edges show that there must be a loop.

Figure 6: Problem description

Proof by contradiction: Assuming there is no loop. Hence the graph must be a spanning tree. But
by definition, a spanning tree with N nodes have N —1 edges. But we are given that number of edges
is the same as the number of nodes. Hence the assumption is not valid, and there must be a loop,
called the fundamental loop or fundamental cycle.

5 Problem 1.6.7

1.8.7 For electrical networks x represents potentials, 4x represents potential differences, y
represents currents, and A"y = 0 is Kirchhoff’s current law (Section 2.3). Tellegen’s theorem
says that Ax is perpendicular to y. How does this follow from the fundamental theorem of
linear algebra?

Figure 7: Problem description

The fundamental theorem of linear algebra says that vectors in R (A) are orthogonal to vectors in
N (AT). Ax gives the vectors in R (A) which is the potential difference. While currents y which results



in ATy=0arein N (AT). The following diagram illustrates this

R(AT)

X R(A)
N (A) AT Potential differences due
. . to x live in this space,
Potentials x which ie Ax vectors
result in zero potential
difference live in \ T 5
this space. i.e. Ax = 0 y N(A ) /4 @
- ,Q o
currents y which //0&’%&‘0
resultsinATy =0 | "¢
. . . - (og
live in this space S
SN
L & S
092414 & Q)é \Q
K
©

Figure 8: Plot for Problem 1.6.7

6 Problem 2.1.2

212 (a) Compute the 4 by 4 matrices A3 A, and AJCA, for the network in Fig. 2.1.
Notice that like the original Ay, its columns add up to the zero column.

(b) Verify that removing the last row and column of AJCA, leaves A"CA in equation (7).
What is A7 A?

(c) Show that this A7 4 is positive definite by applying one of the tests in Chapter 1 (for
example, compute the determinants or the pivots).

Figure 9: Problem description

Figure 2.1 is the following



X3

Fig. 2.1. Four nodal variables and six edge variables.

Figure 10: Figure 2.1 in book.

The A, matrix, is the incidence matrix. Since we have 6 edges, the matrix will have 6 rows. Since we
have 4 nodes, there will be 4 columns. The matrix is

-1 41 0 O
-1 0 +1 0
A = -1 +1 0
0 -1 0 +1
-1 0 0 +1
0 -1 +1
Hence AT A, is
-1 41 0 O
-1 -1 0 0 -1 0})-1 0 +1 O
ATA = 0O -1 -1 0 O0fjo -1 +1 O
0 110 -1 0 +1
0 0 O 1)]1-1 0 0 +1
0O 0 -1 +1
3 -1 -1 4
|13 a4
1 a1 3 4
-1 -1 -1 3




And the C matrix is m X m where m = 6 since this is the number of rows in A,. Hence

¢, 0 0 0 0 0
0 o 0 0 0
0 0 c¢s 0 0 0
C=
00 0 ¢ 0 0
00 0 0 ¢5 O
0 0 0 0 0 ¢
Therefore
cgc 0 O 0O 0)f-1 +1 0 O
-1 -1 0 0 -1 0})]0 ¢ O 0O 0|1-1 0 +1 O
T 1 0 -1 -1 0 00 0 c 0 O -1 41 O
ATCA, =
0O 1 1 0 0 -1If0 0 0 ¢ 0 O -1 0 +1
O 0 O 1 1 1)J]0 0 O cs Off-1 0 0 +1
0 0 O 0 ¢JLO 0 -1 +1
Hence
C1+Cy +Cq -1 —Co —C5
AE;CAO _ -1 C1+C3+ ¢y —C3 —Cy4
—Cy —C3 Cy + C3 + Ce —Ce
—C5 —Cy —Cq Cq+C5 + Cq

We notice that the diagonal entry on ATCA! matches the sum on the rest of the row.

7 Problem 2.1.3

21.3 For the triangular network in Fig. 2.1, let fi =f,=f;=1and fi=—3. WithC =17 and
b =0, solve the equilibrium equation —ATCAX =J. (Note that f; and x, do not enter,
because x, =0 and the last column of A, was removed.) Solve also for y, and describe the

flows through the network.

Figure 11: Problem description

From problem 2.1.2, we found

+1 0 0
0O +1 0
-1 4+ 0
-1 0 +1
0 0 +1
0 -1 +1



We first start by removing the last column, hence A =

now.

