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1 problem 3-11

suppose there exists within the rectangular cavity of fig 2-19 a field

Ex = Eo sin
πy

b
sinhγz

whereγ =
√( π

b

) 2
− k2 and k is complex (lossy dielectric). show that this field can be supported

by source
Ms = −uyEo sin

πy

b
sinhγc
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at thewall z = c . Show that for low loss dielectric,Ms almost vanishes at the resonant frequency
fr =

1
2bc

√
b2+c2

ϵµ , that is, a smallMs produces a large E

1.1 Solution

Using the equivalence theorem, find a currentMs that will generate the E field given.

first find the E field at the boundary of the region. i.e at z = c

Ez=c = uxEo sin
πy

b
sinhγc

so,
Ms = Ez=c × n

where n is unit vector pointing out of the region where the original sources were. so n = uz

Ms =

�������
ux uy uz

Eo sin
πy
b sinhγc 0 0

0 0 1

������� = −uyEo sin
πy

b
sinhγc

now,
k = k

′

− jk
′′

so,

γ =

√(π
b

) 2
− (k ′

− jk ′′
)
2

(1)

but,

k
′

= ω
√
µϵ and k

′′

=
ωϵ

′′

2

√
µ

ϵ ′ (2)

so, substitute (2) in (1)

γ =

√(π
b

) 2
−

(
ω
√
µϵ − j

ωϵ ′′

2

√
µ

ϵ ′

) 2
(3)

but
ϵ = ϵ

′

− jϵ
′′

so, from (3) we have

γ =

√(π
b

) 2
−

(
ω
√
µ (ϵ′ − jϵ′′) − j

ωϵ′′

2

√
µ

ϵ′

) 2
=

√(π
b

) 2
−

(
ω2µ (ϵ′ − jϵ′′) −

ω2 (ϵ′′)2

4

µ

ϵ ′ − jω2ϵ′′
√
µ (ϵ′ − jϵ′′)

√
µ

ϵ ′

)
=

√√√√(π
b

) 2
−

©­«ω2µ (ϵ′ − jϵ′′) −
ω2 (ϵ′′)2

4

µ

ϵ ′ − jω2ϵ′′

√
µ2

(
1 − j

ϵ′′

ϵ′

) ª®¬
=

√√√(π
b

) 2
−

(
ω2µϵ′ − jω2µϵ′′ −

ω2µ (ϵ′′)2

4ϵ′
− jω2µϵ ′′

√
1 − j

ϵ′′

ϵ′

)

=

√(π
b

) 2
− ω2µϵ′ + jω2µϵ′′ +

ω2µ (ϵ′′)2

4ϵ′
+ jω2µϵ′′

√
1 − j

ϵ ′′

ϵ′

when low loss dielectric, ϵ ′′

� ϵ
′ so the above value for γ can be simplified to
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γ =

√(π
b

) 2
− ω2µϵ′ + 2jω2µϵ′′ (4)

but at resonant frequency, ω = 2π fr = 2π
(

1
2bc

√
b2+c2

ϵµ

)
= 2π

(
1
2bc

√
b2+c2

µ(ϵ ′−jϵ ′′)

)
so from (4) we get

γ =

√(π
b

) 2
− ω2µ (ϵ′ − 2jϵ′′)

=

√√√√(π
b

) 2
−

(
2π
2bc

√
b2 + c2

(ϵ′ − jϵ′′) µ

) 2
µ (ϵ′ − 2jϵ′′)

=

√(π
b

) 2
−

4π 2

4b2c2

(
b2 + c2

(ϵ′ − jϵ′′) µ

)
µ (ϵ′ − 2jϵ′′)

=

√(π
b

) 2
−

4π 2

4b2c2

(
b2 + c2

(ϵ′ − jϵ′′)

)
(ϵ′ − 2jϵ′′)

=

√(π
b

) 2
−

(
π 2

c2 (ϵ′ − jϵ′′)
+

π 2

b2 (ϵ′ − jϵ′′)

)
(ϵ′ − 2jϵ′′)

so, simplifying γ further gives

γ =

√(π
b

) 2
−

(
π 2 (ϵ′ − 2jϵ ′′

)

c2 (ϵ′ − jϵ ′′
)
+
π 2 (ϵ′ − 2jϵ′′)
b2 (ϵ′ − jϵ′′)

)
=

√
π 2

b2
− π 2

(
(ϵ′ − 2jϵ ′′

)

c2 (ϵ′ − jϵ ′′
)
+

(ϵ′ − 2jϵ′′)
b2 (ϵ′ − jϵ′′)

)
=

√
π 2

b2
− π 2

(
ϵ′

c2ϵ′ − jc2ϵ′′
−

2jϵ′′

c2ϵ′ − jc2ϵ′′
+

ϵ′

b2ϵ′ − jb2ϵ′′
−

2jϵ′′

b2ϵ′ − jb2ϵ′′

)
sinceϵ′′ is very small, terms with ϵ′′ in denominator can be removed, resulting in

γ =

√
π 2

b2
− π 2

(
ϵ′

c2ϵ′
−
2jϵ′′

c2ϵ′
+

ϵ′

b2ϵ′
−
2jϵ′′

b2ϵ′

)
= π

√
1
b2

−
1
c2

−
1
b2
+
2jϵ′′

ϵ′

(
1
c2
+

1
b2

)
= π

√
−
1
c2
+
2jϵ′′

ϵ′

(
1
c2
+

1
b2

)
so, from equation (5), we see that as

ϵ′′ =⇒ 0,γ =⇒ j
π

c

butMy = Eo sin
πy
b sinh (γc) so

as ϵ′′ =⇒ 0 ,My =⇒ Eo sin
πy

b
sinh (jπ )

but sinh (jπ ) = j sin (π ) = 0, so

as ϵ′′ =⇒ 0 ,My =⇒ 0

QED
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2 problem 3-13

in fig 3-6a , suppose we have a small loop of electric current with z-directed moment IS , instead
of te current element, show that radiation field is given by

Eϕ =
jη2πIS

λ2r
e−jkr sin (kd cosθ ) sinθ

and ηHθ = −Eϕ . find the power radiated and show that the radiation resistance referred to I is

Rr = 2πη

(
KS

λ

) 2 [
1
3
+
cos 2kd

(2kd)2
−
sin 2kd

(2kd)2

]

2.1 Solution

I’ll use duality to solve the first part.

first replace the small current loop by the equivelant magnetic current element Kl

next, we know what is the solution (field) due to electric current element Il, it is:

for the object current element Il at distance d from the ground and pointing away from the
ground is given by equation 2-114 at page 79 as

Hϕ =
jIl

2λr
e−jkr sinθ (1)

Now, I put an image current element at distance d below the ground, but make the current
image element point also away from the ground (not towars the ground as is normal), this
is so I can use duality later on to get the field due to magnetic current, since the image for
mahnetic current is pointing to opposit direction from the object magnetic current.

so, for the image current element Il at distance d from the ground and pointing away from the
ground is given by

Hϕ = −
jIl

2λr
e−jkr sinθ (2)

notice the minus sign in equation (2), this is since current is flowing in opposit direction, and
magnetic field generated by electric current going in opposit directions will be in oppsoiti
directions also (right hand rule).

so, now use duality on equation (1) and (2) to find the field due to magetic current Kl

note that
ro = r − d cosθ

ri = r + d cosθ

equation (1) dual becomes

−Eϕo =
jKl

2λro
e−jkro sinθ =

jKl

2λ (r − d cosθ )
e−jk(r−d cosθ ) sinθ (3)

equation (2) dual becomes

−Eϕi = −
jKl

2λri
e−jkri sinθ = −

jKl

2λ (r + d cosθ )
e−jk(r+d cosθ ) sinθ (4)

so total field due to the magnetic current Kl is given by superposition of equation (3) and (4)
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−Eϕ =
jKl

