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1 problem 3-11

suppose there exists within the rectangular cavity of fig 2-19 a field
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wherey = /(%) > _k? andkis complex (lossy dielectric). show that this field can be supported
by source

M; = —uyE, sin %y sinh yc
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at the wall z = ¢. Show that for low loss dielectric, Ms almost vanishes at the resonant frequency

fr= 21% bze—tfz , that is, a small M produces a large E

1.1 Solution
Using the equivalence theorem, find a current M; that will generate the E field given.
first find the E field at the boundary of the region.ieatz = ¢

E,-. = u,E,sin %y sinh yc

S0,
Mg =E,_.Xn

where n is unit vector pointing out of the region where the original sources were. son = u,

Uy Uy U,
T
M, =| E, sin%sinhyc 0 0 |=-uyk, sinTysinhyc
0 0 1
now,
k=k —jk
S0,
T 2 ’ .7 1\2
y=y(3) - -K?
but,
k' = wype and k :% £ (9
€

so, substitute (2) in (1)

but
€ =€ — Je
so, from (3) we have
JT we” 2
(7) (a)\/ € —je) - = ﬁ,)
€
JT w? (e”)
3 60211(6 —]6”)————]602 ” / (6 —]6”
W2 (6”)2 U ”
:\ - —|@*u(e —je”) - 2 = — jw*e” ,Uz(l—J—,)
2 7"\2 7
= z 20e" — i2ye” — /1(6) 2" 1_'6_
R T

T\ 2 w2y (e”)? e’
= \/(3) — W?p€ + jo?ue” + —'Zi/ ) +jwlpe’y\[1 - j—

when low loss dielectric, € < €’ so the above value for y can be simplified to
2



2
y = \/(%) — wlpe’ + 2jw*pe”  (4)

but at resonant frequency, w = 27 f, = 27w (ﬁ bze“;fz) =2r (ﬁ«/péfﬁf;/))

so from (4) we get

r=y(5) - otute -2

)2_(27r b? + ¢?

2
) H(e - 2je”)

Il
—_——
N

2be \ (¢ — je") u

Il
—

)2 472 ( b2 + c?

_ r_ 2ie
4bh2c2 (6/_]'6//)‘”) ﬂ(G J€ )

)z 4n? ( b + 2

 4b2c? (¢/ —je”)) (¢ = 2j€”)

2

= i : 7[2 T /7 2' "7
“\(7) _(c2<e'—je~)+b2<ef—je~>)(6 A

B (E)Z NG 2je”) . w2 (e’ — 2je”)
=y\% (e —jey " bE(e —jer

_ 71_2 2 (¢! = 2je") N (¢’ = 2je”)
b2 c2 (E’ _je”) b2 (6’ _je//)

2 ) €’ 2je” N € 2je”
= — =TT - -
b2 Cze/ _jCZEI/ 026’ —_]'CZE” bZEI _jbzel/ b26/ —jb2€”

sincee” is very small, terms with €” in denominator can be removed, resulting in

_ 2 ) e zjell e 2_]'6”
V=\w "\ e T e T e T bee

so, from equation (5), we see that as

14 -77:
€ =0,y = j—
c

but My = E, sin % sinh (yc) so

ase€”’ = 0,M, = E,sin %y sinh (jr)
but sinh (jz) = jsin () = 0, so

ase” = 0,My, =0

QED



2 problem 3-13

in fig 3-6a , suppose we have a small loop of electric current with z-directed moment IS , instead
of te current element, show that radiation field is given by

in2xIS _.
3 = MATﬂe'Jkr sin (kd cos 8)sin @
-
and nHy = —E . find the power radiated and show that the radiation resistance referred to I is

KS\%[1 cos2kd sin2kd
R, =2mn|{—1| |=+ >~ 5
A 3 (2kd) (2kd)

2.1 Solution

I'll use duality to solve the first part.
first replace the small current loop by the equivelant magnetic current element K!
next, we know what is the solution (field) due to electric current element I1, it is:

for the object current element ] at distance d from the ground and pointing away from the
ground is given by equation 2-114 at page 79 as

e " sing (1)

Now, I put an image current element at distance d below the ground, but make the current
image element point also away from the ground (not towars the ground as is normal), this
is so I can use duality later on to get the field due to magnetic current, since the image for
mahnetic current is pointing to opposit direction from the object magnetic current.

so, for the image current element I/ at distance d from the ground and pointing away from the
ground is given by
J ier
Hy = ——e /" sin0 2
¢ 2Ar @

notice the minus sign in equation (2), this is since current is flowing in opposit direction, and
magnetic field generated by electric current going in opposit directions will be in oppsoiti
directions also (right hand rule).

so, now use duality on equation (1) and (2) to find the field due to magetic current KI

note that
ro=r—dcos0

ri=r+dcosf

equation (1) dual becomes

iKI . iK1 .
=2 e Ikro gin 0 = ] e Jk(r=dcost) o3y o (3)

—E, =

o T 9, 2A(r — dcos 0)

equation (2) dual becomes
JjKI1

- K .
_E, = -2 _ —jkri o 0 =— J —jk(r+dcos9) _: 0 4
Y T T T T v deos )’ sin )

so total field due to the magnetic current K/ is given by superposition of equation (3) and (4)



]Kl e—jk(r—d cos 0) e—jk(r"'d cos 0)
_E, =1 —

Y (r—dcos0) (r+dcos0)

]Kl e—jkrejkd cos @ e—jkre—jkd cos @

T ox (r—dcosf) (r+dcos0)

