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1 problem 3-11
suppose there exists within the rectangular cavity of fig 2-19 a field
E, = E,sin % sinhyz

wherey = /(%) > _k? andkis complex (lossy dielectric). show that this field can be supported
by source
M; = —u, E, sin % sinhyc

at the wall z = ¢ . Show that for low loss dielectric, Ms almost vanishes at the resonant frequency

=5 bz;cz , that is, a small M; produces a large E

1.1 Solution
Using the equivalence theorem, find a current M; that will generate the E field given.
first find the E field at the boundary of the region.i.eatz =c

E,—. = u.E,sin % sinhyc

S0,
M;=E,_.Xn

where n is unit vector pointing out of the region where the original sources were. son = u,

Uy Uy U
M, = | E, sin 2 sinh = —uyE, sin -2 sinh
s = o Sin %= sinhyc 0 0 |[=-uy Osm?sm ye
0 0 1
now,
k=k —jk
S0,
T 2 ’ g 11\2

y=y(3) - -K?
but,

k':w\/ﬁandk":% Lo

€



so, substitute (2) in (1)

but

so, from (3) we have

(ﬂr)z 2o e - CHEN o [
=4ll=) - |w?ue’ — jolPpe” - ——— — jw?pe -j=
\ pe’ = jorp o et i

T 2 C‘)Zﬂ (6//)2 e//
= =) — w?ue + joltue” + —/———— + jolue’+|1 - j—
\/( b) pe T Jotp 2o TR i

when low loss dielectric, € < €’ so the above value for y can be simplified to

2
Yy = \/(%) — wzpe’ + 2j0)2/1€” (4)

but at resonant frequency, w = 27 f, = 27 (ﬁ, /bze—J;fZ) =27 (2—11701 /ﬂ(ifsz,,))

so from (4) we get
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)z 4n? ( b + c?

_ r_ 9jeM
4b2c? \ (¢ —je”)) (e je”)

2 2

z : y 1
) \/(3) i ( @) " B <ef—je~>) (= ze)

so, simplifying y further gives

B (E)Z (7 (e - 2j€") N w2 (e’ — 2je”)
=\\% (e —je)  bE(e —jer)

_ L 2 (e’ — 2je") N (¢’ — 2je”)
b? c? (e —je’)  bi(e - je”)

B 5 € 2je” € 2je”
- ﬁ - C26’ _jczeu - 026’ _jczeu + bzel _jbzeu - b2€/ _jb2€//

sincee” is very small, terms with €” in denominator can be removed, resulting in

3 2 ) € 2j€” € 2j€//
r= T\ ee T e " b2’ be’

so, from equation (5), we see that as

” -77'.
€ =0,y = j—
c

but My = E, sin % sinh (yc) so

b3
ase€” = 0, M, = E,sin 7y sinh (jr)
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but sinh (jz) = jsin () = 0, so

ase” =0,M, =0

QED

2 problem 3-13

in fig 3-6a , suppose we have a small loop of electric current with z-directed moment IS , instead
of te current element, show that radiation field is given by

_jn2xlS

Ey = JEm e ¥ sin (kd cos 0) sin 0

and nHy = —E . find the power radiated and show that the radiation resistance referred to I is

37 2kd)? | (2kd)?

KS)Z[I cos2kd  sin 2kd
A

R, = 2mn (—

2.1 Solution

I'll use duality to solve the first part.
first replace the small current loop by the equivelant magnetic current element K1
next, we know what is the solution (field) due to electric current element I1, it is:

for the object current element I/ at distance d from the ground and pointing away from the
ground is given by equation 2-114 at page 79 as

Il
I Ik in g (1)

Now, I put an image current element at distance d below the ground, but make the current
image element point also away from the ground (not towars the ground as is normal), this
is so I can use duality later on to get the field due to magnetic current, since the image for
mahnetic current is pointing to opposit direction from the object magnetic current.

so, for the image current element I/ at distance d from the ground and pointing away from the

ground is given by
Il
Hy = —ﬁeﬁkr sin 0 (2)

notice the minus sign in equation (2), this is since current is flowing in opposit direction, and
magnetic field generated by electric current going in opposit directions will be in oppsoiti
directions also (right hand rule).



so, now use duality on equation (1) and (2) to find the field due to magetic current KI

note that
ro=r—dcos0
ri=r+dcosf

equation (1) dual becomes

JKL ier, JjKI —jk(r—d cos ) -
—E, = 2 Ik 0= -jk(r—d cos 0 3
& 2)Lroe s 2A (r — d cos 9)6 S ®)
equation (2) dual becomes
JKL ir,s JKI jk(r+d cos )
—E, = — r; Q= —— J°  —jk(r+dcos 0 4
& 2Ar; ¢ S 2A(r + dcos0) ¢ S )

so total field due to the magnetic current K1 is given by superposition of equation (3) and (4)

]Kl e—jk(r—d cos 0) e—jk(""'d cos 0)
~Ey = ) sin 0

21 (r—dcos@)_(r+d0059)
]Kl e—jkrejkd cos e—jkre—jkd cos
T2 (r—dcos@)_ (r +dcos?)

