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EMA 542
Home Work to be Handed In

The airplane shown in the figure below is in the process of making a steady horizontal turn at
the rate @,. During this motion, the airplane's propeller is spinning at the rate of @,. If the

propeller has two blades, determine the moments which the propeller shaft exerts on the
propeller when the blades are in the vertical position. For simplicity, assume the propeller to

be a uniform slender bar with total mass m Ane cénsra L.
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538 CH. 21 THREE-DIMENSIONAL KINETICS OF A RIGID BODY

# Example 21-5 s

The airplane shown in Fig. 21-13a is in the process of making a steady
horizontal turn at the rate of ,. During this motion, the airplane’s propel-
ler is spinning at the rate of w,. If the propeller has two blades, determine
the moments which the propeller shaft exerts on the propeller when the
blades are in the vertical position. For simplicity, assume the blades to be a
uniform slender bar having a moment of inertia / about an axis perpendicu-
lar to the blades and passing through their center, and having zero moment
of inertia about a longitudinal axis.
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SOLUTION

Free-Body Diagram. Fig. 21-13b.The effect of the connecting shaft on
the propeller is indicated by the resultants Fz and Mg. (The propeller’s
weight is assumed to be negligible.) The x, y, z axes will be taken fixed to
the propeller, since these axes always represent the principal axes of inertia
for the propeller. Thus, £ = . The moments of inertia I, and /, are equal
Uy=1,=1I)and I, = 0.

Kinematics. The angular velocity of the x, y, z axes observed from the X,
Y, Z axes, coincident with the x, y, z axes, Fig. 21-13c, is w = @, + @,
= @, + wpk, so that the x, y, z components of ¢ are

W, = W w, =0 w, = ©,

Since £} = w, then & = (@), Hence, like Example 21-4, the time
derivative of ¢ will be computed with respect to the fixed X, Y, Z axes and
then @ will be resolved into components along the moving x, y, z axes to
7 obtain (@)y,,. To do this, Eq. 20-6 must be used since e is changing

){5 direction relative to X, Y, Z. (Note that this was unnecessary for the case in
—a, Y, y Example 21-4.) Since @ = w, + w,, then & = @, + ¢,. Similar to Ex-

ample 20-1, the time rate of change of each of these components relative

(© to the X, ¥, Z axes can be obtained by using a third coordinate system x', y',

Fig. 21-13 Z', which has an angular velocity £}’ = w, and is coincident with the X, Y,

Z axes at the instant shown. Thus
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(d)

®= (@) +Q xw
= ((:US)X'J,'Zr + ((bp)xr}.,:r + w, x (0, + w,)

:O+O+wpst+wpxwp

=0+0+wkxoit0=0w,0]j

Since the X, Y, Z axes are also coincident with the X, v, z axes at the instant
shown, Fig. 21-13d, the components of ¢ along these axes are

w,=0 Wy = w,w; w, =0

These same results can, of course, also be determined by direct calcula-
tion of (@),,.. To do this, it will be necessary to view the propeller in some
“eneral position such as shown in Fig. 21-13e. Here the plane has turned
-arough an angle ¢ and the propeller has turned through an angle i relative
to the plane. Notice that w), is always directed along the fixed Z axis and w;
follows the x axis. Thus the components of w are

W, = w; W, = —w,sin Y W, = w, Cos ¥
Since w, and w, are constant, the time derivatives of these components Fig. 21-13 (cont’d)
become "

w, =0 W, = w,cos Y w, = w, sin Y i

but ¢ = 0° and ¢ = w, at the instant considered. Thus,

w.=0 0, = w,w; w.=0
which are the same results as those computed above. -
_ . . - L / ) 2

Equations of Motion. Using Egs. 21-25, we have / ‘\I = E M _J) W Uy
T M, = Lo, = (I, = Dwyw. = 1(0) = (I - 0)(0)w, ‘;
M.=0 Ans.
| . : —_— { 9 2 |
; =M, = L, — (I = I)w.0, = [@,0,) = (0 - Dw,w, T = = nmd
" Iy = [ i
i M, = 2lw,w, Ans. !

: SM. = Lo, — (I, = L)w,wy, = 0(0) — (I — Nw,(0)
M.=0 Ans.
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f2. Asshown below, the homogeneous rectangular block of mass m is centrally mounted
on the shaft A — A about which it rotates with a constant speed ¢ = p. Meanwhile
the yoke is forced to rotate about the z-axis with a constant speed w,. Find the
magnitude of the torque M as a function of ¢. The center O of the block is the
origin of the £ — y — z coordinates. Principal axes 1-2-3 are attached to the block
as shown, and with respect to these axes:

Ill = m(a2 + bz)/12

I, = m(b*+c%)/12
I3 = m(a®+c*)/12
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