]Kl e—jkrejkd cos @ e—jkre—jkd cos @

= — ) sinf whenr > d
21 r r

) sin 0

) sin 0

— JZI)TI e—jkr (ejkdcose _ e—jkdcos@) sin 6
-
JKl _i, .. .. .
=t ¥ ((cosa + jsina) — (cosa — jsina)) sin where a = kd cos 6
-
Kl _.
= JZ_)L e ¥ (2j sinar) sin 0
-

so, this means that

K :
—Ey = —A—rle_ﬂ“ sin (kd cos 0) sin 0

Kl _,
Ey = —e 7% sin (kd cos 6) sin 0 (5)
Ar

now, this equation (5) is used for the duality, replace KI by jwpIS in (5) we get

joulS _.
Ey = JORD —ikr sin (kd cos ) sin 8 (6)
r
but
c=Af
= 1
and ¢ = J& SO
1
— = Af
NG
1
= e
and )
=2rf =2
w=2rf ”)L@
so, from (6) we get
J Zn% pIs
Ey = ( f) e ¥ sin (kd cos 0) sin 0
r
j2rulS
= %eﬂkr sin (kd cos 0) sin 6
j2rnlS _;
= LD =ik in (kd cos0)sin0 since np = \/E
Ar €

QED.
to find the power the power radiated is

pr= H Re (E x HY) ds

hemi—
sphere



SO

pf: JJ E¢H; ds

hemi—
sphere
ZZﬂUJZ |Hp|® r? sin 0 do (7)
0
but
E
Hy = ——~
n
ﬂj{#e_ﬂ" sin (kd cos 0) sin 0
B n
i2rlS
= —%eﬁkr sin (kd cos 0) sin 6
,
Hence
9 2xIS . 2
|Hg|” = oz, Sin (kd cos 0) sin 0
r
27IS|*
= ;[2 sin ? (kd cos 6) sin *6 (8)
.
so, from (7) and (8)
7 |2xIS|? 9 . 9 .3
pr=2my . |7 r°sin“ (kd cos 0) sin °0d6
2nIS|® (%
= 27 7/{2 Jz sin 2 (kd cos 0) sin >0 d6
0

3 problem 3-17

solution:

the magnetic current density My that will generate the same field as the impressed voltage
source ,outside the region where the sources are, is given by

M = 2Eboundary Xn
surface

where the boundary surface is the surface that separates the region where the sources are from
the outside region.

To find the boundary surface, we see that the E field propagates in the x direction, so construct
the plane along y = §,where § is a small distance away from the plane y = 0, this will make n
point in the y* direction, i.e.

n=u,
later on, to find the field in the y < 0 region, we make n = —u, and place the mathematical
plane at y = —4.
now, since E = uXVT’" sin [k (% - |z|)] , where k is the wave number of the medium, given by

k = y/-zy , then this E is the tangential field along the plan y = J, so

(5 1) o)

6

v,
M, =2 (ux—m sin
w




Uy uy U v L
_ Vm . L _ m .
My=2| 2sin[k(5-1zl)] 0 o —uzzvsm[k(g—ld)]
0 1 0

now, to find the magnetic current K from M; above, since the width is w then total magnetic
current is given by

K = |Mg| w = 2V}, sin [k (Ié—|z|)] (1)

now, the problem of sec 2-10 is that of the linear antenna, in that case we were given a current
source
) L
I =1I,sin |k E—|z| (2)

the above was source of the field in that problem. from duality, K = I, compare (1) and (2) , we
see that
In =2V, (3)

now, use this substitution in the solution for the dipole antenna problem, and other dual
substitution, to find the field due to the magnetic current density M; in the original problem.
Since we have solved the field for the dipole antenna problem, and the solution is given by
equation 2-125 page 82 as

Ey =

(4)

sin 0

jnIme k" | cos (kZ cos 6) — cos (k%)
2rr

so, apply duality to (4) using Eg = Hg ,n = % and using I,, = 2V,, , apply these replacements
into (4) , results in

Hy

©)

nmr sin 6

Ve Ik [cos (k% cos6) — cos (k%) ]
note that the above expression was derived with n = uy , this was done to find the field in
the y > 0 region, since the n vector in always in the direction pointing away from the region
where the sources are and into the region where we are interested to find the field due to these
sources.

so, to find the field in y < 0 region, we put our mathematical plane that divides the region
where the sources are and the region where we want to find the field, we put this plane at
y = —6 where § is small distance from the origin, this makes n to be —uy and this will result
in a minus sign added to equation (5) . so

H = — jVme ¥ | cos (k& cos 6) — cos (k%)
' nrr sin 6

wheny < 0

second part

pfslot—antenna

now, G, = TAE

, but we can use duality from the current dipole antenna to find ﬁf

from equation 2-127, we see that for the linear antenna

Sk J [cos (k% cos6) — cos (k%)rde

pfwire—antenna - 27[ Sin9

applying duality substitution on this we get

2
3 |2Vm|2 J” [cos (k% cos@) — Cos (k%)] "

pfslo[—antenna - ’727-[ 0 Sin 9



SO

_ pfslot—antenna

=
Vil
2
12Vial? 7 cos(k% cos 9) —cos(k%)
n2m JO sin 0 do
|Vinl®
2
2 (7 | cos (k& cos 6) — cos (kL
2 [ (Khoose) —cos ()| o
nr Jo sin 6
but from equation 2-129 in book, we see that
2
R n " |cos (k%‘ cos 9) — cos (k%) " @
T'wire—dipole ~— 2T 0 sin @
so, from (7) we see that
2
Z”Rrwire—dipole _ J” cos (k% cos 0) — cos (k%) o
n 0 sin 0
substitute this expression in (6) results in
_ 2 ZﬂRrwire—dipole
"o n
_ 4Rrwire—dipole
= -
finally, since
I_) —antenna ﬁ ol—antenna
Gislo[e—antenna = fglor Zt = fSl - tKL 2 (8)

p
but G, = W so (8) becomes
m

G,

G = —
sin? ()

Islote—antenna

QED.