) sin 6

Kl e—jkrejkdcose e—jkre—jkd cos 6
== - sinf whenr > d
2A r r
— Jz.éle—jkr (ejdeOSG _ e—jkdcos@) sin 0
-
]Kl —jkr .. .. .
= ﬁe T ((cosa + jsina) — (cosa — jsina))sin @ where a = kd cos 0
-
Kl _.
= éTe_]kr (2j sin ) sin 0
-

so, this means that

K .
—Ey = —A—:e_]kr sin (kd cos 6) sin 0

Kl _,
Ey = — ¢ sin (kd cos 6) sin 6 (5)
Ar

now, this equation (5) is used for the duality, replace KI by jwpIS in (5) we get

_ JjopIS

Ey Ar

e ¥ sin (kd cos 6) sin 6 (6)

but

c=Af
6



.
and ¢ = 7& S°
1
— = Af
NG
1
=
and )
=27f =2
w=2nf JTA@
so, from (6) we get
Jj ZE% uIs
Ey = ( ﬁ) e ¥ sin (kd cos 0) sin 0
r
j2rulS
= %eﬂkr sin (kd cos 0) sin 0
j2rnlS _.
= J;Tne_]kr sin (kd cos 0) sin 6 since n =
-

QED.

to find the power the power radiated is

Pr= H Re (Ex H) ds

hemi—
sphere
)
pr= JJ E¢Hg ds
hemi—
sphere
4 2 2
= 2”’7J |Hg|“ r*sin 6 d6
0
but
E
Hp=—-2
n
JZ/;TTUVISe_jk’ sin (kd cos 0) sin 0
B n
i2mIS .
= I ik gin (kd cos 0) sin 0
A%r

7

J7;

€

(7)



Hence

271S 2

|Hp|* = JEm sin (kd cos 0) sin 0
2718
= ;r sin 2 (kd cos ) sin 20 (8)

so, from (7) and (8)

2

r? sin? (kd cos ) sin>0d6

27
J sin? (kd cos 6) sin >0 df
0

3 problem 3-17

solution:

the magnetic current density My that will generate the same field as the impressed voltage
source ,outside the region where the sources are, is given by

M = 2Eboundary Xn

sur face

where the boundary surface is the surface that separates the region where the sources are from
the outside region.

To find the boundary surface, we see that the E field propagates in the x direction, so construct
the plane along y = §,where ¢ is a small distance away from the plane y = 0, this will make n
point in the y* direction, i.e.

n=nu,

later on, to find the field in the y < 0 region, we make n = —u, and place the mathematical
plane at y = —4.

now, since E = uXVV'" sin [k (% - |z|)] , where k is the wave number of the medium, given by

k = y/-zy , then this E is the tangential field along the plan y = J, so

<,

Mg =2 (uxﬁ sin [k (]1 — |z|)
w 2




Uy uy U v L
_ Vm . L _ m .
My=2| 2sin[k(5-1zl)] 0 o —uzzvsm[k(g—ld)]
0 1 0

now, to find the magnetic current K from Mg above, since the width is w then total magnetic
current is given by

K = |Mg| w = 2V}, sin [k (§—|z|)] (1)

now, the problem of sec 2-10 is that of the linear antenna, in that case we were given a current
source
) L
I=1I,sin |k E—|z| (2)

the above was source of the field in that problem. from duality, K = I, compare (1) and (2) , we
see that
I, =2V, (3)

now, use this substitution in the solution for the dipole antenna problem, and other dual
substitution, to find the field due to the magnetic current density M; in the original problem.
Since we have solved the field for the dipole antenna problem, and the solution is given by
equation 2-125 page 82 as

Ey =

(4)

sin 0

~ jnlne " | cos (k% cos 6) — cos (k%)
27r

so, apply duality to (4) using Eg = Hg , n = % and using I,, = 2V,, , apply these replacements
into (4) , results in

Hy

B Ve Ikr [cos (k% cos6) — cos (k%) ] )

nmr sin 6
note that the above expression was derived with n = uy , this was done to find the field in
the y > 0 region, since the n vector in always in the direction pointing away from the region
where the sources are and into the region where we are interested to find the field due to these
sources.

so, to find the field in y < 0 region, we put our mathematical plane that divides the region
where the sources are and the region where we want to find the field, we put this plane at
y = —J where § is small distance from the origin, this makes n to be —uy and this will result
in a minus sign added to equation (5) . so

H = — jVme ¥ | cos (k& cos 6) — cos (k%)
' nr sin 6

when y < 0



second part

p . . —
now, G, = W , but we can use duality from the current dipole antenna to find p,

from equation 2-127, we see that for the linear antenna

n |Im|2 J [cos (k% cos 9) — cos (k%) ] ? "

pfwire—antenna - 2]-[ Sin 9
applying duality substitution on this we get

do

pfslot—antenna - ’7277: Sil’l@

_ |2Vm|2 JJT lcos (k%‘ COSQ) — COS (k%)]Z
0

SO

_ pfslot—antenna

G, =
Vil
2
|2Vm|2 p cos(k% cos 9) —cos(k%)
n2r  Jo [ sin 6 do
B | Vin?
2
2 7 | cos (kL cos @) — cos (k&
2 [ (K cos0) mld@ o
nr Jo sin 0
but from equation 2-129 in book, we see that
n (" |cos (k% cos 9) — cos (k%) ? " ;
T'wire-dipole — E 0 Sll’19 ( )

so, from (7) we see that

do

n sin 0

0

27Rr e dipole _ J” [cos (k% cos @) — cos (kL) ] ?

substitute this expression in (6) results in

_ 2 2ﬂ'Rrwire—dipole
= —
nw n
4R

T'wire—dipole
2
n
10



finally, since

_ pfslot—antenna _ pfslot—antenna

islote—antenna |‘/l|2 - |Vm Sin (%) |2

(8)

P
but G, = W so (8) becomes
m

G,

sin? (

Islote—antenna —

%)

QED.

