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1 Using potential energy

There are two types of problems related to using potential energy. We can be given V'(x)
but not at the equilibrium point, or given V(x) at the equilibrium point. If V(x) given is
not at the equilibrium point, then we first need to find xy which is the equilibrium point.
This is done by solving V’(x) = 0. Then expand V (x) near x, using Taylor series and obtain
new V(x) which is now centered around x,.

The other type of problem, is where we need to find V(x) at equilibrium, from the physics

of the problem. See MC2 as example. For the vertical pendulum problem V(x) = %kx2 -
mgx. This is the potential energy at equilibrium.

We need to convert the above to V(y) = %ky2 + V(0) and only now we can write
F=-V'(y) = -mw?y

From the above, w can be found.

ky = mw?y
k
w?=—
m

Remember, we can only use F = —V’(y) = —mw?y when V(y) has form Y + V(0). Do not
y y y y oKy

use %kx2 — mgx. There should not be linear term in V(x).

V(y) should always be 0 at equilibrium. And V(y) = %ma)zyz so V'(y) = mw?y
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Figure 1: How to do the Vibration problems



2 Sterling approximation

f tre~tdt = n!

0

f tetdt = f ennte=t gy
0 0

_ f " nin)-b) gy
0

- f of Ot (1)
0
Where f(t) = nIn(t)-t. Contribution to integral comes mostly from where f () is maximum.
f'#)=0
n
--1=0
t
tmax =1

Approximating f(t) around ¢

1
f(t) = f(tmax) +(t- tmax)f,(tmax) + E(t - tmax)zf”(tmax) +

But f'(tmax) =0and f”(t) = —tﬁz. Hence the above becomes

1 n
f(t) = f(tmax) — E(t — tmaX)th_ 4 ...

max

Replacing t,.x = 1 in the above gives
f(t) = (nIn(n) —n) - %(t—n)Z% ..

) (”1“(”)‘”)‘%(“”)2%* 2)
Substituting (2) into (1) gives

al ~ f % JnIn)-m—5(-n? L 4,

0
~ o In(n)-n) f P s g
0

0 —1(t—n)21
= n”e‘”f e 2 ndt
0

t-n n 1
Let u = ok Whent=0,u = v and when t = co,u = co. And du = Edt' The above

now becomes -
_ _2
n! = ne ”f e\ 2ndu
n

Van




When n > 1, the lower limit of the integral — —co. Hence

(o)
_ 2
n! = n"e ”f e W\ 2ndu

—00

~ V2nn'e"\n
~ \/2_7111"+%e‘"

3 Taylor series, convergence

Used to approximate function f(x) at some x knowing its values and all its derivatives at
some point x;, called the expansion point.

F@) = fx0) + (= 20)f o) + 5= 30" (xg) + -

3 5

‘ ¥ ox

smx:x—§+§+---
x>

COSX:1—E+Z—“'

To find series for In(1 + x), do this
f L v +x)+C
—dx =1In X
1+x

f(l—x+x2—x3+---)dx:1n(l +x)+C

2 3
x—%+%—---:ln(l+x)+c | <1

To find C, let x = 0. Hence 0 = In(1) + C. So C = —In(1). Therefore

2 3

x
1n(1+x):ln(1)+x—5+§—--- x| <1

And
1
f—dx:—ln(1—x)+c
1-x

—f(1+x+x2+x3+---)dlen(l—x)+C

2 .3
—(x+%+%+.--)=1n(1—x)+c

2 3
_x_%_%+---:ln(l—x)+c x| <1



To find C, let x = 0. Hence 0 = In(1) + C. So C = —In(1). Therefore
x>«
ln(l—x) :ln(l)—x—?_5 4 ..

And In(1 + 2x) series is found as follows

1 1
f1+2xdx—§1n(1+2x)+c

1
f(1 =20+ (20 = (20 4 ) = 5 In(1 +2) + C
2x%  4x3  8x*
x —_— + —_— e e e
2 "3 1

To find C, let x = 0. Hence 0 = In(1) + C. So C = —In(1). Therefore

1
:Eln(1+2x)+C x| <1

2x2  4x3  8x*
In1l+2x)=2In1) +2[x - —+ — — — ---
n(1 + 2x) n(1) (x > 3 1 )
And
X =1 xZ x3 _ > x"
e = +X+E+§+"'— —'
' n=0n
B2
tanx:x+?+ﬁx 4o
Some others
1
T =l-x+x2-x3+-- Ix| <1
X
1—:1+x+x2+x3+--- Ix| <1
-x
(1+x)azz(fl)x”
Where (fl) is binomial coefficient (Z) = - (:in)!. General Binomial
-1 -1n-2
(1+x)":1+nx+n(n2| )2, 10 3)'(n ).