2λ

(
e−jk(r−d cosθ )

(r − d cosθ )
−
e−jk(r+d cosθ )

(r + d cosθ )

)
sinθ

=
jKl

2λ

(
e−jkre jkd cosθ

(r − d cosθ )
−
e−jkre−jkd cosθ

(r + d cosθ )

)
sinθ

=
jKl

2λ

(
e−jkre jkd cosθ

r
−
e−jkre−jkd cosθ

r

)
sinθ when r � d

=
jKl

2λr
e−jkr

(
e jkd cosθ − e−jkd cosθ

)
sinθ

=
jKl

2λr
e−jkr ((cosα + j sinα) − (cosα − j sinα)) sinθ where α = kd cosθ

=
jKl

2λr
e−jkr (2j sinα) sinθ

so, this means that

−Eϕ = −
Kl

λr
e−jkr sin (kd cosθ ) sinθ

Eϕ =
Kl

λr
e−jkr sin (kd cosθ ) sinθ (5)

now, this equation (5) is used for the duality, replace Kl by jωµIS in (5) we get

Eϕ =
jωµIS

λr
e−jkr sin (kd cosθ ) sinθ (6)

but
c = λf

and c = 1√
ϵµ so

1
√
ϵµ
= λf

f =
1

λ
√
ϵµ

and
ω = 2π f = 2π

1
λ
√
ϵµ

so, from (6) we get

Eϕ =
j
(
2π 1

λ
√
ϵµ

)
µIS

λr
e−jkr sin (kd cosθ ) sinθ

=
j2πµIS

λ2r
√
ϵµ

e−jkr sin (kd cosθ ) sinθ

=
j2πηIS

λ2r
e−jkr sin (kd cosθ ) sinθ since η =

√
µ

ϵ

QED.

to find the power the power radiated is

p f =

∬
hemi−
sphere

Re (E × H∗) ds
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so

p f =

∬
hemi−
sphere

EϕH
∗
θ ds

= 2πη
∫ π

2

0
|Hθ |

2 r 2 sinθ dθ (7)

but

Hθ = −
Eϕ

η

= −

j2πηIS
λ2r

e−jkr sin (kd cosθ ) sinθ

η

= −
j2πIS
λ2r

e−jkr sin (kd cosθ ) sinθ

Hence

|Hθ |
2 =

����2πISλ2r
sin (kd cosθ ) sinθ

����2
=

����2πISλ2r

����2 sin 2 (kd cosθ ) sin 2θ (8)

so, from (7) and (8)

p f =2πη
∫ π

2

0

����2πISλ2r

����2 r 2 sin 2 (kd cosθ ) sin 3θdθ

= 2πη

����2πISλ2

����2 ∫ π
2

0
sin 2 (kd cosθ ) sin 3θ dθ

3 problem 3-17

solution:

the magnetic current density Ms that will generate the same field as the impressed voltage
source ,outside the region where the sources are, is given by

Ms = 2Eboundary
sur f ace

× n

where the boundary surface is the surface that separates the region where the sources are from
the outside region.

To find the boundary surface, we see that the E field propagates in the x direction, so construct
the plane along y = δ ,where δ is a small distance away from the plane y = 0, this will make n
point in the y+ direction, i.e.

n = uy

later on, to find the field in the y < 0 region, we make n = −uy and place the mathematical
plane at y = −δ .

now, since E = ux
Vm
w sin

[
k

( L
2 − |z |

) ]
, where k is the wave number of the medium, given by

k =
√
−ẑŷ , then this E is the tangential field along the plan y = δ , so

Ms = 2

(
ux

Vm
w

sin

[
k

(
L

2
− |z |

) ]
× uy

)
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Ms = 2

�������
ux uy uz

Vm
w sin

[
k

( L
2 − |z |

) ]
0 0

0 1 0

������� = uz 2Vmw sin

[
k

(
L

2
− |z |

) ]

now, to find the magnetic current K from Ms above, since the width isw then total magnetic
current is given by

K = |Ms |w = 2Vm sin

[
k

(
L

2
− |z |

) ]
(1)

now, the problem of sec 2-10 is that of the linear antenna, in that case we were given a current
source

I = Im sin

[
k

(
L

2
− |z |

) ]
(2)

the above was source of the field in that problem. from duality, K ≡ I , compare (1) and (2) , we
see that

Im ≡ 2Vm (3)

now, use this substitution in the solution for the dipole antenna problem, and other dual
substitution, to find the field due to the magnetic current density Ms in the original problem.
Since we have solved the field for the dipole antenna problem, and the solution is given by
equation 2-125 page 82 as

Eθ =
jηIme

−jkr

2πr

[
cos

(
k L
2 cosθ

)
− cos

(
k L
2

)
sinθ

]
(4)

so, apply duality to (4) using Eθ ≡ Hθ , η ≡ 1
η and using Im ≡ 2Vm , apply these replacements

into (4) , results in

Hθ =
jVme

−jkr

ηπr

[
cos

(
k L
2 cosθ

)
− cos

(
k L
2

)
sinθ

]
(5)

note that the above expression was derived with n = uy , this was done to find the field in
the y > 0 region, since the n vector in always in the direction pointing away from the region
where the sources are and into the region where we are interested to find the field due to these
sources.

so, to find the field in y < 0 region, we put our mathematical plane that divides the region
where the sources are and the region where we want to find the field, we put this plane at
y = −δ where δ is small distance from the origin, this makes n to be −uy and this will result
in a minus sign added to equation (5) . so

Hθ = −
jVme

−jkr

ηπr

[
cos

(
k L
2 cosθ

)
− cos

(
k L
2

)
sinθ

]
when y < 0

second part

now, Gr =
pfslot−antenna

|Vm |2
, but we can use duality from the current dipole antenna to find p f

from equation 2-127, we see that for the linear antenna

p fwire−antenna
=
η |Im |

2

2π

∫ [
cos

(
k L
2 cosθ

)
− cos

(
k L
2

)
sinθ

] 2
dθ

applying duality substitution on this we get

p fslot−antenna
=

|2Vm |
2

η2π

∫ π

0

[
cos

(
k L
2 cosθ

)
− cos

(
k L
2

)
sinθ

] 2
dθ

7



so

Gr =
p fslot−antenna

|Vm |
2

=

|2Vm |2

η2π

∫π
0

[
cos

(
k L
2 cosθ

)
−cos

(
k L
2

)
sinθ

] 2
dθ

|Vm |
2

=
2
ηπ

∫ π

0

[
cos

(
k L
2 cosθ

)
− cos

(
k L
2

)
sinθ

] 2
dθ (6)

but from equation 2-129 in book, we see that

Rrwire−dipole =
η

2π

∫ π

0

[
cos

(
k L
2 cosθ

)
− cos

(
k L
2

)
sinθ

] 2
dθ (7)

so, from (7) we see that

2πRrwire−dipole

η
=

∫ π

0

[
cos

(
k L
2 cosθ

)
− cos

(
k L
2

)
sinθ

] 2
dθ

substitute this expression in (6) results in

Gr =
2
ηπ

2πRrwire−dipole

η

=
4Rrwire−dipole

η2

finally, since

Gislote−antenna =
p fslot−antenna

|Vi |
2 =

p fslot−antenna��Vm sin
(KL
2

) ��2 (8)

but Gr =
pfslot−antenna

|Vm |2
so (8) becomes

Gislote−antenna =
Gr

sin 2
(KL
2

)
Q.E.D.