4 problem 3-19

Dr., I solved this using the approach of finding the F vector (magnetic vector potential) and
from that finding H, I know from talking to you on the phone you probably wanted us to use
this equation instead:

—jk)r—r/‘

E(r):-VxH E()xds
surface |I‘—I‘|

but this is how I ended up solving this:

Since Ey inside the wave guide is that of mode TE; then this means that in the relation

kC:_ n:1,2,3,...



we choose n = 1. now , notice that the wave propagates in the y-direction, and the field inside

the wave guide has these components: E, H;, H, and the plane of the wave moves in the y-axis

direction. for the filed to be zero at z = % and zero at z = —% we must have

E,. = E,cos (zz) e VY
b
also, but since opening of the wave guide is at y = 0

E, = E, cos (%z) (1)
now, applying the equivalence principle, we have that the surface magnetic current density is

T T
M; = 2E X n = uy 2E, sin (EZ) Xuy = u, 2E, cos (EZ)

SO

M, = u, 2E, cos (%z) (2)

but we know that for the far field,

—ik ,
P [
4rr s *

where o is the angle between rand r’ .

so, for the far field, and since in for this configuration of having the plane parallel to xz plane,
we have
r cos® = x sinfcos¢ + z cosb

then
al2 b/2

Fo ce Ik Msejk(x/ sin 6 cos ¢+z cos 9) dS,
4mr
x'=—a/27' =-b/2

now, M; is in the z-direction where

u, = u,cosd + uy (—sin )

radial components the magnetic current density is zero, so My becomes

M, = —ugsinf (ZEO cos (%z))

SO
Fp = —b/2°/2 — 2E, cos (%z) sin 0 ek (x/ sin 6 cos ¢ + Z cos 9) ds

and

Hy = —jwFy
let

al2 b)2
Ly = J J —2E, cos (%z/) sin @ ejk(x sinfcos 4z cos 9) ds
x'=—a/22 ==b/2
SO
€ e jkr
o= Lo
4rr



a2 b2

J J 2E cos ZZ ) sin 9] ejk(x sin 6 cos p+z COSG) dx,dz,

x'=—a/27' =-b/2

a/2 b2
= —2E,sin 0 J cos (%z) ejk(x sinfcos¢+z cos 9) dx dz’
x':u—a/Z Z'=—b/2
b{.z [ a2 ’
= —2E,sin @ cos (Z /) esz cos f J ejk(x Slngcos¢) dx | dz
z':u—b/2 _x’:—a/2
b/2 _
r s al2
= —2F, sin 0 cos (ﬂ" ’) e}kz cosf ; ejk(x sm@cos(ﬁ) dz/
J b Jjk sin 0 cos ¢ —a)2
Z'=-b/2 - i}
b/2 _
(" ’ . ’ . a/2
= —2E,sin @ cos (EZ/) ejkz cos 0 ; ejk(x sm6c0s¢) dZ,
) b jk sin 0 cos ¢ —aj2
Z'=-b/2 - }
b/2 ]
= —2F,sin 0 [ coS (ﬂ" ') e}kz cos @ ; (ejk(%sin9cos¢) _ e—jk(%sin@cosqﬁ)) dZ/
J b | jk sin 0 cos ¢
Z'=-b/2
b/2
= —2E,sin 0 [m (e]k( 2 sinfcosd) _ —Jk( sm9c05¢))] J cos (%Z’) ejkz/ cos 1’
Jjksin 8 cos
Z'=—b/2
INT
b/2
2E sind 2sin (k4 sin 6 cos ¢) J ( )e]kz cos g,
- TS k sin 0 cos ¢ O\p*
Z'=—b/2
applying integration by parts to the second integral:
b/2
I= J cos(b ) esz cos0;’ (4)
z':—b/z
where Ifdv = fu— Jvdf
let f = cos (%z') = df = -7 sin (%z')
let dv = ejkz’ cost — o) = ]kcoseejkz cos 0
SO
b/2
b/2
’ 1 7 ’ 1 b ’ ’
I = cos (Ez) ——_fkz cosb + J _— ke cos0 sin(ﬂz ) dz
b/ jkcos@ b2 Jjk cos 0 T b
Z'=—b/2
apply integration by parts again
T 1 ik ’ 0 b/2 JT 1 b/z ik ’ 0 a ’
— - e]ZCOS +_ e]ZCOS : (_ )d
Cos(bz)jkcose s bjkcosf J SR

Z'=—b/2

apply the integration by parts rule to the second part of the above where
f =sin (%z/) = df = 7 cos (%z/)
do = ejkzl cosf == 1 ejkz/ cos @

~ jkcos@
10



SO

b/2
b/2 b/2
T 1 iz T 1 T 1 iz 1 iz y
I = (_ ) ejkz cos @ + = : (_ ) e]kz cos @ _ J e]kz cos @ (_-
cos bZ Jjk cos 6 b2 b kjcos@ﬁ - bz jk cos 0 b2 Jjk cos 0 1
z’=—b/2
b/2
b/2 b/2
Y/ 1 ) T 1 /. 1 )
— il e}kl cos + = : (_ ) e}kz cos @ \[ e}kz cos 6
cos(bz) Jjk cos 0 b2 b kjcos@ S? jk cos @ b2 b]kCOSH
Z'==b/2
b/2 b/2
T 1 ) /4 1 /. 1 ) T
— il e]kz cos 0 + = : (_ ) e}kz cos 0
COs(bz)jkcose b2 bjkcos@{sm b” jk cos b2 b]kCOSQ()
b/2 b/2
T 1 o T 1 T 1 ity V8
— il e]kz cos @ + = : (_ ) e]kz cos @
Cos(bz)jkC089 b2 bjkcos@(sm bz Jjk cos 0 b2 b]kCOSH ()
Hence
first limit to evaluate second limit to evaluate
2 b/2 b/2
T 1 T 1 g T 1 Y/ 1 2
Il1+(2 — (_ ) e/kz cos @ += : (_ ) e]kz cos 0
( (bjk cos 9) ) €08 bz jk cos 0 b2 b jk cos 0 S bz Jjk cos 0 b2