We are given that C =

o o o o =

0

equation —~ATCAx = f - ATCb, but b =

o © O ~» O

0

o o = O O

0

S O = = O

o O B O O O

S O kP O O O O

o O O © O =

o ©O O o O

1

, hence this becomes

o O O © = O

and f = |1[, hence

o O O B O O

o O B O O O

o = O O O O

_ O O O o O

1

1

+1
+1

we

10

which means x is 3 X 1 vector

need to solve the equilibrium

—ATCAx = f
0
1 |[x
1 : !
X
o{|w| ]!
X
1
0 X4
-1
1 X1 1
1 Xy | = 1
-3 X3 1

To solve for y we use the first equation of the equilibrium equation after elimination, which is given
on page 92 of the textbook as

The first equation gives

C—l

A
-ATCA

}

Cly+Ax=b

f - ATCb
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And for b = 0 this becomes

y=-CAx
100 0 0 O)f-1 1 O
0100 0 Of]-1 0 1_1
:_0010000—11_1
0001000—10_1
000O0T1O0f-1 0 O
00000 1J\0 -1
or
0
0
10
la
-1
-1

X2

Fig. 2.1. Four nodal variables and six edge variables.

Figure 12: plot for 2.1.2

That there is now flow over edges 1,2,3 (the outer cycle) and flow is only on the inner edges 4,5,6
in opposite direction shown.
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8 Problem 2.1.6

21.6 Suppose a network has N nodes and every pair is connected by an edge. Find m, the
number of edges.

Figure 13: Problem description

The first node needs N -1 edges to connect to the other N. The second node needs N -2 edges to
connect to the other nodes. We do not count the first one since it is already connected by now. The
third node needs N — 3 edges, and so on. The last node needs no edges, since by the time it is reach,
it already has an edge from all the others to it. Hence

m=N-1)+(N-2)+---+(N-N)

Hence

9 Problem 2.1.12

2112 Draw a network with no loops (a tree). Check that with one node grounded the
incidence matrix A is square, and find A~ *. All entries of the inverse are 1, —1, or 0.

Figure 14: Problem description

A tree is drawn with arbitrary directions



Figure 15: Tree for problem 2.1.12

Before grounded node 5 the A matrix is

-1 +1 0 0 O
0 -1 0 +1 O
0O 0 -1 +1 O
0 0 0 +1 -1

When node 5 is grounded, then column 5 is removed, now the matrix becomes

-1 +1 0 0

Ao 0 -1 0 +1

0 0 -1 +1

0 0 0 +1

And its inverse is

-1 -1 0 +1
4.0 -1 0 +1
o 0 a4 w1
0 0 0 +1

10 Problem 2.2.1

— grounded

13

2.21 Minimize @ = }{(y} +1y3) subject to y; + y, =8 in two ways:

(a) Solve dL/dy =0, 8L/éx =0 for the Lagrangian L =Q + x;(y, + y, —8).
(b) Solve the equilibrium equations (with = 0) for x and y.
What is the optimal y, and what is the minimum of ¢? What is the dual quadratic —P(x),

and where is it maximized?

Figure 16: Problem description
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10.1 part(a)

Q= % (y% + %y%) and constraint r = y; + y, — 8 = 0 hence L = Q + xr where x here is the Lagrange
multiplier. Hence

1 1
L:E(y%+§y%)+x(y1+y2—8)

Therefore
JL
3—% =y +x
JL 1
B_yz = 3% TX
JL

$=(y1+y2—8)

In matrix form it becomes

1
VL = 0 5 1 yz = O (1)
1 1 0){x 8
Solving by Gaussian elimination gives
n 2
y2|=| 6
x -2

10.2 Part(b)

We now compare (1) above to the equilibrium matrix equation given by
ct A \ly
0 ATCA)\x

c! A
0 ATcA

b
f- ATCh
Which for b = 0 becomes

y

J-0)

1 1 0
From the above, and comparing to (1) we see that A = [J,C‘l = [0 1],y = [yl],f = 8. Hence we
3 Y2
3

first solve for x

ATCAx=f

1 0})1
(1 1)0 NINERL:
4x =8



Now the first equation is used to solve for y
Cly+ Ax=0
y=CAx

| _ 1 0}(1 .
yz 0 3J\1
| _ 1 0}f1 )
yz 0 3J\1
Y2 6
Which is the same as in part(a). At this point, Q is now evaluated

1 1
Qmin = E (y% + gy%)

Hence the optimal y is

1 1
:_22 _62

3757
=8

The dual quadratic is given on page 101 of the text
1
~P(x) =~ (Ax - b)' C(Ax-b)-xTf
And for b =0 it becomes

1
-P(x) = —ExTATCAx —xT'f

1 1 0
But from above, A = ,C = ,f =8 hence
1 0 3
1 1 0}f1
-Px)=——xT(1 1 x —8xT
1
= —ExT4x —8xT
= 2xTx — 8xT

But xTx = 22 so the above can be written as
—P(x) = —2x> — 8x
P(x)=x(2x+38)

15

o . . . dpP . ..
To find where it is maximum, since —=0= 4x + 8 hence | x = -2 | Therefore, —P (x) is maximized

at same x where Q (x) is minimized.
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11 Problem 2.2.2

222 Find the nearest point to the origin on the plane y; + y, + ... + ¥, = 1 by solving for
y,. substituting into @ =4(y? + ... + ya), and minimizing with respect to the other y’s. Then
solve the same problem with Lagrange multipliers.