4 problem 3-19

Dr., I solved this using the approach of finding the F vector (magnetic vector potential) and
from that finding H, I know from talking to you on the phone you probably wanted us to use
this equation instead:

E (r ) = −∇ ×

∬
sur f ace

e
−jk

���r−r′ ���
|r − r′ |

E(r
′

) × ds

but this is how I ended up solving this:

Since Ex inside the wave guide is that of mode TE01 then this means that in the relation

kc =
nπ

b
n = 1, 2, 3, ...

8



we choose n = 1. now , notice that the wave propagates in the y-direction, and the field inside
the wave guide has these components: Ex ,Hz,Hy and the plane of the wave moves in the y-axis
direction. for the filed to be zero at z = b

2 and zero at z = −b
2 we must have

Ex = Eo cos
(π
b
z
)
e−γy

also, but since opening of the wave guide is at y = 0

Ex = Eo cos
(π
b
z
)

(1)

now, applying the equivalence principle, we have that the surface magnetic current density is

Ms = 2E × n = ux 2Eo sin
(π
b
z
)
×uy = uz 2Eo cos

(π
b
z
)

so
Ms = uz 2Eo cos

(π
b
z
)

(2)

but we know that for the far field,

F =
ϵe−jkr

4πr

∬
s
Mse

jkr
′
cosϖ ds

′

where ϖ is the angle between r and r
′ .

so, for the far field, and since in for this configuration of having the plane parallel to xz plane,
we have

r
′

cosϖ = x
′

sinθ cosϕ + z
′

cosθ

then

F =
ϵe−jkr

4πr

a/2∫
x
′
=−a/2

b/2∫
z
′
=−b/2

Mse
jk

(
x
′
sinθ cosϕ+z

′
cosθ

)
ds

′

now,Ms is in the z-direction where

uz = ur cosθ + uθ (− sinθ )

radial components the magnetic current density is zero, soMs becomes

Ms = −uθ sinθ
(
2Eo cos

(π
b
z
′
) )

so
Fθ = −b/2b/2 − 2Eo cos

(π
b
z
′
)
sinθ e jk

(
x

′

sinθ cosϕ + z
′

cosθ
)
ds

′

and
Hθ = −jωFθ

let

Lθ =

a/2∫
x
′
=−a/2

b/2∫
z
′
=−b/2

−2Eo cos
(π
b
z
′
)
sinθ e

jk
(
x
′
sinθ cosϕ+z

′
cosθ

)
ds

′

so
Fθ =

ϵ e−jkr

4πr
Lθ

9



Lθ =

a/2∫
x
′
=−a/2

b/2∫
z
′
=−b/2

[
−2Eo cos

(π
b
z
′
)
sinθ

]
e
jk

(
x
′
sinθ cosϕ+z

′
cosθ

)
dx

′

dz
′

= −2Eo sinθ

a/2∫
x
′
=−a/2

b/2∫
z
′
=−b/2

cos
(π
b
z
′
)
e
jk

(
x
′
sinθ cosϕ+z

′
cosθ

)
dx

′

dz
′

= −2Eo sinθ

b/2∫
z
′
=−b/2

cos
(π
b
z
′
)
e jkz

′
cosθ


a/2∫

x
′
=−a/2

e
jk

(
x
′
sinθ cosϕ

)
dx

′

 dz
′

= −2Eo sinθ

b/2∫
z
′
=−b/2

cos
(π
b
z
′
)
e jkz

′
cosθ

[
1

jk sinθ cosϕ

����e jk (
x
′
sinθ cosϕ

) ����a/2
−a/2

]
dz

′

= −2Eo sinθ

b/2∫
z
′
=−b/2

cos
(π
b
z
′
)
e jkz

′
cosθ

[
1

jk sinθ cosϕ

����e jk (
x
′
sinθ cosϕ

) ����a/2
−a/2

]
dz

′

= −2Eo sinθ

b/2∫
z
′
=−b/2

cos
(π
b
z
′
)
e jkz

′
cosθ

[
1

jk sinθ cosϕ

(
e jk

( a
2 sinθ cosϕ

)
− e−jk

( a
2 sinθ cosϕ

) ) ]
dz

′

= −2Eo sinθ

[
1

jk sinθ cosϕ

(
e jk

( a
2 sinθ cosϕ

)
− e−jk

( a
2 sinθ cosϕ

) ) ] b/2∫
z
′
=−b/2

cos
(π
b
z
′
)
e jkz

′
cosθdz

′

= −2Eo sinθ

[
2 sin

(
k a
2 sinθ cosϕ

)
k sinθ cosϕ

] INT︷                                ︸︸                                ︷
b/2∫

z
′
=−b/2

cos
(π
b
z
′
)
e jkz

′
cosθdz

′

applying integration by parts to the second integral:

I =

b/2∫
z
′
=−b/2

cos
(π
b
z
′
)
e jkz

′
cosθdz

′

(4)

where
∫
f dv = f v −

∫
vd f

let f = cos
( π
b z

′)
⇒ d f = −π

b sin
( π
b z

′)
let dv = e jkz

′
cosθ ⇒ v = 1

jk cosθ e
jkz

′
cosθ

so

I = cos
(π
b
z
′
) 1
jk cosθ

e jkz
′
cosθ

����b/2
−b/2
+

b/2∫
z
′
=−b/2

1
jk cosθ

e jkz
′
cosθ b

π
sin

(π
b
z
′
)
dz

′

= cos
(π
b
z
′
) 1
jk cosθ

e jkz
′
cosθ

����b/2
−b/2
+
π

b

1
jk cosθ

apply integration by parts again︷                                ︸︸                                ︷
b/2∫

z
′
=−b/2

e jkz
′
cosθ sin

(π
b
z
′
)
dz

′

apply the integration by parts rule to the second part of the above where

f = sin
( π
b z

′)
⇒ d f = π

b cos
( π
b z

′)
dv = e jkz

′
cosθ ⇒ v = 1

jk cosθ e
jkz

′
cosθ

10



so

I = cos
(π
b
z
′
) 1
jk cosθ

e jkz
′
cosθ

����b/2
−b/2
+
π

b

1
kj cosθ

 sin
(π
b
z
′
) 1
jk cosθ

e jkz
′
cosθ

����b/2
−b/2

−

b/2∫
z
′
=−b/2

1
jk cosθ

e jkz
′
cosθ

(π
b
cos

(π
b
z
′
) )

dz
′


= cos

(π
b
z
′
) 1
jk cosθ

e jkz
′
cosθ

����b/2
−b/2
+
π

b

1
kj cosθ

 sin
(π
b
z
′
) 1
jk cosθ

e jkz
′
cosθ

����b/2
−b/2

−
π

b

1
jk cosθ

b/2∫
z
′
=−b/2

e jkz
′
cosθ cos

(π
b
z
′
)
dz

′


= cos

(π
b
z
′
) 1
jk cosθ

e jkz
′
cosθ

����b/2
−b/2
+
π

b

1
jk cosθ

{
sin

(π
b
z
′
) 1
jk cosθ

e jkz
′
cosθ

����b/2
−b/2

−
π

b

1
jk cosθ

(I )

}
= cos

(π
b
z
′
) 1
jk cosθ

e jkz
′
cosθ

����b/2
−b/2
+
π

b

1
jk cosθ

(
sin

(π
b
z
′
) 1
jk cosθ

e jkz
′
cosθ

����b/2
−b/2

)
−

(
π

b

1
jk cosθ

) 2
(I )