&)

now, evaluate the limits as show above

L b/2
e]kz cosf

first limit= cos (%z/) b
—b/2

jkcos@

and the second limit term:

second limit =

1 T 1 )
o g e]kz cos @
jk cos 6 Sm(bz)jkcose

S

b/2
T 1 b 1 iy
- = . e —e]k—cose_ . _
—b/z) bjkcos@{sm(bZ)jkcose : -
1 1 b o b
e]k—cos@ —jk 2 cos 6
jk cos 8 [jkcos@]( : rens )

_r_ 1 L1 5 cos (k2 cos 6
"~ bjkcos® \|jkcosO o8| 5 08

27T €os (kg cos 9)
—bk2 cos 20

3 N

so, equation (5) becomes

b
M 27b cos (ké cos 0)
I = —bk? cos 20 — 2
2 2 2
1 % — [bk cos 0]
1+ (b]kcosﬁ)

substitute the above equation into equation (3) we get

11



[ 2 sin (k& sin 0 cos @) —
k sin 6 cos ¢

Ly = —2E,sin 6 ()
[ 9 a 1 27b cos (kL cos @
2sin (k4 sin 6 cos ¢) ( 2 )

= —2E,sin 6
s k sin 0 cos ¢ | 7% — [bk cos 0]*

_ oE (2 sin (k% sin @ cos ¢) ) 27b cos (k% cos 9)
’ k cos ¢ 7% — [bk cos 0]
—8E, sin (k4 sin 6 cos ¢) b cos (k% cos 9)
) kcos¢ n2 — [bk cos 0]
—8rbE, sin (k% sin 0 cos ¢) cos (k% cos 9)
) kcos¢ (% — [bk cos 0]%)

now, since from above we already said that

€ e Jkr
 dnr
S0
. ce—ikr [ 8TbE, sin (k$ sin 6 cos ¢) cos (kg cos 9)
0=
4rr kcos¢ (w2 — [bk cos 0]%)
but
Hy = —jwFy
Kk
= —_]—Fg

NG

so using the relation n = /% we get

Hy =

k c e—Ikr 87bE, sin (k% sin 6 cos gf)) cos (k% cos 9)
(_J@) [_ ] kcos¢ (n% — [bk cos 01?)

4mr

2jbE,e~Ikr sin (kg sin 0 cos ¢) cos (kg cos 9)
_ 0
B nr cos¢ (72 — [bk cos 0]°)

(6)

Dr., as I mentioned to you on the phone, [ have an extra "2” factor in the numerator, while the
solution in the book has the ”2” in denominator, I went over this solution many times, and cant
see where I did the math error if I did.

5 problem 3-20

E(r)=-Vx JLMI %E (r/) X ds (1)

the incident field is given by
Ei — uZEoejk(x cos Po+y sin @y )

assume the plate is perfect conductor, and use approximation that assumes the plate is perfect
conductor to be able to use image theory and say that tangential component of the field outside
E ,can by approximated to be the value of the field E° (the scattered field from the plate).

12



now, since we evaluate the E‘Z at the boundary (tangential) , which is at the plate, which has
x = 0, then
Ei — UZEoejk(y sin ¢,)

M, = 2Ei Xn= zquoejk(y sin ¢,) X Uy = —u, (onejk(ysinqﬁo))

for the plane yz the differential path from origin to the unit area ds is given by

r cos@ =y sinfsing +z cosf

where @ is the angle between r and r

SO

jk‘r/—r|
e My

a2 b)2

] r i e ’ ’
F= yee J J y sin 0 sin ¢+z cos@) ZEOeJk(y sm¢o) dz dy
4mr
y=—a/2 7 =-b/2

since we want to find F at 6 = 7 /2,(xy plane) then sinf = 1,cos 8 = 0 so

a2 b)2

z]kr J J y smqﬁ 2F, ]k(y s1n¢o) dz dy/
Tr
y=—a/2 7' =—b/2
Hence
ikr al2 b/2
e/ J J y smgﬁ E, ]k(y Sln(ﬁo) dZ dy
2nr
y'=—aj22 =-b/2
£ ikr a/2 b/2 ) ’
e ik ing|+jk in ¢, ror
:_ozﬂr J J‘e](ysm)](ysm )dZdy
—a/2-b/2
ik a42 b/2 )
_ _Eoe J J ejk(y (sin¢+sin¢o)) dz’dy/
2rr J
—a/2-b/2
£ ok a{.z ) b/2
e jk(y (sin¢+sin ¢,)
_ ozﬂr e] (y sin ¢+sin ) J dz dy
—a/2 -b/2
Eoe_jkr a(.Z jk(y/(sin¢+sin¢o))
- 2rr ¢ [b]dy
—a/2
E e—jkrb a/2 . .
_ _o J e]k(y (sm¢+sm¢o)) dy
2rr
—a/2

so, now we integrate the dy part

13



) a/2
Fy _ _one—]kr J ejk(y/(sin¢+sin¢o)) dy
2rr

y=—a/2
2bE eIk { 1

2rr

ejk (y/(sin ¢+sin ¢0))

al2

—a/Z}

2bE e—]kr ejk (sm¢>+sm¢)) _ e—]k( (31n¢+sm¢o))
Jjk (sin ¢ + sin ¢,)