4 problem 3-19

Dr., I solved this using the approach of finding the F vector (magnetic vector potential) and
from that finding H, I know from talking to you on the phone you probably wanted us to use
this equation instead:

—jk’r—r/)

E(r) = -V x H S E()xds

ur face |I' - rll
but this is how I ended up solving this:

Since E, inside the wave guide is that of mode TE; then this means that in the relation

ni
kCZT n:1,2,3,...

we choose n = 1. now , notice that the wave propagates in the y-direction, and the field inside
the wave guide has these components: E, H;, H, and the plane of the wave moves in the y-axis

direction. for the filed to be zero at z = % and zero at z = —% we must have

E, = E, cos (%z) e VY

also, but since opening of the wave guide isaty = 0

E. = E,cos (%z) (1)

now, applying the equivalence principle, we have that the surface magnetic current density is

T T
M; = 2E X n = uy 2E, sin (EZ) Xuy = u, 2E, cos (EZ)

SO

M = u, 2E, cos (%z) (2)

11



but we know that for the far field,

_ €€ ik JJ M e]kr CcOs @ ds

4mr

where @ is the angle between rand r’ .

so, for the far field, and since in for this configuration of having the plane parallel to xz plane,
we have

’

’ ’
r cos® = x sinfcos¢ + z cos6

then
a/2 b2

ikr
ee™/ k x " sin @ cos ¢p+z " cos 0
_ ‘[ j M J é )d

4mr
x'=—aj22' =-b/2

now, M; is in the z-direction where

u, = u,cosf + uy (—sin0)

radial components the magnetic current density is zero, so My becomes

M = —upsinf (2Eo cos (%Z/))

SO
Fp = —=b/2°/2 — 2E, cos (%z/) sin 0 ek (x/ sin 6 cos ¢ + z cos 9) ds’
and
Hy = —jwFy
let
al2 b/2
J J‘ —2E, cos (%Z/) sin @ ejk(x sin 0 cos p+z cos 9) dS/
x'=—a/27 =-b/2
SO
€ e jkr
Fyg = Ly
4rr

12



a/2 b2

‘[ J —2E, cos bz ) sin 9] ejk(x, sing cos g COSG) dx'dz

x'=—a/27'==b/2
a/2 b2
= —2E,sin 6 [ J cos (%z) ejk(x, sinf cos ¢+2’ cos 9) dx dz’
x':U—a/Z Z'=—b/2
) b{'z TN ik 0 ! jk(x' sin 6 cos ¢) A
= —2E,sin 6 cos (b ) e/ 2 cos J e dx | dz
Z'=-b/2 x' =—a/2

= —2E sin @ [ cos (” ’) e]kZ cos 8 ; ejk(x’ sin@cos(j)) dzl
’ b Jjk sin 0 cos ¢ a2

i a g ! [ 1 . ’ . ,
= —2E,sin6 cos (—Z ) ejkz cos @ S e]k(x sm@cosgé) dz
b Jjk sin 0 cos ¢ _aj2

J

Z'==b/2
b/2

= —2E,sin6 I cos (

Z2'=—b/2

a

b*

) e]kz cos 7 1

k( sm@cosgb) jk( sin 6 cos ¢) !
»jksin@cosgb(e] ¢ )]dz

b/2
= —2E, sin § ; (ejk(%sinecosd)) e Ik(5 Sm@cos(ﬁ)) J cos (fz’) ok cos0 g/
Jjk sin 0 cos ¢ b
Z'=—b/2
INT

b/2
. 2sin (k4 sin 6 cos ¢) TN ks cosd s !
= —2E,sin0 [ ksin0cos g J cos (EZ ) e/ dz

Z'=-b/2

applying integration by parts to the second integral:

b/2

I= J cos(b ) ke costg (4)

Z'=—b/2

where dev = fu— Ivdf
let f = cos (%z/) =df = —%sin(%z,)

— jkz’ cosf _ 1 jkz, cosf
letdv =e = V= 7555

SO

13



b/2

b/2
’ 1 ; ’ 1 b ’ ’
I = cos (Ez) —— lkz cost + ‘[ —e’kz cos6 _ ¢in (ﬂz ) dz

b/ jkcos@ b2 Jjk cos 0 T b
z'=—b/2
apply integration by parts again
. b2 b/2

T jkz' cos ” ikz’ cos 6 !
=cos|—z | —¢ e/ sm( z)dz

(b )jkcos@ b2 kaCOSH J b

z =—b/2

apply the integration by parts rule to the second part of the above where

f= sin(%z,) =df = %cos (%z’)

do = ejkz/ cosf == jkcloseeij/ cos @
SO
b/2
b/2 b/2
T 1 itz T 1 T 1 itz 1 itz y
I = (_ ) e]kz cos @ + = : (_ ) e]kz cos @ _ J e]kz cos @ (__
cos bz Jjk cos 6 b2 b kjcos@ﬁ s bz jk cos 0 b2 Jjk cos 0 1
Z'=-b/2
b/2
b/2 b/2
T 1 ) T 1 Y/ 1 )
— il e]kz cos 0 + = { g (_ ) e]kz cos 0 J e]kz cos @
cos(bz) Jjk cos 0 b2 b kjcos0 - bz jk cos 0 b2 b]kC089
Z'==b/2
b/2 b/2
T 1 s T 1 T 1 ity Vs
— il e]kz cos + = : (_ ) e]kz cos @
Cos(bz)jkcose b2 bjkcos@{sm b” jk cos @ b2 kaCOSH()