Hence

I

(
1 +

(
π

b

1
jk cosθ

) 2)
=

first limit to evaluate︷                                   ︸︸                                   ︷
cos

(π
b
z
′
) 1
jk cosθ

e jkz
′
cosθ

����b/2
−b/2
+
π

b

1
jk cosθ

©­­­­­­«

second limit to evaluate︷                                   ︸︸                                   ︷
sin

(π
b
z
′
) 1
jk cosθ

e jkz
′
cosθ

����b/2
−b/2

ª®®®®®®¬
(5)

now, evaluate the limits as show above

first limit= cos
( π
b z

′) 1
jk cosθ e

jkz
′
cosθ

���b/2
−b/2

= cos
(
π
b
b
2

)
1

jk cosθ e
jk b

2 cosθ − cos
(
−π

b
b
2

)
1

jk cosθ e
−jk b

2 cosθ = 0

and the second limit term:

second limit =
π

b

1
jk cosθ

(
sin

(π
b
z
′
) 1
jk cosθ

e jkz
′
cosθ

����b/2
−b/2

)
=
π

b

1
jk cosθ

{
sin

(
π

b

b

2

)
1

jk cosθ
e jk

b
2 cosθ − sin

(
−
π

b

b

2

)
1

jk cosθ
e−jk

b
2 cosθ

}
=
π

b

1
jk cosθ

( [
1

jk cosθ

] (
e jk

b
2 cosθ + e−jk

b
2 cosθ

) )
=
π

b

1
jk cosθ

( [
1

jk cosθ

]
2 cos

(
k
b

2
cosθ

) )
=

2π cos
(
k b
2 cosθ

)
−bk2 cos 2θ

so, equation (5) becomes

I =

2π cos
(
k b
2 cosθ

)
−bk2 cos 2θ

1 +
(
π
b

1
jk cosθ

) 2 = 2πb cos
(
k b
2 cosθ

)
π 2 − [bk cosθ ]2

substitute the above equation into equation (3) we get
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Lθ = −2Eo sinθ

[
2 sin

(
k a
2 sinθ cosϕ

)
k sinθ cosϕ

]
(I )

= −2Eo sinθ

[
2 sin

(
k a
2 sinθ cosϕ

)
k sinθ cosϕ

]
2πb cos

(
k b
2 cosθ

)
π 2 − [bk cosθ ]2

= −2Eo

(
2 sin

(
k a
2 sinθ cosϕ

)
k cosϕ

)
2πb cos

(
k b
2 cosθ

)
π 2 − [bk cosθ ]2

=
−8Eo sin

(
k a
2 sinθ cosϕ

)
k cosϕ

πb cos
(
k b
2 cosθ

)
π 2 − [bk cosθ ]2

=
−8πbEo sin

(
k a
2 sinθ cosϕ

)
cos

(
k b
2 cosθ

)
k cosϕ

(
π 2 − [bk cosθ ]2

)
now, since from above we already said that

Fθ =
ϵ e−jkr

4πr
Lθ

so

Fθ = −
ϵe−jkr

4πr

©­­«
8πbEo sin

(
k a
2 sinθ cosϕ

)
cos

(
k b
2 cosθ

)
k cosϕ

(
π 2 − [bk cosθ ]2

) ª®®¬
but

Hθ = −jωFθ

= −j
k

√
ϵµ

Fθ

so using the relation η =
√

µ
ϵ we get

Hθ =

(
−j

k
√
ϵµ

) [
−
ϵ e−jkr

4πr

] ©­­«
8πbEo sin

(
k a
2 sinθ cosϕ

)
cos

(
k b
2 cosθ

)
k cosϕ

(
π 2 − [bk cosθ ]2

) ª®®¬
=

2jbEoe−jkr

ηr

sin
(
k a
2 sinθ cosϕ

)
cos

(
k b
2 cosθ

)
cosϕ

(
π 2 − [bk cosθ ]2

) (6)

Dr., as I mentioned to you on the phone, I have an extra ”2” factor in the numerator, while the
solution in the book has the ”2” in denominator, I went over this solution many times, and cant
see where I did the math error if I did.

5 problem 3-20

E (r ) = −∇ ×

∬
area

e
−jk

���r−r′ ���
2π |r − r′ |

E
(
r
′
)
× ds

′

(1)

the incident field is given by
Ei = uzEoe

jk(x cosϕo+y sinϕo )

assume the plate is perfect conductor, and use approximation that assumes the plate is perfect
conductor to be able to use image theory and say that tangential component of the field outside
E ,can by approximated to be the value of the field Es (the scattered field from the plate).

12



now, since we evaluate the Eiz at the boundary (tangential) , which is at the plate, which has
x = 0, then

Ei = uzEoe
jk(y sinϕo )

Ms = 2Ei × n = 2uzEoe
jk(y sinϕo ) × ux = −uy

(
2Eoe

jk(y sinϕo )
)

for the plane yz the differential path from origin to the unit area ds ′ is given by

r
′

cosϖ = y
′

sinθ sinϕ + z
′

cosθ

where ϖ is the angle between r
′ and r

so

F = −uy
ϵe−jkr

4πr

e
jk

���r ′−r ���
a/2∫

y=−a/2

b/2∫
z
′
=−b/2

︷                    ︸︸                    ︷
e
jk

(
y
′
sinθ sinϕ+z

′
cosθ

) Ms︷             ︸︸             ︷
2Eoe

jk
(
y
′
sinϕo

)
dz

′

dy
′

since we want to find F at θ = π/2,(xy plane) then sinθ = 1, cosθ = 0 so

Fy = −
ϵe−jkr

4πr

a/2∫
y=−a/2

b/2∫
z
′
=−b/2

e
jk

(
y
′
sinϕ

)
2Eoe

jk
(
y
′
sinϕo

)
dz

′

dy
′

Hence

Fy = −
e−jkr

2πr

a/2∫
y
′
=−a/2

b/2∫
z
′
=−b/2

e
jk

(
y
′
sinϕ

)
Eoe

jk
(
y
′
sinϕo

)
dz

′

dy
′

= −
Eoe

−jkr

2πr

a/2∫
−a/2

b/2∫
−b/2

e
jk

(
y
′
sinϕ

)
+jk

(
y
′
sinϕo

)
dz

′

dy
′

= −
Eoe

−jkr

2πr

a/2∫
−a/2

b/2∫
−b/2

e
jk

(
y
′
(sinϕ+sinϕo )

)
dz

′

dy
′

= −
Eoe

−jkr

2πr

a/2∫
−a/2

e
jk

(
y
′
(sinϕ+sinϕo )

) 
b/2∫

−b/2

dz

 dy
= −

Eoe
−jkr

2πr

a/2∫
−a/2

e
jk

(
y
′
(sinϕ+sinϕo )

)
[b]dy

= −
Eoe

−jkrb

2πr

a/2∫
−a/2

e
jk

(
y
′
(sinϕ+sinϕo )

)
dy

so, now we integrate the dy part

13



Fy = −
bEoe

−jkr

2πr

a/2∫
y=−a/2

e
jk

(
y
′
(sinϕ+sinϕo )

)
dy

= −
2bEoe−jkr

2πr

{
1

jk (sinϕ + sinϕ)

����e jk (
y
′
(sinϕ+sinϕo )

) ����a/2
−a/2

}
= −

2bEoe−jkr

2πr

{
e jk

( a
2 (sinϕ+sinϕ)