_2bE, e‘Jk’ 2j sin (k% (sin ¢ + sin ¢,))
- Jjk (sm ¢ + sin )
_ 2bE, e‘Jk’ 2sin (k4 (sin ¢ + sin ¢,))
- k (sin¢ + sin @)
$0
F 2E ek [ 2sin (k% (sin ¢ + sin ¢,))
YT omr k (sin ¢ + sin ¢,)
2E,e k| 2sin (kg (sin ¢ + sin ¢,))
T 2nr k (sin ¢ + sin ¢,)
$0
E* = -V xu,F

well, I cant see what I did wrong Dr. Drane, there is something here I dont see right know and
I must have done a mistake. The second part of this problem is completed using the answer
given in the book for the first part. Given

s~

kE,abe=*" sin (k ($) (sin ¢ + sin ¢,)) 0s
(

jerr k (%) (sin ¢ + sin ¢,)

we need to find the echo area. the echo area is defined as

—S
S
A, = lim (47Tr2:.)

r—00 S

where S'is the incident power density and S’is the scattered power density for the incident

field

S = Re(EH") = Re (E (]i#)) = IEI°
n n

assuming 7 is real(as in case for air).

§i — Re Eoejk(x cos Po+y sin ¢) (UEoejk(x cos Po+y sin ¢)) #) — |E§|

since

14



0s¢ |7

—s kE,abe ™ sin (k (g) (sin¢ + sin ¢,))
S =Re -

j2mr k (%) (sing + sin @)
_ kE,ab sin (k (%) (sin ¢ + sin gbo))
o 2mr k (%) (sin ¢ + sin ¢,)
_ [Eqab sin (k (%) (sin ¢ + sin gbo)) ?
=M\ 2nr (%) (sin¢ + sin ¢,) cosg

kE,abe /¥ sin (k (%) (sing + sin ¢o)) '
j2mr k (%) (sing + sin @) os¢
kE,ab sin (k (%) (sin g + sin ¢,)) cos §
27r k (%) (sin ¢ + sin ¢,)

os¢ |n

SO

E,ab sin(k(ﬂ)(sin ¢+sin gi)o)) 2
: 2[ 2 (2) (singrsin o) C°S¢]

A, = lim | 4xr >

r—oo n |Eo|

_ (ab sin (l; (%) (sin¢ + sin ¢,)) cos ¢)

_ )
7 (%) (sing + sin @)

That is all i can do on this...

6 problem 3-24

looking at induced currents on the obstacle by each antenna in turn.

when unit current applied at antenna 1 then

Ji=nx (Hj - H,)

M = (E{ —E;) xn (1)
but
Ei=E -E
H = H, - H,
so equation (1) becomes
Ji=H;xn (2)
M =nxE!
similarly for antenna 2 we get
J; =H;xn (3)
M = n x E}

now, from reciprocity, we know that Vli = VZ’ or in other words Ell = E’2
using this and from equation (2) and (3) we get

M; = M;
15



i.e. the magnetic currents induced on the obstacle by antenna 1 are equal to the magnetic
current induced on antenna 2. this is when a unit current source is placed at each antenna
respectively.

so, since M = M then the electric fields generated by theses currents must be the same. i.e.
E] = E}, and this in turn means that V’ = V.

QED.

7 problem 3-29

Derive the left hand term of Eq. 3-50, that is show that

LHS

H EXVXG -G XVXE+E(V-Gy)-ds —|> 4rc-E (1)
r-r'|—0
sur face

where surface integration is over a surface of the small sphere, if we let the field point at the

surface of the sphere, and the source point, where the unit current source , to be located at the
center of the sphere, then the radius of the sphere is

R= ‘r—r/‘
first note that
ExXV xG; :V(EG1)—(EV)G1

and
Gl X V X E :V(Gl . E) - (GIV)E

so LHS of equation (1) becomes

—_——— —_—~—

sur face

= JJ —(EV)G1+(G1V)E+E(VG1)dS

sur face

where the terms marked above has been canceled with each others.

now, another cancellation is made by observing G; = ¢c, where c is a constant vector, this
means that

(EV)G1 =0

and
E(V : Gl) =0

so, equation (2) above becomes

LHS = H (G;-V)E - ds

sur face

this is the equation we need to show it goes to 4zc-E as |r - r'| — 0, or in other hands, as the
radius of the small sphere goes to zero.

16



since

ds=n-ds

to find n, we note that the equation of the sphere is

Pyt =R

where R is the radius. a normal vector to this locus is given by V (x* + y* + z%) = uy2x+u,2y+

u,2z
so a unit vector becomes

U, 2x + 0,2y + u 2z ux2x +uy,2y + u22z

U, 2x +uy2y + uz2z

n=

U, 2x + uy2y + u222| Vax2 + 4y? + 422

2R

where the relation x* + y? + z2 = R? was used to simplify last step above.

now, the projection of the unit area ds into the xy plane is

=
2R

dxd
ds = e
|Il'llz|
so LHS can now be written as
LHS = JJ E(V-Gy)-ds
sur face
dxd
H E(V-G)-n—2Y
In - u,|
xy—plan
([ Uy 2Xx + U2y + 0,22\ dxd
- E(V~G1)-( yey ) xay
J 2R
xy—plane
([ UyX +u,y +u,z\ dxd
- E(V-Gy)- vy xay
JJ R z/R
xy—plane
(' dxd
= E(V-Gy) - (uxx + uyy + u,z) x4y

xy:;lane

now, since x? + y% + z2 = R, then

z:w/RZ—xz—yz

let E(V . G1) =
Ik dxd
LHS = E(V-G1) - (uxx + uyy + u,z2) x4y
su;face
Cr d d
= - (uex + uyy + u,z) ey
JJ RZ _ x2 _ yZ
sur face
Cr d d
= (Cbxx + o,y + <I>Zz) Ll B
JJ R2 — x2 — y2
sur face
Cr d d
= (dex+<I>yy+q)z Rz—xz—yz)L
sur face
( dxd dxd
= cpxxL " H byy—Y xay
JJ VR? = x? — 2 VR? = x2 —y?