T 1 g ! bjz T 1 T 1 g biz T
- COS(ZZ) Teost® |t B Reosd Sin(?’) Teosd® (b ik 9) @
jk cos ~b)2 Jjk cos jk cos _b/2 jk cos
Hence
first limit to evaluate second limit to evaluate
2 , b/2 , b/2
f1+(Z ! = cos (Ez/) _ glkz cost +£—1 in (fz/) ! g/kz cosb
b]k cos 0 b /) jkcosf b2 bJk cos 0 b /) jkcos® b2
5)
now, evaluate the limits as show above
first limit= (E ’) ]kz cosGb/2 _ b 1 jk%cos@_ b 1 —jk%cosﬁ_o
st imit= cos bz jkcos @ COS@ —b/2 = COs b2 jk cos@e cos b2 jk cos@e -



and the second limit term:

sin (%z/) m

ikz cos 0

d limit = £ —
second limit = —
b jk cos 0
_r 1 1
"~ b jkcos \|jkcost
T 1 1
b jkcosé
27T COS (k% cos 9)
B —bk? cos 20

so, equation (5) becomes

21

_ —bk? cos 20 —

b
i cos@] 2 cos (kE cos 9))

cos(k% cos 9)

b/2

-b/2

T 1 [ [mE) 1
b jk cos O b 2] jkcos6

):

] (ejk%cosg +e—jk%cos€))

27b cos (kg cos 9)

2
T 1
1+ (Ejkcos@)

substitute the above equation into equation (3) we get

72 — [bk cos 0]

ejk% cos 6

I oF o G—ZSin(k%SiHHCOng))— ;
. k sin 0 cos ¢ (D
[ 2sin (k% sin 0 cos gb) | 27b cos (k§ cos 9)
= —2E,sin 6 .
k sin 0 cos ¢ 72 — [bk cos 9]2
oF 2 sin (k% sin 0 cos (;5) 27b cos (k% cos 9)
) ’ kcos ¢ 7?2 — [bk cos O]

—8E, sin (k$ sin 6 cos ¢) b cos (kg cos 9)
kcos¢ 72 — [bk cos 0]°

—87bE, sin (k% sin 6 cos ¢) cos (k% cos 9)
kcos$ (m?— [bkcos0])

now, since from above we already said that

€ e—jkr
Fy =

L
4mr 0

)
ce—ikr [ 87bE, sin (k§ sin 6 cos ¢) cos (kg cos 9)

kcos¢ (m?— [bk cos 0]2)

Fyp = —
0 4mr

15
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but

Hy = —jwFy

—J——=Fp

so using the relation n = w/% we get

k c e—Ikr 87bE, sin (k% sin 6 cos ng) cos (kg cos 9)
(_]\/@) [_ ] kcos$ (m2— [bk cos0]%)

4mr

2jbE,eIkr sin (k% sin 6 cos q5) cos (k% cos 9)
(o]

) nr cos¢ (72 — [bk cos 0]°) ©

Dr., as I mentioned to you on the phone, I have an extra ”2” factor in the numerator, while the
solution in the book has the ”2” in denominator, I went over this solution many times, and cant
see where I did the math error if I did.

5 problem 3-20

e—jk‘r—r, ) )
E (r) =-Vx J‘J‘area mE (T" ) X ds (1)

the incident field is given by
Ei — uZEOejk(x cos Pp+y sin @p)

assume the plate is perfect conductor, and use approximation that assumes the plate is perfect
conductor to be able to use image theory and say that tangential component of the field outside
E ,can by approximated to be the value of the field E° (the scattered field from the plate).

now, since we evaluate the E. at the boundary (tangential) , which is at the plate, which has
x =0, then
Ei — uZEoejk(y sin ¢,)

M = 9Fi x n = zquoejk(y sin ¢,) Xuy = —uy (onejk(ysinqﬁo))

for the plane yz the differential path from origin to the unit area ds’ is given by

r cos@ =y sinfsin¢ +z cosd
16



where @ is the angle between r and r

SO
g "
—Jkr al2 b/2
F= y J J y sin 0 sin ¢+z COSQ) 2E, ]k(y smqﬁo)d dy
4rr
y==a/2z'=-b/2

since we want to find F at 6 = 7 /2,(xy plane) then sin = 1,cos 0 = 0 so

al2 b/2

4_]kr J’ J y sm(;’) 2E ]k(y sm¢0) dz dy
Tr
y=-a/27' =-b/2
Hence
ik al2 b/2
e/ Jv J y s1n¢ E, ]k(y Sln(ﬁu) dz dy
27tr
y '=—a/22' =-b/2
E —jkr a2 bj2 ’ ’
e ik i ¢ +ik i ¢D ’ ’
:_027”. J Je](ysm)](ysm )dldy
—a/2-bj2
it a{.z b/2 )
_ _Eoe J J ejk(y (sin¢+sin¢0)) dZ,dy,
2rr J
—a/2-b/2
E ikr a{'z ) b/2
€ jk|y (sin$+sin do)
_ 027”_ e] (y sin ¢+sin ) J dz dy
—a/2 -b/2
Eoe_jkr a{.z jk(y/(sin¢+sin¢o))
- 27r ¢ [b]dy
—a/2
E,e7Jkrp n ik(y (si i
__Lo J e]k(y (sm¢+sm¢0)) dy
2rr
—a/2

so, now we integrate the dy part

17



) al2
F o= _one—]kr J ejk(y/(sin¢+sin¢o))dy
2rr

y=—a/2

_ 2bE e~Jkr { 1 ejk(y/(sin¢+sin¢o))

2rr

al2
—a/Z}

2bE e—]kr ejk (sm¢>+sm¢)) _ e—]k( (smgb+sm¢o))}

Jjk (sin ¢ + sin ¢,)