)
− e−jk

( a
2 (sinϕ+sinϕo )

)
jk (sinϕ + sinϕo)

}
= −

2bEoe−jkr

2πr

{
2j sin

(
k a
2 (sinϕ + sinϕo)

)
jk (sinϕ + sinϕo)

}
= −

2bEoe−jkr

2πr

{
2 sin

(
k a
2 (sinϕ + sinϕo)

)
k (sinϕ + sinϕo)

}
so

Fy = −
2Eoe−jkr

2πr

{
2 sin

(
k a
2 (sinϕ + sinϕo)

)
k (sinϕ + sinϕo)

}
= −

2Eoe−jkr

2πr

{
2 sin

(
k a
2 (sinϕ + sinϕo)

)
k (sinϕ + sinϕo)

}
so

Es = − ∇ × uyF

well, I cant see what I did wrong Dr. Drane, there is something here I dont see right know and
I must have done a mistake. The second part of this problem is completed using the answer
given in the book for the first part. Given

Esz '
kEoabe

−jkr

j2πr

sin
(
k

( a
2

)
(sinϕ + sinϕo)

)
k

( a
2

)
(sinϕ + sinϕo)

cosϕ

we need to find the echo area. the echo area is defined as

Ae = lim
r→∞

(
4πr 2

S
s

S
i

)

where S
i
is the incident power density and S

s
is the scattered power density for the incident

field

S = Re(EH #) = Re
(
E

(
E#

η

) )
=

|E |2

η

assuming η is real(as in case for air).

S
i
= Re

(
Eoe

jk(x cosϕo+y sinϕ)
(
ηEoe

jk(x cosϕo+y sinϕ)
) #)
= η

��E2o ��
since

��e(∗)�� = 1 and
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S
s
= Re

(
kEoabe

−jkr

j2πr

sin
(
k

( a
2

)
(sinϕ + sinϕo)

)
k

( a
2

)
(sinϕ + sinϕo)

cosϕ

[
η
kEoabe

−jkr

j2πr

sin
(
k

( a
2

)
(sinϕ + sinϕo)

)
k

( a
2

)
(sinϕ + sinϕo)

cosϕ

] #)
=
kEoab

2πr

sin
(
k

( a
2

)
(sinϕ + sinϕo)

)
k

( a
2

)
(sinϕ + sinϕo)

cosϕ

[
η
kEoab

2πr

sin
(
k

( a
2

)
(sinϕ + sinϕo)

)
k

( a
2

)
(sinϕ + sinϕo)

cosϕ

]
= η

(
Eoab

2πr

sin
(
k

( a
2

)
(sinϕ + sinϕo)

)( a
2

)
(sinϕ + sinϕo)

cosϕ

) 2
so

Ae = lim
r→∞

©­­«4πr 2
[
η Eoab

2πr
sin

(
k
( a
2

)
(sinϕ+sinϕo )

)( a
2

)
(sinϕ+sinϕo )

cosϕ
] 2

η
��E2o �� ª®®¬

=

(
ab

sin
(
k

( a
2

)
(sinϕ + sinϕo)

)
π

( a
2

)
(sinϕ + sinϕo)

cosϕ

) 2
That is all i can do on this…

6 problem 3-24

looking at induced currents on the obstacle by each antenna in turn.

when unit current applied at antenna 1 then

Js1 = n ×
(
Hs
1 − H1

)
Ms

1 =
(
Es1 − E1

)
× n (1)

but

Es1 = E1 − Ei1
Hs
1 = H1 − Hi

1

so equation (1) becomes

Js1 = Hi
1 × n (2)

Ms
1 = n × Ei1

similarly for antenna 2 we get

Js2 = Hi
2 × n (3)

Ms
2 = n × Ei2

now, from reciprocity, we know that V i
1 = V

i
2 or in other words Ei1 = Ei2

using this and from equation (2) and (3) we get

Ms
1 = Ms

2
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i.e. the magnetic currents induced on the obstacle by antenna 1 are equal to the magnetic
current induced on antenna 2. this is when a unit current source is placed at each antenna
respectively.

so, since Ms
1 = Ms

2 then the electric fields generated by theses currents must be the same. i.e.
Es1 = Es2, and this in turn means that V s

1 = V
s
2 .

Q.E.D.

7 problem 3-29

Derive the left hand term of Eq. 3-50, that is show that

LHS︷                                                           ︸︸                                                           ︷∬
sur f ace

E × ∇ × G1 − G1 × ∇ × E + E (∇ · G1) · ds −→��r−r′ ��→0
4πc · E (1)

where surface integration is over a surface of the small sphere, if we let the field point at the
surface of the sphere, and the source point, where the unit current source , to be located at the
center of the sphere, then the radius of the sphere is

R =
���r − r

′
���

first note that
E × ∇ × G1 = ∇ (E · G1) − (E · ∇)G1

and
G1 × ∇ × E =∇ (G1 · E) − (G1·∇)E

so LHS of equation (1) becomes

LHS =

∬
sur f ace

︷     ︸︸     ︷
∇ (E · G1) − (E · ∇)G1

︷       ︸︸       ︷
−∇ (G1 · E)+ (G1·∇)E + E (∇ · G1) · ds (2)

=

∬
sur f ace

− (E · ∇)G1 + (G1·∇)E + E (∇ · G1) · ds

where the terms marked above has been canceled with each others.

now, another cancellation is made by observing G1 = ϕc, where c is a constant vector, this
means that

(E · ∇)G1 = 0

and
E (∇ · G1) = 0

so, equation (2) above becomes

LHS =

∬
sur f ace

(G1·∇)E · ds

this is the equation we need to show it goes to 4πc · E as
��r − r

′�� → 0, or in other hands, as the
radius of the small sphere goes to zero.
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since
ds = n · ds

to find n, we note that the equation of the sphere is

x2 + y2 + z2 = R2

where R is the radius. a normal vector to this locus is given by ∇
(
x2 + y2 + z2

)
= ux2x+uy2y+

uz2z

so a unit vector becomes

n =
ux2x + uy2y + uz2z��ux2x + uy2y + uz2z�� = ux2x + uy2y + uz2z√

4x2 + 4y2 + 4z2
=

ux2x + uy2y + uz2z

2R

where the relation x2 + y2 + z2 = R2 was used to simplify last step above.

now, the projection of the unit area ds into the xy plane is

ds =
dxdy

|n · uz |

so LHS can now be written as

LHS =

∬
sur f ace

E (∇ · G1) · ds

=

∬
xy−plan

E (∇ · G1) · n
dxdy

|n · uz |

=

∬
xy−plane

E (∇ · G1) ·

(
ux2x + uy2y + uz2z

2R

)
dxdy�� 2z
2R

��
=

∬
xy−plane

E (∇ · G1) ·

(
uxx + uyy + uzz

R

)
dxdy

z/R

=

∬
xy−plane

E (∇ · G1) ·
(
uxx + uyy + uzz

) dxdy
z

now, since x2 + y2 + z2 = R, then

z =
√
R2 − x2 − y2

let E (∇ · G1) =

LHS =

∬
sur f ace

E (∇ · G1) ·
(
uxx + uyy + uzz

) dxdy
z

=

∬
sur f ace

·
(
uxx + uyy + uzz

) dxdy√
R2 − x2 − y2

=

∬
sur f ace

(
Φxx + Φyy + Φzz

) dxdy√
R2 − x2 − y2

=

∬
sur f ace

(
Φxx + Φyy + Φz

√
R2 − x2 − y2

) dxdy√
R2 − x2 − y2

=

∬
sur f ace

Φxx
dxdy√

R2 − x2 − y2
+

∬
sur f ace

Φyy
dxdy√

R2 − x2 − y2
+

∬
sur f ace

Φz

√
R2 − x2 − y2

dxdy√
R2 − x2 − y2
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8 problem 3-27