sur face surface

17
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8 problem 3-27

In the vector Green’s theorm [eqn 3-46], let A = E* and B = E” in a homogenouse isotropic
region, and show that it reduces to quation 3-35.

solution

we want to show that, but letting A = E* and B = E? in

H (AXVXB-BXxVXxA)- ds_H B-VXVXA-A-VXVXB)dr (1)

surface

it reduces to

H E“be beH“ ds—JJj E*-] H“-Mb—E”.J“+H”-M“)dT

sur face

in (1), let A = E* and B = E® we get

LHS RHS

H E“xVbe E”xVxE“ ds—Hj Eb V x VXE*—E*. VxVbe)d ()

surface

looking at the left hand side of equation (2) for now, and using maxwell equation where
VXE =(-zH - M)

_ZHY —MmP —ZH%—M4
— ——
LHS = [[ |E*x VXE’ —E*x VxE* |-ds
surface
= I ( b—MPb) — Eb x (-zH® - M?)) - ds
surface

now, apply the following 2 relations into the above equation

x (—’zH” - Mb) - (—E“ x EHb) + (—E“ x M”)

E’ x (-zH* M“)—( XZ )+(—Eb><M“)

this leads to
[ {(-E*xzH’) + (-E* x M?) } —
LHS = surface
{(-E° xzH%) + (-E* x M%)} - ds

[[ (-E*xzH’) — (-Eb xzH7) +
= surface

(—E* x M%) — (-E? x M%) - ds

[ (-E*xzH’) — (-E* xZH“) -ds +
sur face
[ (-E*xM’) — (-E* xM?) - ds

surface

-z [[ (E*xH’) - (E"xH") -ds +
surface
apply divergence theorm on this

H (—E“ xM”) + (Eb XM“) - ds

surface

18



SO

LHS = -2 H (E X Hb) - (Eb x H) ds (3)
sur face
let this be called ©

Jﬂ E“><Mb +V( xM“)dT

but the above expression © by simplifed further by noting that

V-(E“be) :Mb-(VxE“)—E“-(Vbe)

V-(beM") :M“-(Vbe) _EP - (V x MY

subtitute the above 2 equations into the volume integral of equation (3) leads to

€] —V- (E* x M?) + V- (E? x M%)

~M? . (VX E®) +E*- (Vx M)
M? - (V x E?) —EP - (V x M%)
so, the LHS of equation (2) has been simplified to this

_7 H E“ x Hb (Eb x H“ ds + Hj@ dr (4)

sur face
now we work on the RHS of equation (2), and we see cancelations with equation (4) above ,
that will lead to the final answer.
the RHS of equation (2) becomes, noting that VX VX E = VX (-—zH-M) = -V xzH -V x M

S0
RHS

JIf (B V x VB2~ E*- VX VxE) dr

[[[Eb - (-V xZH* — V x M%)

—E®- (-VxZH? -V x M?) dr

[[JEP - (-V xZH*) — Eb - (V x M%)

T

—E®- (-VxZH?) +E*- (V xM?) dr

looking at the last equation above, and at © in the LHS of equation (4), we see that E’. (V x M%)

and E¢ - (V x M ) cancels out with each others, this means that the whole equation can now
be written as

LHS = RHS
—Z [[ (E*x H) - (E" x H) -ds+ [[[ B (- x zHO) - ®)
m‘i(x{b ~(VXE% +M* (VxE’) dr T e (-V xzH?) dr
now,
M’ . (VX E%) =M". (—ZH? + M%) = —-M" - ZH? + M® - M
and

M“-(Vbe) :M“.(—EHMM”) = _M“-ZH' + M4 - M?
19



subtitute the above into the LHS of equation (5) we get

IHS=-7z |[[ (E*xH") - (E*xH") -ds+
surface
[J] +M? - zH® — M? - M® — M® - ZH® + M® - M
(6)
=-z |[[ (E*xH) - (E*xH7) -ds+
surface

[J] +M? - zH® — M? - ZH?

now, looking at the RHS of equation (5) and using relation that V. x H =yE + J , that is,
V xzH =z (yE + J)
E’ - (-V xzH*) = —E" - (V x ZH") = —ZE" - (JE* + J*)
— _'\Eb_gEa_/Z\Eb . Ja

and
B (- xa) = -pe (V) = 2 (58 + )
_ _%\Ea.gEb_EEa. Jb

so, the RHS of equation (5) becomes

RHS = [[f 28> - (§E + J9) =
—EEb-yTa—EEb' Je - (_Q‘Ea.ﬁb_E‘Ea. Jb)

7
:JH_EEb'gEa_EEb‘Ja+Za'fJEb+z“-deT @

= [[[ -zE"- J*+2ZE* - JP dr

so, from (6) and (7), we see that our equation finaly looks like

LHS = RHS

-z [[ (E*xH’) - (EPxHY) -ds
sur face

+ [[ MP - zH® - M® - zH dr

[J[[ -zEb - 3 +zE*- J* dr

- || (E*xH’) - (EbxH) -ds
sur face

+ ][ MP-H® - M- HP dr

[J[J-E°- J*+E2- " dr

- || (E*xH’) - (E*xH*) -ds

surface

JIf (B¢~ 30 M- He - V- 3@+ MP- 1) dr
QED

9 problem 3-29it

Derive the left hand term of Eq. 3-50, that is show that

LHS

H EXVXG -G XVXE+E(V-Gy)-ds — 4nc-E (1)

r-r |—>0
sur face
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where surface integration is over a surface of the small sphere, if we let the field point at the
surface of the sphere, and the source point, where the unit current source , to be located at the
center of the sphere, then the radius of the sphere is

R:‘r—r‘

first note that
EXVXGl :V(EGl)—(EV)Gl

and
G XVXE :V(Gl . E) - (G1V)E

so LHS of equation (1) becomes

—_— —_——
[[| V®-G))-(E-V)G;-V(G;-E)+(G-V)E+E(V-Gy)-ds

surface

LHS

(2)

[[ —~EB-V)G1+(G1V)E+E(V-Gy)-ds
surface
where the terms marked above has been canceled with each others.

now, another cancellation is made by observing G; = ¢c, where c is a constant vector, this
means that

(E . V) G1 =0
and
E (V . Gl) =0
so0, equation (2) above becomes
LHS = J (G1-V)E - ds (3)
surface

this is the equation we need to show it goes to 4zc-E as |r - r/| — 0, or in other hands, as the
radius of the small sphere goes to zero.