Figure 17: Problem description

Q=%(y%+y%+~-+y%1)

Constraints in y; + y, + --- + y,, = 1. Solving for y; from the constrains and substitute the result in Q.
Hence

yi=1-(v2+ys+ - +Ym)
And Q becomes

Q=%([l—(yz+ys+---+ym)]2+(y%+'--+y$n))
:%(1+(y2+y3+"'+ym)2_2(y2+y3+"'+]/m)+(]/%+ +y%1))
1 1 1
=5+5(yz+y3+~~+ym)2—(yz+y3+-~+ym)+5(y5+ + %)

Hence

9

a_Q:(y2+]/3+"'+]/m)_1+]/2=0
Y2

9

a—Q=(yz+y3+-~+ym)—1+y3=0
Y3

9

(9_Q:(y2+y3+"'+ym)_1+ym:0
Ym

The above can be written as

2P +ys+-Hym =1
Yo+ 2ys+ -+ Yy =1

y2+y3+"'+2ym =1

In matrix form,

Y2
Y3
Ya | =

e e e S
e e
_ = N =
N —m = =

_

Ym) \1
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Solving this gives

This was done by solving for m = 3,4,5--- on the computer and seeing the result is always % Now
we solve for y;. Since

yi=1-(y2+ys+ - +Ym)
Then

Therefore, all y; have the value %

Now the last part is solved, which asks to solve the same problem using Lagrange multiplier. Since
there is one constraint, then n =1 and since there are m number of y variables, there will be n + m
or m +1 equations.

L=Q+xR

Where R is the contraints. The above becomes

L= %(y%+y%+ o B Hx (Y oy 1)
Now we take the derivatives and set up the system of equations
JL
e
JdL
0_)—}/2 =y, +x=0

y1+x=0

—aL = +x=0
Jyy T
JL
_&x:(y1+yz+"'+]/m—1)=0

In matrix form the above is

100 (1) (0
010 1||y.| |o
00 1 1||ys| =0
000 1 :
111 oJlx) 1
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Solving this also gives the same answer as above, which is

%‘=E

and the Lagrange multipler is found, using any of the above equation, such as y; + x =0 to be

xX=-——
m

12 Problem 2.2.4

2.2.4 Find the rectangle with corners at points (£ y,, +y,) on the ellipse y2 + 4y% = 1, such
that the perimeter 4y, + 4y, is as large as possible.

Figure 18: Problem description

We want to maximize Q = 4y, + 4y, subject to 2 + 4y5 = 1. Hence
L= Q+x(y%+4y%—l)
=4y, + 4y, +x(y% +4y§—1)

And
IL
— =442, =0 1)
3]/1 yl
JL
— =4+8xy,=0 (2)
ayz yZ
JL
o S Virap-1=0 (3)
Or
)
= 1)
-1
V2 =5 2)
yi+4y5 =1 (3)

From (1),(2) we see that y; = 4y,. Substituting in (3) gives

(49,)" + 4 =1
16y5 +4y5 =1

Yo==

. 16_+\/Z
==V Vs

Hence
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So the corners are (i\/g,i\/g). Here is a plot of the ellipse showing the 4 corners given by the
above solution to verify

a=1;

b = (1/2);

y1 = Sqrt[4/5]; y2 = Sqrt[1/20];
Graphics[

{

Circle[{0, 0}, {a, Db},
{EdgeForm[Thick], LightGray, Rectangle[{-y1, -y2}, {y1, y2}1}
1,

Axes -> Truel

Figure 19: plot for prob 2.2.4

13 Problem 2.2.6

2.26 The minimum distance to the surface Ay =f equals the maximum distance to the
hyperplanes which
Complete this statement of duality.

Figure 20: Problem description
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From the duality statement on page 100 of the text, we can complete this sentence similarly by saying

The minimum distance to the surface ATy = f equals the maximum distance to the hyperplanes
which go through those hyperplanes.
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