_2bE, e‘Jk’ 2j sin (k% (sin ¢ + sin ¢,))
- Jjk (sm ¢ + sin )
_ 2bE, e‘Jk’ 2sin (k4 (sin ¢ + sin ¢,))
- k (sin ¢ + sin ¢@,)
$0
" 2E ek [ 2sin (k% (sin ¢ + sin ¢,))
YT omr k (sin ¢ + sin ¢,)
2E,e k| 2sin (kg (sin ¢ + sin ¢,))
T 2nr k (sin ¢ + sin ¢,)
$0
E* = -V xu,F

well, I cant see what I did wrong Dr. Drane, there is something here I dont see right know and
I must have done a mistake. The second part of this problem is completed using the answer
given in the book for the first part. Given

s~

kE,abe=*" sin (k ($) (sin ¢ + sin ¢,)) 0s
(

jerr k (%) (sin ¢ + sin ¢,)

we need to find the echo area. the echo area is defined as

=
S
A, = lim (47Tr2:.)

r—00 S

where S'is the incident power density and S’is the scattered power density for the incident

field

18



S = Re(EH") = Re (E (E—#)) = £
n n

assuming 7 is real(as in case for air).

gi ~ Re (Eoejk(xcos¢o+ysin¢) (UEOejk(XCOS¢o+ySin¢))#) =n |E§|

since |e(*)| =1 and

S (kanbe_jkr sin (k (%) (sin ¢ + sin gbo)) 0sé |n

kE,abe " sin (k (%) (sin ¢ + sin ¢,)) cos ¢] #)

jerr k (%) (sing + sin ¢,) jerr k (%) (sing + sin ¢,)
kE ab sin ( (%) (sin ¢ + sin gbo)) 5 kE,ab sin (k (%) (sin ¢ + sin gbo)) p
2rnr - k(%) (sing + sing,) SN oy k (%) (sing + sin ¢,) co8

_ E,ab sin (k ( ) (sin ¢ + sin ¢O)) cos § ?
"\ 2nr (%) (sing + sin )

SO

[ Eo_absm( (2 ) (sin ¢+sin ¢,)) oS ¢]
2

2nr - (4)(sing+sin )

Ae = rli_)rg 47r p |E2|
(o]

_ (a sin (k (%) (sin ¢ + sin ¢,)) N ¢)2
(%) (sin ¢ + sin ¢,)

T

That is all i can do on this...

6 problem 3-24

looking at induced currents on the obstacle by each antenna in turn.

when unit current applied at antenna 1 then
Ji =nx (Hj - Hy)
M = (ES —E;) xn (1)

but
19



E{=E, -E

H; =H, - H
so equation (1) becomes
$=Hjxn (2)
M = n x E}
similarly for antenna 2 we get
J; =H;xn (3)
M; = n X E}

now, from reciprocity, we know that Vli = V2’ or in other words E’1 = E‘2
using this and from equation (2) and (3) we get
M =M,
i.e. the magnetic currents induced on the obstacle by antenna 1 are equal to the magnetic

current induced on antenna 2. this is when a unit current source is placed at each antenna
respectively.

so, since M = M} then the electric fields generated by theses currents must be the same. i.e.
E} = E}, and this in turn means that V = V.

QED.

7 problem 3-29

Derive the left hand term of Eq. 3-50, that is show that

LHS

H EXVXG -G XVXE+E(V-Gy)-ds — 4nc-E (1)
r-1’|—0
surface

where surface integration is over a surface of the small sphere, if we let the field point at the
surface of the sphere, and the source point, where the unit current source , to be located at the
center of the sphere, then the radius of the sphere is
R= ‘r — r/‘
20



first note that
ExXVXxG =V(E-Gy)-(E-V)G

and
G; XVXE :V(Gl . E) — (G1V)E

so LHS of equation (1) becomes

—_—— —_——
sur face
= I[ —(EV)G1+(G1V)E+E(VG1)dS
sur face

where the terms marked above has been canceled with each others.

now, another cancellation is made by observing G; = ¢c, where c is a constant vector, this
means that

(EV)Gl =0

and
E(V . Gl) =0

so, equation (2) above becomes

LHS = J (G1-V)E - ds

surface

this is the equation we need to show it goes to 47zc-E as |r - r'| — 0, or in other hands, as the
radius of the small sphere goes to zero.

since

ds=n-ds

to find n, we note that the equation of the sphere is
x* +y? + 2% = R?

where R is the radius. a normal vector to this locus is given by V (x? + y* + z%) = u,2x+u,2y+
u,2z

so a unit vector becomes

U, 2x +uy2y + u2z Uy 2X +0y2y + U2z 0, 2x +uy2y + u2z

U, 2X + u, 2y + u222| - Vax? + 4y? + 422 2R
21
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where the relation x? + y? + z2 = R? was used to simplify last step above.

now, the projection of the unit area ds into the xy plane is

dxdy

|n'uz|

ds =

so LHS can now be written as

LHS = H E(V-Gy)-ds

sur face
dxd
- H E(V-Gy) n—Y
In - u,|
xy—plan
i U, 2x + 0,2y +u;2z\ dxd
- E<V-Gl)-(’“ T ) =
JJ |ﬁ
xy—plane
" UyX + U,y +u,z\ dxd
= E(V-G). |22 T ) X
JJ R z/R
xy—plane
' dxd
= E(V-Gy) - (uxx + uyy + u.z) x4y
xy—';lane

now, since x? + y% + z2 = R, then

z=R? —x% — ¢

let E(V . Gl) =

LHS

i dxd
E(V-G1) - (uxx + uyy + u,z2) x4y

ace

i dxd
< (uex + uyy + u,z) 4y
ace R2 B x2 a yz
i dxd
(Cbxx + o,y + <I>Zz) Ll B
RE—xZ— 42

ace

surface

[ dxd
(0x + 2y + i)
J JRZ = x2 =2
ace
i dxdy dxdy
O x ———— Yy
IR? _ 52 Py IR? — x2
J R? — x?2 —y? 2—x2—y?