In the vector Green’s theorm [eqn 3-46], let A = Ea and B = Eb in a homogenouse isotropic
region, and show that it reduces to quation 3-35.

solution

we want to show that, but letting A = Ea and B = Eb in∬
sur f ace

(A × ∇ × B − B × ∇ × A) · ds =
∭
τ

(B · ∇ × ∇ × A − A · ∇ × ∇ × B) dτ (1)

it reduces to

−

∬
sur f ace

(
Ea × Hb − Eb × Ha

)
· ds =

∭
τ

(
Ea · Jb − Ha ·Mb − Eb · Ja + Hb ·Ma

)
dτ

in (1), let A = Ea and B = Eb we get
LHS︷                                         ︸︸                                         ︷∬

sur f ace

(
Ea × ∇ × Eb − Eb × ∇ × Ea

)
· ds =

RHS︷                                               ︸︸                                               ︷∭
τ

(
Eb · ∇ × ∇ × Ea − Ea · ∇ × ∇ × Eb

)
dτ (2)

looking at the left hand side of equation (2) for now, and using maxwell equation where
∇ × E = (−ẑH −M)

LHS =
∬

sur f ace

©­­­­«
Ea ×

−ẑHb−Mb︷ ︸︸ ︷
∇ × Eb − Eb ×

−ẑHa−Ma︷ ︸︸ ︷
∇ × Ea

ª®®®®¬
· ds

=
∬

sur f ace

(
Ea ×

(
−ẑHb −Mb

)
− Eb × (−ẑHa −Ma)

)
· ds

now, apply the following 2 relations into the above equation

Ea ×
(
−ẑHb −Mb

)
=

(
−Ea × ẑHb

)
+

(
−Ea ×Mb

)
Eb × (−ẑHa −Ma) =

(
−Eb × ẑHa

)
+

(
−Eb ×Ma

)
this leads to

LHS =

∬
sur f ace

{ (
−Ea × ẑHb

)
+

(
−Ea ×Mb

) }
−{ (

−Eb × ẑHa
)
+

(
−Eb ×Ma

) }
· ds

=

∬
sur f ace

(
−Ea × ẑHb

)
−

(
−Eb × ẑHa

)
+(

−Ea ×Mb
)
−

(
−Eb ×Ma

)
· ds

=

∬
sur f ace

(
−Ea × ẑHb

)
−

(
−Eb × ẑHa

)
·ds +∬

sur f ace

(
−Ea ×Mb

)
−

(
−Eb ×Ma

)
· ds

=

−ẑ
∬

sur f ace

(
Ea × Hb

)
−

(
Eb × Ha

)
·ds +

apply divergence theorm on this︷                                          ︸︸                                          ︷∬
sur f ace

(
−Ea ×Mb

)
+

(
Eb ×Ma

)
· ds
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so

LHS = −ẑ

∬
sur f ace

(
Ea × Hb

)
−

(
Eb × Ha

)
·ds (3)

let this be called Θ

+

︷                                             ︸︸                                             ︷∭
τ

−∇·

(
Ea ×Mb

)
+ ∇·

(
Eb ×Ma

)
dτ

but the above expression Θ by simplifed further by noting that

∇·

(
Ea ×Mb

)
= Mb · (∇ × Ea) − Ea ·

(
∇ ×Mb

)
∇·

(
Eb ×Ma

)
= Ma ·

(
∇ × Eb

)
− Eb · (∇ ×Ma)

subtitute the above 2 equations into the volume integral of equation (3) leads to

Θ = −∇·
(
Ea ×Mb

)
+ ∇·

(
Eb ×Ma

)
=

−Mb · (∇ × Ea) + Ea ·
(
∇ ×Mb

)
+Ma ·

(
∇ × Eb

)
− Eb · (∇ ×Ma)

so, the LHS of equation (2) has been simplified to this

− ẑ

∬
sur f ace

(
Ea × Hb

)
−

(
Eb × Ha

)
·ds +

∭
τ

Θ dτ (4)

now we work on the RHS of equation (2), and we see cancelations with equation (4) above ,
that will lead to the final answer.

the RHS of equation (2) becomes, noting that ∇ × ∇ × E = ∇× (−ẑH −M) = −∇ × ẑH − ∇ ×M

so
RHS =

∭
τ

(
Eb · ∇ × ∇ × Ea − Ea · ∇ × ∇ × Eb

)
dτ

=

∭
τ

Eb · (−∇ × ẑHa − ∇ ×Ma)

−Ea ·
(
−∇ × ẑHb − ∇ ×Mb

)
dτ

=

∭
τ

Eb · (−∇ × ẑHa) − Eb · (∇ ×Ma)

−Ea ·
(
−∇ × ẑHb

)
+ Ea ·

(
∇ ×Mb

)
dτ

looking at the last equation above, and atΘ in the LHS of equation (4), we see that Eb · (∇ ×Ma)

and Ea ·
(
∇ ×Mb

)
cancels out with each others, this means that the whole equation can now

be written as

LHS = RHS

−ẑ
∬
area

(
Ea × Hb

)
−

(
Eb × Ha

)
·ds+∭

−Mb · (∇ × Ea) +Ma ·
(
∇ × Eb

)
dτ

=

∭
τ

Eb · (−∇ × ẑHa) −

Ea ·
(
−∇ × ẑHb

)
dτ

(5)

now,
Mb · (∇ × Ea) = Mb · (−ẑHa +Ma) = −Mb · ẑHa +Mb ·Ma

and
Ma ·

(
∇ × Eb

)
= Ma ·

(
−ẑHb +Mb

)
= −Ma · ẑHb +Ma ·Mb
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subtitute the above into the LHS of equation (5) we get

LHS = −ẑ
∬

sur f ace

(
Ea × Hb

)
−

(
Eb × Ha

)
·ds+∭

+Mb · ẑHa −Mb ·Ma −Ma · ẑHb +Ma ·Mb

= −ẑ
∬

sur f ace

(
Ea × Hb

)
−

(
Eb × Ha

)
·ds+∭

+Mb · ẑHa −Ma · ẑHb

(6)

now, looking at the RHS of equation (5) and using relation that ∇ × H =ŷE + J , that is,
∇ × ẑH =ẑ (ŷE + J)

Eb · (−∇ × ẑHa) = −Eb · (∇ × ẑHa) = −ẑEb · (ŷEa + Ja)

= −ẑEb · ŷEa − ẑEb · Ja

and

Ea ·
(
−∇ × ẑHb

)
= −Ea ·

(
∇ × ẑHb

)
= −ẑEa ·

(
ŷEb + Jb

)
= −ẑEa · ŷEb − ẑEa · Jb

so, the RHS of equation (5) becomes

RHS =
∭

−ẑEb · (ŷEa + Ja) =

−ẑEb · ŷEa − ẑEb · Ja −
(
−ẑEa · ŷEb − ẑEa · Jb

)
=

∭
−ẑEb · ŷEa − ẑEb · Ja + ẑEa · ŷEb + ẑEa · Jb dτ

=
∭

−ẑEb · Ja + ẑEa · Jb dτ

(7)

so, from (6) and (7), we see that our equation finaly looks like

LHS = RHS

−ẑ
∬

sur f ace

(
Ea × Hb

)
−

(
Eb × Ha

)
·ds

+
∭

Mb · ẑHa −Ma · ẑHbdτ
=

∭
−ẑEb · Ja + ẑEa · Jb dτ

−
∬

sur f ace

(
Ea × Hb

)
−

(
Eb × Ha

)
·ds

+
∭

Mb · Ha −Ma · Hb dτ
=

∭
−Eb · Ja + Ea · Jb dτ

−
∬

sur f ace

(
Ea × Hb

)
−

(
Eb × Ha

)
·ds =

∭ (
Ea · Jb −Mb · Ha − Eb · Ja +Mb · Ha

)
dτ

QED

9 problem 3-29it

Derive the left hand term of Eq. 3-50, that is show that

LHS︷                                                           ︸︸                                                           ︷∬
sur f ace