This works for positive and negative 7, rational or not. The sum converges only for |x| < 1.
So, for n = -1 the above becomes

1
s ):1—x+x2—x3+---
x
And , -
" = D " =14+ 20+ 30 + 4x% + -
- X n=1
And

1+x)f =1 +px+p(p—1)x2
For small x the above approximates to

1+x)f =1+px



3.1 Convergence

First test, check if lim,,_,, a,, goes to zero. If not, then no need to do anything. Series does
not converge. Then use ratio test. If

Ay+1
ay

lim <1

n—-oo

Then converges. if result is > 1 then diverges. If result is one, then more testing is needed.
If converges, then radius of convergence R is

R = lim
n—=0 41
|x| < R

3.2 Closed sums

i.e. the sum is N times the arithmetic mean.

Geometric series.

S=a+ar+ar*+ar + -

For|r] <1

4 Derivatives of inverse trig functions

To find y = arcsin(x), always write as x = sin(y). Then Z—; = cos(y) = 4/1 - sin? y =V1-x2.

d
Then 2 =
dx

, Hence

1
V1-x2

e arcsin(x) = —



To find y = arccos(x), write as x = cos(y). Then & —sin(y) = —y/1 —cos?y = —V1 —x2.
y y dy Yy

dy -
Then i el Hence
-1
» arccos(x) = N
To find y = arctan(x), write as x = tan(y). Then Z—x = %, now need to use trick that
z 7 y cos“y
cos?y + sin’y = 1 and divide both sides by cos?y, hence 1 + tan?y = oy’ Then Z—; =
d 1 1
1+ tan® y. Hence % = Tty Therefore
d
o arctan(x) = T2
5 Slit interference formulas
k is wave number.
(2
A
6 Identities sin(26) = 2sin(6) cos(6)
c0s(26) = cos?(0) — sin?(6)
6.0.1 trig and Hyper trig identities =2cos?(0) -1
=1-2sin%(0)
2tan(0
tan(20) = L(z)
cos(i6) = cosh(6) 1 - tan”(6)
sin(i0) = i sinh(0) sinh(20) = 2 sinh(6) cosh(0)
cosh(20) =2 coshz(Q) -1
2 tanh(0
tanh(20) = anh(6)

1+ tanh?(0)

cos2(0) + sin?(6) =1
1

tan?(0) = ——— -1
an”(6) cos2(0)
=sec?(0) -1
cos?(6) 1
) tl=——7
sin“(0) sin“(0)
1 1

tan?(6) - sin?(6) -1

cot?(0) = csc?(0) -1 2
cosh?(6) — sinh2() = 1 cos(0) = s,in(E _ 9)

sin(0) = cos(g — 6)




sin(A + B) = sin A cos B + cos Asin B
sin(A — B) = sin Acos B — cos Asin B
cos(A + B) = cos Acos B —sin Asin B
cos(A — B) = cos Acos B + sin Asin B

tan(A + B) tan A + tan B
an =
1-tan Atan B
tan A + tan B
tan(A - B) =

"~ 1+tanAtanB
2 1
sin“(0) = E(l — cos(260))

cos?(0) = %(1 + cos(26))

1 — cos(20)
1+ cos(20)

) ) _[A+B A-B
sin A +sin B = 2sin cos
2 2
. . _(A-B A+ B
sin A —sin B = 2sin > CcoS >

A+B A-B
cosA + cosB =2cos cos

tan?(0) =

2 2

(A+B A-B
cos A - cosB = -2sin > sin >

1

sin AsinB = E(cos(A — B) — cos(A + B))
1

cos AcosB = E(cos(A — B) + cos(A + B))
1

sin AcosB = E(sin(A + B) + sin(A — B))

1
cos AsinB = E(sin(A + B) — sin(A - B))

10

acos(wt) + bsin(wt) = Asin(a)t + qb)
= Acos(a)t - (p)
A =Va2 +b?
¢ B
= arctan| —
¢ = arctan| —
Cosx +sinx = \/E sin(x + g)

T
cosSX +sinx = \/E cos(x — Z)

Laws of sines (a,b, c) are lengths of triangle
sides and A, B, C are facing angles.

a b c

sinA sinB sinC
laws of cosine

a?2 = b + c® = 2bccos A

6.0.2 GAMMA function

I'n)=mn-1)!
I'n+1)=nn-1)!
= nl'(n)