surface

22
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8 problem 3-27

In the vector Green’s theorm [eqn 3-46], let A = E* and B = E” in a homogenouse isotropic
region, and show that it reduces to quation 3-35.

solution

we want to show that, but letting A = E* and B = E? in

H (AXVXB-BxVXxA)- ds_H B-VXVXA-A-VXxVXB)dr (1)

sur face

it reduces to

H E“be beH“ ds—JJJ E“ H“-Mb—Eb-J“+Hb-M“)dr

surface

in (1), let A = E* and B = E® we get

LHS RHS

H E“xVbe E”xVxE“ ds_Hj Eb VxVXE*—E®. VxVbe)d (2)

sur face

looking at the left hand side of equation (2) for now, and using maxwell equation where

VXE =(-zH - M)

—ZH? —M? —ZH—M?
—_— e —
LHS = [[ |E°x VXE’ —E'x VxE* |-ds
sur face
= [ ( b— M) —EP x (-zH® - M%) - ds
surface

now, apply the following 2 relations into the above equation

@ x (—’z‘Hb - M”) = (—E“ ><’z‘Hb) + (—E“ be)

El x (-2 “—Ma):( ><AH‘1) ( xM“)
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this leads to
[ {(-E*xzH?) + (-E* x M?) } —
LHS = surface
{(-E* xZzH") + (-E? x M%) } - ds

[ (-E*xzH®) — (-Eb xzHY) +
=  surface

(—E* x M?) — (-E? x M%) - ds

[ (-E*xzH’) — (-E* xZH“) -ds +
sur face
[ (-E*xMP) - (-E° x M?) - ds

sur face

-z [[ (E*xH’) - (E" xH") -ds +
surface
apply divergence theorm on this

H (B x M?) + (E" x m?) - ds

surface

SO

LHS = -2 H (E“ x H”) - (E” x H“) ds
sur face

let this be called ©
Jﬂ E“ x Mb + v. (Eb x M") dr

but the above expression © by simplifed further by noting that

V-(EaxM”) :M”-(VxE“)—Ea-(VxM”)

V. (beM“) - M. (Vbe) _EP . (V x MY
subtitute the above 2 equations into the volume integral of equation (3) leads to

<) ~V- (E* x M?) + V- (E? x M%)

~M? - (VX E%) + E* - (V x M%)
+M?- (VX E?) —E° - (VX M?)

24

©)



so, the LHS of equation (2) has been simplified to this

_z H (E x H”) - (Eb X H) ds + Hj@ dr 4)

surface T
now we work on the RHS of equation (2), and we see cancelations with equation (4) above ,
that will lead to the final answer.

the RHS of equation (2) becomes, noting that VX VX E = VX (-—zH-M) = -V xzH -V x M

S0
RHS

JIT (B ¥V x VB2~ B¢ VX VxE) dr

[J[Eb - (-V xZH* - V x M%)

T

—E®- (-VxZzH? -V x M?) dr

[[JEY - (-V xZH*) — Eb - (V x M%)

T

—E®- (-VxZH?) +E*- (V xM?) dr

looking at the last equation above, and at © in the LHS of equation (4), we see that E? - (V x M%)

and E¢ - (V x Mb ) cancels out with each others, this means that the whole equation can now
be written as

LHS = RHS
7 [[ (E*x H’) — (E® x HC) -ds+ [[[ & (-9 x zH) - )
ma—ri&b ~(VXE%) +M*- (VxE)dr T e (-V xzH®) dr
now,
M’ . (VX E%) =M. (—ZH* + M%) = —-M" - ZH* + M® - M
and

M- (VXE) = MO (<ZH + M?) = -2+ M- M
subtitute the above into the LHS of equation (5) we get

LHS=-z [ (E*xH’) - (EbxH%) -ds+
sur face
[J] +M" - zH® — M - M® — M® - ZH® + M® - M
(6)
=-z [[ (BE*xH) - (E’ xH?) -ds+
surface
[[] +M® - zH® — M“ - ZH?
25



now, looking at the RHS of equation (5) and using relation that V x H =yE + J , that is,
VxzH =z (yE + J)

E’. (-V xZH%) = -E” - (VxZH%) = -ZE’ - (JE* + J9)
= —ZE' . gE* —ZE’ . J°

and
B (- xEH) = B (x3H) = -2 (38 + )
_ _/Z\Ea_iI\Eb_/Z\Ea_ Jb

so, the RHS of equation (5) becomes
RHS = jjj —Tb (GE* + J9) =

—AEb /Ea Ja_( '@Eb—’Z\Ea- Jb)
b b b b (7)
:ﬂj—/z\E -yE* —ZE" - J* +ZE* - yE’ + ZE* - ]’ dr
:JII—EEb- J¢+ZE*- Jb dr
so, from (6) and (7), we see that our equation finaly looks like
LHS = RHS
-z [[ (E*xH’) - (E" xH") -ds
sur face = ﬂf —ZEP . J¢ +zE*- Jb dr
+ || M? - ZH* - M® - ZHYdr
- || (E*xH’) - (EPxH) -ds
sur face = ﬂf —Et . J*+E*- Jb dr
+ [ MP - HO - M® - H? dr
- [] (E*xH’) - (E0xH?) ds = jjj(Ea- Jb —MP-He-E. J“+Mb-Ha) dr

surface
QED
9 problem 3-29it
Derive the left hand term of Eq. 3-50, that is show that

LHS
ﬂ E><V><G1—GlexE+E(V-G1)-ds|T) 4rc-E (1)
r—-r |—0

surface
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where surface integration is over a surface of the small sphere, if we let the field point at the
surface of the sphere, and the source point, where the unit current source , to be located at the
center of the sphere, then the radius of the sphere is