E × ∇ × G1 − G1 × ∇ × E + E (∇ · G1) · ds −→��r−r′ ��→0
4πc · E (1)
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where surface integration is over a surface of the small sphere, if we let the field point at the
surface of the sphere, and the source point, where the unit current source , to be located at the
center of the sphere, then the radius of the sphere is

R =
���r − r

′
���

first note that
E × ∇ × G1 = ∇ (E · G1) − (E · ∇)G1

and
G1 × ∇ × E =∇ (G1 · E) − (G1·∇)E

so LHS of equation (1) becomes

LHS =
∬

sur f ace

︷     ︸︸     ︷
∇ (E · G1) − (E · ∇)G1

︷       ︸︸       ︷
−∇ (G1 · E)+ (G1·∇)E + E (∇ · G1) · ds

=
∬

sur f ace

− (E · ∇)G1 + (G1·∇)E + E (∇ · G1) · ds

(2)

where the terms marked above has been canceled with each others.

now, another cancellation is made by observing G1 = ϕc, where c is a constant vector, this
means that

(E · ∇)G1 = 0

and
E (∇ · G1) = 0

so, equation (2) above becomes

LHS =

∬
sur f ace

(G1·∇)E · ds (3)

this is the equation we need to show it goes to 4πc · E as
��r − r

′�� → 0, or in other hands, as the
radius of the small sphere goes to zero.

(G1·∇)E = uxG1x
∂Ex
∂x
+ uyG1y

∂Ey

∂y
+ uzG1z

∂Ez
∂z

but G1 = ϕc, where c is a constant vector, so the above becomes

(G1·∇)E = ux
∂ExG1x

∂x
+ uy
∂EyG1y

∂y
+ uz
∂EzG1z

∂z
= ∇

(
ExG1x + EyG1y + EzG1z

)
= ∇ (E · G1)

so from equation (3) we get

LHS =

∬
sur f ace

∇ (E · G1) · ds (4)

now,
∫

d
dt f (t) = f (t) , so apply this rule to the above, so equation (4) becomes

LHS = (E · G1)

∬
sur f ace

(
ux + uy + uz

)
· ds (5)

now, ds = n·ds
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where
l = ∇

(
x2 + y2 + z2

)
= ux2x + uy2y + u z2z

since the equation of the sphere is x2 + y2 + z2 = R2 where R is the radius. and l is vector
normal to the surface of the sphere.

so
n =

l
|l|
=

ux2x + uy2y + u z2z√
4x2 + 4y2 + 4z2

=
ux2x + uy2y + u z2z

2R

now, the projection of the unit area ds into the xy plane is

ds =
dxdy

|n · uz |
=
dxdy

z/R

but
z =

√
R2 − x2 − y2

so equation (5) becomes

LHS = (E · G1)

∬
sur f ace

(
ux + uy + uz

)
· ds

or

LHS = (E · G1)

∬
sur f ace

(
ux + uy + uz

)
·
ux2x + uy2y + u z2z

2

dxdy√
R2 − x2 − y2

Hence
LHS = (E · G1)

∬
sur f ace

(
ux + uy + uz

)
·
ux 2x+uy2y+u z2z

2
dxdy√

R2−x2−y2

= (E · G1)
∬

sur f ace

(
ux + uy + uz

)
· uxx + uyy + u zz

dxdy√
R2−x2−y2

= (E · G1)
∬

sur f ace

x + y +
(√

R2 − x2 − y2
)

dxdy√
R2−x2−y2

= (E · G1)

x=R∫
x=−R

R∫
y=−R

x + y +
(√

R2 − x2 − y2
)

dxdy√
R2−x2−y2

Dr., I have not managed to integrate the above within time, if the integration above results in
a value of 4πR the final results will follow:

LHS = (E · G1) 4πR = ϕc · E 4πR (6)

but

ϕ =
e−jkR

R

so equation (6) becomes, as R → 0

ϕc · E 4πR =
e−jkR

R
c · E 4πR = 4πc · E

Q.E.D.

Dr., I did not carry the integration above completely, so my result for the integration can be
wrong. I am not sure if there is a more direct approach without doing this long integration.
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10 problem 3.3

Suppose that the two current sheets

Js = ux A
Zo

sin πy
b

Ms = uyA sin πy
b

exist simulaneously over the cross section z=0 of fig 3-2. show that these produce a field

Ex =


−A sin πy

b e
−jβz z > 0

0 z < 0

Solution

Since each sheet alone will produce an solution for Ex and since these solutions are linear, then
we will need to add the electric field due to the electric current sheet, to the electric field due
to the maganetic current sheet to get the total electric field for both.

we know from page 97 in text that when

Js = ux Jo sin
πy

b
⇒ Ex =


−
JoZo
2 sin πy

b e
−jβz z > 0

−
JoZo
2 sin πy

b e
jβz z < 0

then, we can conclude by comparison and replacing Jo by A
Zo

we get:

Js = ux
A

Zo
sin

πy

b
⇒ Ex =


−A

2 sin
πy
b e

−jβz z > 0

−A
2 sin

πy
b e

jβz z < 0

(1)

also, we know from problem 3-2, that when

Ms = uy Mo sin
πy

b
⇒ Ex =


−
Mo
2 sin πy

b e
−jβz z > 0

Mo
2 sin πy

b e
jβz z < 0

then,we can conclude by comparison and replacingMo by A we get:

Ms = uy A sin
πy

b
⇒ Ex =


−A

2 sin
πy
b e

−jβz z > 0

A
2 sin

πy
b e

jβz z < 0

(2)

so, the electric field due to Js = ux A
Zo

sin πy
b and Ms = uyA sin πy

b
is given by adding

equation (1) and equation (2):

Ex =


−A sin πy

b e
−jβz z > 0

0 z < 0

QED.
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11 problem 3.6

Obtain the field of an infintsmall loop of magnetic current having z-directed moment KS. Show
that this produces the same field as the electric current element of fig 2-21 if

Il = jωϵKS

Solution

the field due to infintsmall loop of electric current is given by problem 2-42 as

Hr =
IS
2π e

−jkr
(
jk
r 2
+ 1

r 3

)
cosθ

Hθ =
IS
4π e

−jkr
(
−k2

r +
jk
r 2
+ 1

r 3

)
sinθ

Eϕ =
ηIS
4π e

−jkr
(
k2

r −
jk
r 2

)
sinθ

apply duality substitution to the above equation yield

Er =
KS
2π e

−jkr
(
jk
r 2
+ 1

r 3

)
cosθ

Eθ = KS
4π e

−jkr
(
−k2

r +
jk
r 2
+ 1

r 3

)
sinθ

Hϕ =
KS
η4π e

−jkr
(
k2

r −
jk
r 2

)
sinθ

(1)

but, the field due to electric current element of fig 2-21 is

Er =
Il
2π e

−jkr
(
η
r 2
+ 1

jωϵr 3

)
cosθ

Eθ = Il
4π e

−jkr
(
jωµ
r +

η
r 2
+ 1

jωϵr 3

)
sinθ

Hϕ =
Il
4π e

−jkr
(
jk
r −

r 2

)
sinθ

(2)

from the above equations (2) and (2), we see that if we substitute Il = jωϵKS in the (2), we will
get (1).