OF JE, OF
(G1V)E = uxGlxa—; + uyGlya—y + uzGlza—ZZ

but G; = ¢c, where c is a constant vector, so the above becomes

aExGlx aEyGly BEZGlz
+u +u

G;-V)E = u, .
(G:V) T ox Yoy 0z

=V (ExGlx + EyGly + EZGlz) =V (E . Gl)

so from equation (3) we get

LHS = H V(E-G))-ds (4)

sur face

now, f % f(t) = f(t), so apply this rule to the above, so equation (4) becomes

LHS = (E- Gy) JJ (uX +uy + uz) -ds (5)

surface
now, ds = n-ds
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where
1=V (x* + y* +2°) = we2x + w2y +u ;22

since the equation of the sphere is x? + y* + z> = R? where R is the radius. and 1 is vector
normal to the surface of the sphere.

SO
1 Uy2x + Uy 2y + 0.2z uy2x +uy2y +u 2z
n=—-= =
1] Vax2 + 4y? + 422 2R

now, the projection of the unit area ds into the xy plane is

dxdy dxdy
ds = =

" In-u] z/R

but

7 = ,/Rz_xz_yz

so equation (5) becomes

LHS = (E- Gy) Jf (ux+uy+uz)-ds

surface
or
U, 2x +u,2y +u 2z dxd
LHS = (E- Gy) JJ (uX+uy+uZ)~x Chat i x4y
2 /R2 — x2 — y2
surface
Hence

LHS

60 [ fuuruy o) I sy
sur face Rty

= (E-Gy) H (ux +uy +uz) ~uxx+uyy+uzz%
sur face Re=x®-y
= (E-G X+ +( R? — x2 — Z)M
( I)SMVQCE y y ‘/RZTZ_yZ
x=R R dxd
— xay
= (E- Gl)x:J_R y:J_R xX+y+ ( R2 — x2 — yz) —

Dr., I have not managed to integrate the above within time, if the integration above results in
a value of 47R the final results will follow:

LHS = (E- Gy)4nR = ¢c - E 4R (6)
but R
e_]
¢= R

so equation (6) becomes, as R — 0

—jkR
c-E4nR =4nc-E

¢c-E47rR:e

QED.

Dr., I did not carry the integration above completely, so my result for the integration can be
wrong. I am not sure if there is a more direct approach without doing this long integration.

22



10 problem 3.3

Suppose that the two current sheets

— A in Y
Js = Uy - sin
— oY
M; = uyAsin

exist simulaneously over the cross section z=0 of fig 3-2. show that these produce a field
—Asin %e‘jﬂz z>0

0 z2<0

Solution

Since each sheet alone will produce an solution for E, and since these solutions are linear, then
we will need to add the electric field due to the electric current sheet, to the electric field due
to the maganetic current sheet to get the total electric field for both.

we know from page 97 in text that when

—J"% sin %e‘jﬁz z>0
. Ty
Js = UXJOSII’l? ﬁEx =
—]—"ZZ° sin %ejﬁz z2<0

then, we can conclude by comparison and replacing J, by Z% we get:

—‘% sin %e’jﬁz z>0

A 7
JS:uXEsm?y:Ex: (1)
° —‘% sin %ejﬁz z2<0

also, we know from problem 3-2, that when

—% sin %e‘jﬂz z>0
.y
M; :uyMosmT = E, =

% sin %ejﬂz z2<0
then,we can conclude by comparison and replacing M, by A we get:

—%‘ sin %e‘jﬁz z>0
JT
Ms:uyAsin%zEx: )
A

2 sin %ejﬂz 2<0

so, the electric field due to J; = lleA sin? and My = uyAsinZ! is given by adding

equation (1) and equation (2):
—Asin %e'jﬂz z>0

0 z<0

QED.
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11 problem 3.6

Obtain the field of an infintsmall loop of magnetic current having z-directed moment KS. Show
that this produces the same field as the electric current element of fig 2-21 if

Il = jweKS

Solution

the field due to infintsmall loop of electric current is given by problem 2-42 as

H, = 275[ —Jkr (r—]§ + r%) cos 0
- 2k .
Hy = 4;91 jkr (—kT +5+ r%) sin 6
IS _j 2 jk
Ey = T eikr (kT = ) sin 0

apply duality substitution to the above equation yield

E, = Izife_fk’ (—]§ + r%) cos 6

E, = XKSp-jkr(_K L Jk 1) o0 1

0 = ar r Pz TS (1)
2

Hy = nlfgr e Jkr (kT Jk) sin 0

but, the field due to electric current element of fig 2-21 is

_ Il —jkr [T 1
E, = 5-€ (rz + jwer3) cos 6
_ I —jkr jou :
Eg = ;e ( + 2 + Jw6r3) sin 0 (2)
Hy = IL pjkr (& _ ) sin 6
¢ 1€ r r2

from the above equations (2) and (2), we see that if we substitute Il = jweKS in the (2), we will
get (1).

QED.