/7
R:‘r—r‘

first note that
EXV xG; :V(EGl)—(EV)Gl

and
G XVXE :V(Gl . E) - (G1V)E

so LHS of equation (1) becomes
—_—— —_——

[[| V®-G))-(E-V)G;-V(G;-E)+(G-V)E+E(V-Gy)-ds

surface

LHS

(2)

[[ —~EB-V)G1+(G1V)E+E(V-Gy)-ds
surface
where the terms marked above has been canceled with each others.

now, another cancellation is made by observing G; = ¢c, where c is a constant vector, this
means that

(E . V) G1 =0
and
E (V . Gl) =0
so, equation (2) above becomes
LHS = JJ (G1-V)E - ds (3)
surface

this is the equation we need to show it goes to 4zc-E as |r - r/| — 0, or in other hands, as the
radius of the small sphere goes to zero.

OF OE, OF
(G1V)E = uxGlxa—; + uyGlya—y + uzGlza—ZZ

but G; = ¢c, where c is a constant vector, so the above becomes
O0EGix 0EyG1y 0E.Gy;
+uy +u,
O0x oy 0z
27
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so from equation (3) we get

LHS = H V(E-Gy)-ds (4)

surface

now, f % f(t) = f(t), so apply this rule to the above, so equation (4) becomes

LHS = (E- Gy) JJ (ux +uy +u) - ds (5)

surface

now, ds = n-ds

where
1= V(x2+y2+zz) = Uy 2x +uy2y + u 2z

since the equation of the sphere is x? + y* + 2z = R? where R is the radius. and 1 is vector
normal to the surface of the sphere.

SO
1 Uy 2X +0y2y + U ;22 Uxlx +u,2y +u 2z

n=—-= =

1] V4x2 + 4y? + 422 2R

now, the projection of the unit area ds into the xy plane is

s = dxdy :dxdy
n-w| z/R

but

z = ,/Rz_xz_yz

so equation (5) becomes

LHS = (E- Gy) JJ (ux+uy+uz)-ds

surface

or

U, 2x + U2y +u 2z dxdy
2 R2 — x2 — 2

LHS = (E- G;) H (ux +uy +uy,) -

surface
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Hence
uy2x+u,2y+u 2z dxdy

(E ’ Gl) Jf (ux + Uy + llz) ) 2 \/Rz_xz_yz

sur face

LHS

= (E-Gy) H (ux +uy +u,) ~uxx+uyy+uzz%
sur face Ry
= (E-Gy) H x+y+( Rz—xz—yz)%
sur face Y
x=R R dxd
— xay
= (E'Gl)x:J;Ry:J;RX-Fy‘F (\/RZ — x2 _y2) m

Dr., I have not managed to integrate the above within time, if the integration above results in
a value of 4R the final results will follow:

LHS = (E- G;)4nR = ¢c - E 4R (6)
but R
e_J
?="%x

so equation (6) becomes, as R — 0

o—JkR

¢c-E 4nR = c-E4nR=4nc-E

QED.

Dr., I did not carry the integration above completely, so my result for the integration can be
wrong. I am not sure if there is a more direct approach without doing this long integration.

10 problem 3.3

Suppose that the two current sheets

_ A . Yy
Js = uy 7 sin 3

_ o 7Y
Ms; = uyAsinz

exist simulaneously over the cross section z=0 of fig 3-2. show that these produce a field
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—Asin %e‘jﬂz z>0
0 z<0

Solution

Since each sheet alone will produce an solution for E, and since these solutions are linear, then
we will need to add the electric field due to the electric current sheet, to the electric field due

to the maganetic current sheet to get the total electric field for both.

we know from page 97 in text that when

—J”% sin %e‘jﬁz z>0

. Ty
Jsqu]051n7:>Ex:
—]"%sin%ejﬂz z2<0

then, we can conclude by comparison and replacing J, by Z% we get:

—‘% sin %e‘fﬂz z2>0
A | my
Js=uy —sin— = E, = (1)
ZO b A o TY B
—% sin Tef 2 z<0

also, we know from problem 3-2, that when

—% sin %e‘jﬂz z>0
.ty
M; :uyMosmT = E, =
% sin %ejﬂz z2<0

then,we can conclude by comparison and replacing M, by A we get:

—%‘ sin %e‘jﬁz z>0

Ty

7 = Ex = (2)
%‘ sin %ejﬂz 2<0

M; = uy Asin

so, the electric field due to J; = uXZA sin? and My = uyAsinZ! is given by adding

equation (1) and equation (2):
—Asin %e'jﬁz z>0

0 z<0

30



QED.

11 problem 3.6

Obtain the field of an infintsmall loop of magnetic current having z-directed moment KS. Show
that this produces the same field as the electric current element of fig 2-21 if

Il = jweKS

Solution

the field due to infintsmall loop of electric current is given by problem 2-42 as

H, = éi —Jkr (r—]§+ri3) cos 6

Hy = ifr _Jkr(—k +ﬂ§+ )sin@
IS _ AN

e e (2 ) ano

apply duality substitution to the above equation yield

E, = Izif —Jjkr (Jr]; + %) cos 6
Eg = SKebr (L4 Ky 1)sing (1)
0 = z¢ rooor2 3
_ KS —jkr [ K2 _ Jk
Hy = yir® ( — — 7] sin0

but, the field due to electric current element of fig 2-21 is

— Il —jkr [T 1
E, = 5 (rz + jwer3) cos 0

_ L —jkr (o .
Eg = ;-e ( + rZ + JwerS) sin 6 (2)
Hy = 471r —Jkr (7k - r—z) sin 0

from the above equations (2) and (2), we see that if we substitute Il = jweKS in the (2), we will
get (1).