QED.

12 problem 3.4

in fig 3-2, suppose that a ”shorting plate” (conductor) in placed over the cross section z = −d .

show that the current sheet of eq. 3-2 now produces a field

Ex =


−
JoZo
2

(
1 − e−j2βd

)
sin πy

b e
−jβz z > 0

−j JoZoe
−jβd sin πy

b sin [β (d + z)] −d < z < 0

Note that when d is an odd number of guide quarter-wavelengths, Ex for z > 0 is twice that
for the current sheet alone [see equation 3-3], but when d is an integral number of guide
half-wavelengths, no Ex exists for z > 0 .

solution
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this is a problem of scattering, the idea is that equivalent magnetic current densities are intro-
duced to replace the physical obstacles, in this case the shorting plate.

solution steps:

1) Find the field due to the current sheet J = ux Jo sin
πy
b when the shorting plate is removed.

Call this field Ei.

2) Find the induced maganetic currentMs on the shorting plate from Ei by the relation

Ms =2 n × Ei
��
z=−d

3) Find the perturbation electric field due to Ms ,call this field Es.(usually called the scattered
field)

4) The field due to the current sheet J = ux Jo sin
πy
b and due to Ms is then found by adding

Ei + Es.

Assumptions

the dominant part of the magnetic current Ms resides only in the front fact of the shorting
plate, the face facing the incident wave, and that the image theory holds for finite plate.

step 1 from equation 3-3 page 98

Eix =


−
JoZo
2 sin πy

b e
−jβz z > 0

−
JoZo
2 sin πy

b e
jβz z < 0

(1)

step 2
Ms =2 n × Ei

��
z=−d

where n is the unit vector normal to the plane where current Ms lies in, that will be the x-y
plane.

So n = −uz , the negative sign used since the normal vector is in the direction of propgration
of the field, which in negtive directed in the negtaive z-axis.

For Ei , since the shorting sheet is located in the negative z-axis, use this component:

Ex = −
JoZo

2
sin

πy

b
e jβz

so

Ms = 2

�������
ux uy uz

0 0 −1

−
JoZo
2 sin πy

b e
jβz 0 0

�������
z=−d

= −uy
(
−JoZo sin

πy

b
e jβz

) ���
z=−d

Ms = uy
(
JoZo sin

πy

b
e−jβd

)
step 3

Find the electric field due to Ms.

Es = −∇ × F

where

F =
1
4π

∬
xy plane

Ms e
−jk

���r−r′ ���
|r − r′ |

ds
′

for the far field, F becomes

F =
e−jβr

4π

∬
xy plane

Ms

(
r
′
)
e jβr

′
cosψ ds

′

(2)
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where r is the position vector of the field point (where observation of the electric potional
vector is made from) and r′ is the position vector of the source element, and ψ is the angle
betwen the vectors r and r′ .

r
′

cosψ = x
′

cosϕ sinθ + y
′

sinϕ sinθ + z
′

cosθ (3)

so, from equation (4), we get, noting that z ′

= −d :

F = e−j βr

4π

∬
xy plane

Ms e
jβ

(
x
′
cosϕ sinθ+y

′
sinϕ sinθ +z

′
cosθ

)
dx

′

dy
′

= e−j βr

4π

a∫
x
′
=0

b∫
y
′
=0

uy
(
JoZo sin

πy
b e

−jβd
)
e
jβ

(
x
′
cosϕ sinθ+y

′
sinϕ sinθ +z

′
cosθ

)
dx

′

dy
′

Fy =
e−j βr

4π JoZo sin
πy
b e

−jβd
a∫

x
′
=0

b∫
y
′
=0

e
jβ

(
x
′
cosϕ sinθ+y

′
sinϕ sinθ +(−d) cosθ

)
dy

′

dx
′

= e−j βr

4π JoZo sin
πy
b e

−(jβd)e−(jβd cosθ )
a∫

x
′
=0

b∫
y
′
=0

e
jβ

(
x
′
cosϕ sinθ+y

′
sinϕ sinθ

)
dy

′

dx
′

= e−j βr

4π JoZo sin
πy
b e

−jβde−(jβd cosθ )
a∫

x
′
=0

e
jβ

(
x
′
cosϕ sinθ

) ©­«
b∫

y
′
=0

e
jβ

(
y
′
sinϕ sinθ

)
dy

′ª®¬dx ′

= e−j βr

4π JoZo sin
πy
b e

−jβde−(jβd cosθ )
a∫

x
′
=0

e
jβ

(
x
′
cosϕ sinθ

) (
e j βb sinϕ sin θ−1
jβ sinϕ sinθ

)
dx

′

= e−j βr

4π JoZo sin
πy
b e

−jβde−(jβd cosθ )
(
e j βb sinϕ sin θ−1
jβ sinϕ sinθ

) (
e j βa cosϕ sin θ−1
jβ cosϕ sinθ

)
so

Fy = e−j βr

4π JoZo sin
πy
b e

−jβde−(jβd cosθ )
(
e j βb sinϕ sin θ−1
jβ sinϕ sinθ

) (
e j βa cosϕ sin θ−1
jβ cosϕ sinθ

)
= Λe−j βr

4π JoZo sin
πy
b e

−jβde−(jβd cosθ )

where Λ =
(
e j βb sinϕ sin θ−1
jβ sinϕ sinθ

) (
e j βa cosϕ sin θ−1
jβ cosϕ sinθ

)
=

(
e j βb sinϕ sin θ−1

) (
e j βa cosϕ sin θ−1

)
−β2 sin 2θ sinϕ cosϕ

Fy = Λ
e−jβr

4π
JoZo sin

πy

b
e−jβde−(jβd cosθ )

Es = −∇ × F

= −

�������
ux uy uz
∂/∂x ∂/∂y ∂/∂z

0 Λe−j βr

4π JoZo sin
πy
b e

−jβde−(jβd cosθ ) 0

�������
= ux

(
∂/∂z

(
Λe−j βr

4π JoZo sin
πy
b e

−jβde−(jβd cosθ )
) )

−uz
(
∂/∂x

(
Λe−j βr

4π JoZo sin
πy
b e

−jβde−(jβd cosθ )
) )

Esx = ∂/∂z
(
Λe−j βr

4π JoZo sin
πy
b e

−jβd−jβd cosθ
)

= ∂/∂z
(
Λe−j βr

4π JoZo sin
πy
b e

−jβ(d+d cosθ )
)
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final step is to do Ei + Es.

Eix =


−
JoZo
2 sin πy

b e
−jβz z > 0

−
JoZo
2 sin πy

b e
jβz z < 0

+ Esx

Dr, that is the result i could get using a directo approach, I think may be I should have used
duality to help solve this problem, since we know what is the field due to electric current
sheet, we can replace the terms of this field by those for the dua; term for maganetic sheet. I
dont know if I can solve it this way . I dont have more time to look at this, I have an exam
tommorrow i need to study for. sorry about that.

to with the time i have left, I have a mid term exam tommorrow and

I tried my best to get the answer in the book, this is the closest I got.
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