12 problem 3.4

in fig 3-2, suppose that a "shorting plate” (conductor) in placed over the cross section z = —d .

show that the current sheet of eq. 3-2 now produces a field

J" 2 (1-e J2ﬂd) sin by bz z>0
Ey =
—]]Zefﬂdsm sin[f(d+2z)] -d<z<0

Note that when d is an odd number of guide quarter-wavelengths, E, for z > 0 is twice that
for the current sheet alone [see equation 3-3], but when d is an integral number of guide
half-wavelengths, no E, exists for z > 0 .

solution
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this is a problem of scattering, the idea is that equivalent magnetic current densities are intro-
duced to replace the physical obstacles, in this case the shorting plate.

solution steps:

1) Find the field due to the current sheet J = uy J, sin % when the shorting plate is removed.
Call this field E'.

2) Find the induced maganetic current M on the shorting plate from E! by the relation

M =2n X Ei|Z:_d

3) Find the perturbation electric field due to Mg ,call this field ES.(usually called the scattered
field)

4) The field due to the current sheet J = uy J, sin % and due to M is then found by adding
E' +ES.

Assumptions

the dominant part of the magnetic current My resides only in the front fact of the shorting
plate, the face facing the incident wave, and that the image theory holds for finite plate.

step 1 from equation 3-3 page 98

—]"% sin %e‘jﬁz z2>0
i_
El = (1)
—% sin %ejﬁz z2<0

step 2

_ i
M =2nxE|,__,

where n is the unit vector normal to the plane where current M lies in, that will be the x-y
plane.

So n = —u,, the negative sign used since the normal vector is in the direction of propgration
of the field, which in negtive directed in the negtaive z-axis.

For E!, since the shorting sheet is located in the negative z-axis, use this component:

OZO . i
E, = _Joe sin 22 ¢F
2 b

)
o T T
M, =2 0 0 -1 = -7 (—]OZO sin ﬂefﬁZ)
_lZo iy T i b =
5 sin7-e 0 0 sed
M, = @ (JoZo sin %e‘fﬁd)
step 3
Find the electric field due to M;.
E’=-VXF
where
1 Me k|r_r/|
F=— J:[ s—,dS,
4r |r— 1’|
xy plane
for the far field, F becomes
_jﬁr , o ,
F=f ﬂ M, (r) P sy g @)
4r
xy plane
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where r is the position vector of the field point (where observation of the electric potional
vector is made from) and r’ is the position vector of the source element, and ¢ is the angle
betwen the vectors rand r’ .

r cosy = x cos¢sin9+y, sin ¢ sin 6 +2 cosf (3)
so, from equation (4), we get, noting that z’' = —d :
—jpr j x’ cos ¢ sin 0+ ' sin ¢ sin 6 +2  cos® rogr
F = - JI Mseﬂ( Y )dxdy
xy plane

_ e —ipr J ‘[ uy ]oZ sm—e ]ﬁd) ejﬁ(x cos ¢ sinf+y singsinf +z cosG) dx'dy/
x Oy =0

Fy — ]oZ sin _e —jpd f I (x cos ¢ sin 9+y sin ¢ sin 0 +(—d) cos 9)

xOyO

dy dx’

= €7, sin MU -Bdcost) J f (' cos psind+ysingsing ) dy'dx’

xOyO

_ e —Jipr _]oZ sin %Y p—ibd p=(ifd cos ) I (x cos ¢ sin 9) f ejﬁ(y/ sin ¢ sin 6 )dy/ dx
x'=0 y/:O

_ e —jbr —]ﬁd —(jpd cos 0) x cospsinf| [ ipbsingsing_q ’
JOZ sin 7 J ( ) JjpPsin ¢ sin 6 dx

x'=0

_ JZ sm e ]ﬂd (]ﬂdcos@) (e]ﬂbsmqbsm9_l) (ejﬂacosqbsinQ_l)
[}

- jf sin ¢ sin 0 jpcos¢sind
° pr jBb sin ¢ sin 6 jfacos ¢sin6
_ =J d d 9 J Sin @ sin _1 ,J P a cos @ sin _1
Fy - e ]oZ Sln—e ]ﬂ ~(pd cos )(ejﬂsin¢sin9 ) (ejﬂCOS¢Sin9 )
- Aez‘ﬂ JoZosin e ~jpd p—(jpd cos 8)
_ jﬂbsin¢sin9_1 jﬁacosd)sine_l
where A = (ejﬂsin¢sinl9 ) (ejﬂcos¢sin9 )
(ejﬁbsin(/lsing_l) (ejﬁacosqﬁsinG_l)
- —f? sin 20 sin ¢ cos ¢
e Y —ipd ~(jpd cos O
Fy = A——J,Z,sin —Z g Pd g=(ipd cos0)
41 b
ES = -V xF
Uy uy u,
= —| 0/0x 0/0y 0/0z
0 A%](,Zo sin %e‘jﬁde_(’ﬁd cos ) 0
= Uy (8/8 (Ae i JoZ, sin —e —ibde Uﬁd“’se)))
—u, (6/6x (AiJOZ sin —e‘Jﬂ‘ie‘(’ﬂdCOS 9)))
El = 8/82( ]oZ sin 2 e —ipd Jﬂd“’sg)

8]0z (

7, sin 2 e ]ﬁ(d+dcos€))
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final step is to do E! + ES.

—JO% sin %e‘jﬂz z>0
i _ S
E,. = +E,
—]"% sin %ejﬁz z2<0

Dr, that is the result i could get using a directo approach, I think may be I should have used
duality to help solve this problem, since we know what is the field due to electric current
sheet, we can replace the terms of this field by those for the dua; term for maganetic sheet. I
dont know if I can solve it this way . I dont have more time to look at this, I have an exam
tommorrow i need to study for. sorry about that.

to with the time i have left, I have a mid term exam tommorrow and

I tried my best to get the answer in the book, this is the closest I got.
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