QED.
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12 problem 3.4

in fig 3-2, suppose that a "shorting plate” (conductor) in placed over the cross section z = —d .

show that the current sheet of eq. 3-2 now produces a field

—Jf’% (1- e‘jzﬂd) sin %e‘jﬂz z>0
E, =
—jJoZoe Pl sin T sin[f(d+2)] -d<z<0

Note that when d is an odd number of guide quarter-wavelengths, E, for z > 0 is twice that
for the current sheet alone [see equation 3-3], but when d is an integral number of guide
half-wavelengths, no E, exists for z > 0 .

solution

this is a problem of scattering, the idea is that equivalent magnetic current densities are intro-
duced to replace the physical obstacles, in this case the shorting plate.

solution steps:

1) Find the field due to the current sheet J = uy J, sin % when the shorting plate is removed.
Call this field E'.

2) Find the induced maganetic current M on the shorting plate from E! by the relation

Ms =2nxE| __

3) Find the perturbation electric field due to My ,call this field E®.(usually called the scattered
field)

4) The field due to the current sheet J = uy J, sin % and due to My is then found by adding
E!' +ES.

Assumptions

the dominant part of the magnetic current Mg resides only in the front fact of the shorting
plate, the face facing the incident wave, and that the image theory holds for finite plate.

step 1 from equation 3-3 page 98

—]”% sin %e'jﬁz z>0
i _
EL = (1)
—]—"ZZ" sin %ejﬁz 2<0

step 2

_ i
M;=2nxE|,__,
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where n is the unit vector normal to the plane where current My lies in, that will be the x-y
plane.

So n = —u,, the negative sign used since the normal vector is in the direction of propgration
of the field, which in negtive directed in the negtaive z-axis.

For E!, since the shorting sheet is located in the negative z-axis, use this component:

Z .
E, = _JoZe sin 2 ¢ib?
2 b

SO
T 5
— Ty
M, = 2 0 0 -1 - —u_y(—]oZo sm%ef/”) )
]oZo ”_y jﬁz ==
sin 3-e 0 0 sed
M, =1 (JoZo sin %e_jﬁd)
step 3
Find the electric field due to M;.
E°'=-VXF

where

1 M e—jk|r—r’|

SR (R
4r |r—r'|
xy plane
for the far field, F becomes
_jﬁr , o ,
F=f H M, (r) P sy g @)
47
xy plane

where r is the position vector of the field point (where observation of the electric potional
vector is made from) and r’ is the position vector of the source element, and ¢ is the angle
betwen the vectors r and r’ .

r cos =x cos¢sin9+y’ sin ¢ sin 6 +2 cosf (3)
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so, from equation (4), we get, noting that z’ = —d :

-jpr iB(x" cosdsinf+y singsind +z cos g
F = e47r J‘[ M, eJ'B( 9 y 9 ) dx dy

xy plane

_ e -iBr _[ I uy ]oZ s1n—e ],Bd) ejﬁ(x cos g sinf+y singsinf +z cos@) dx’dy’
x Oy =0

Fy — .]oZ sin _e —jpd J J‘ (x cos @ sin 9+y sin ¢ sin 0 +(—d) cos 9)

—Oy =0

dy dx’

_ %Jozo sin ”_ye—(]ﬁd)e (jpd cos 0) I f (x cos¢7sm9+y sm¢sm9) dy/dxl

xOyO

= 2 ],Z, sin 2 iPdg(ipd cost) f B cos gsino) j’ P singsing) o) g
x'=0 y’:0

= 7, sin e iBe-Updeos0) f (' cosipsine) (cpmsmtcs) ax

x'=0

_ e -jpr ]OZ Sln e ]ﬂd (]ﬂdcos@) (ejﬁbsin</)sin9_1) (ej,/)’acos</)sin9_1)

= Jjp sin ¢ sin 6 JjBcos¢sinb
S0
- < ~ipr ™ g=ipd g=(jfd cos ) e/Pbsingsind_y\ ( gifacosgsind_y
F, = 2, sin ~Ze B sin g sin 0 JjBcossin

— Aez‘ﬂ JoZ, sin Z¥ e ~jpd p—(jpd cos 8)

_ ejﬂbsin¢sin9_1 ej[iacosd)sine_l
where A = (jﬂsin¢sinl9 jPcos¢sinf

(ej/fbsin(/)sing_l) (ejﬁacosqﬁsine_l)

—f? sin 20 sin ¢ cos ¢

Fy = AL 7 sin ™Y g ibd g-tipdcoso)
T b
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ES = -V XxF

Uy uy u,
—| 0/0x 0/0y 0/0z
0 A%]OZO sin ”Tye_jﬁde_(iﬁd cos 0) 0

= Uy (8/62 (A%]OZO sin ZY ¢=iPd g~ (Pd cos 9)) )
~u, (0/0 (AL 1,2, sin Te -0 eos)

e
4

E, = d/0z (A%]OZO sin ZYe~iPd=ipd COS@)

0/0z (A% JoZ, sin %e—jﬂ(rﬂdcos e))

final step is to do E! + ES.

—]"% sin %e‘jﬁz z2>0
i _ S
E. = + E;
—% sin %e]ﬁz z<0

Dr, that is the result i could get using a directo approach, I think may be I should have used
duality to help solve this problem, since we know what is the field due to electric current
sheet, we can replace the terms of this field by those for the dua; term for maganetic sheet. I
dont know if I can solve it this way . I dont have more time to look at this, I have an exam
tommorrow i need to study for. sorry about that.

to with the time i have left, I have a mid term exam tommorrow and

I tried my best to get the answer in the book, this is the closest I got.
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