6.0.3 Sterling

Forn>1

1
T(n+1) =n! = V2rnn2e™
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7 Integrals

7.1 Integrals from 0 to infinity

(o]
f x"e *dx = n!
0

©0 1
f x"e~"dx = n! use y = ax
0 ah+1

f xeXdx = 3!
0

00 x3
fo —dx = 1)

Start by multiplying numerator and denominator by e™ using é = 1+y+y*+--- which be-

0 3N®  —nx o0 0 3,-nx iQ o I .
comes£ X Z € dx or En=1£ x°e”™dx, thenuse z = nx, this gives En:l E£ z°e “dx

or (3! Z — or 3!&(4)
0 vy _1r 1
J;eras=arl3)

1

1 1
a4 1 dy 1 (371 . 1 oo (3-1) _
Startby using x® = yorx = y*.then -~ = Zy(‘* ),now the integral becomes 7 £ y(4 )e Ydy

and compare this to fo y(s‘l)e‘xdx =TI(s)

00 (oe] 1
f e V¥ dx = f e dx
0 0

Use same method as above. Will get 2I'(2) = 2

00 x(s—l)
{(5)T(s) = f dx s> 1
0 ex — 1

Cn+1)(n!) = foo exxf —dx  n>0
2
) = ?
4
@ =g
C(s) = Z nl s>1

n=1

1 1 1
C4) = —+?+¥+
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= C(4)T'(4) or (31)C(4)

(o)
f x"e *dx = n!
0

foo x e *dx =T(n) = (n - 1)!
0

00 x(471)
So given £ dx write as £
e*-1

f use x = asin 8
az_xz

fz 5 use x = atan 6
X +a

I—f xe~0% gy use u = x2
0

o0 1 1
I= f e dx usel = — f ey = = T
0 2J_o 2V a

For I = ugoo xe ™ dx or [ = f_  x1e=™*dx. If n is even, use the trick of (a) = f_ e gy

and repeated I’(a). if n is odd, use I(a) = f_ : xe ™ dx = 21_u (integration by parts) and then
repeated I’ (a).

GAMMA:

I'(n) = f x" e ¥dx
0

i e

1 1 -1

— N5 d_”_l—‘ ; 5 X _ool—uz _
use u = x2, then = X2 and the integral becomes£ x2e¥dx = £ -e (Qudu) =

ZEX’ e du =\

(o]

xe ™ sinkx dx

xe~ %™ cos kx dx

=],
=],
For these, we will be given I = * ¢79% gin kx dx and then use I (a) = Ke e~ ™ sinkx dx and
then do the I’(a) method.



7.2 Integrals from -infinity to infinity

f edx = \n

f e‘”xzdx = I a>0

oo V a

foo e—a(x+b)2dx — \/E a>0
oo a

f X~y = | for n even, use the I’(a) method

8 Lorentz transformation

Lorentz transformation is given by
x| | coshf —sinhO| x
c'] |-sinh® cosh@ ||ct

Where 0 is called the rapidity. Also

And
v=ctanh 0

9 Rotation matrices and coordinates transformations

Rotation matrix 2D

[cos 6 -sin 6]
RQ =

sinf cosB

13
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Rotation matrix 3D

1 0 0
Ry(0)=|0 cosO® -sin0O
[0 sinf® cosO |
[ cos® 0 sind]
R,(O)=| 0 1 0
|—sin® 0 cosO|
[cos@ —sin6 0]
R,(0) =|sin® cosO 0
| 0 0 1)

This is how to find the above. First row, is the projection of x’, ',z on x. Second row is
projection of x’,y’,z" on y and so on.

Spherical coordinates

x =rsinfcos
y =rsinOsing
z=rcos0

10 Matrices and linear algebra

Commutator is defined as
[M,N] = MN - NM
Where N, M are matrices.

Anti-commutator is when

[M,N], = MN + NM

Two matrices commute means MN -NM = 0. Matrices that commute share an eigenbasis.

Properties of commutators

[A+B,C] =[A,C]+[B,C]
[A,B+ C] = [A,B] +[B,C]
[A,A] =0
[A%,B] = A[A, B] + [A, B]A
[AB,C] = A[B,C] + [A,C]B
[A, BC] = [A, BIC + B[A, C]
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Matrices are generally noncommutative. i.e.

MN # NM

Matrix Inverse 1
Al=_—AT
|A]"

Where A, is the cofactor matrix.

Matrix inverse satisfies

ATA=1=AA"

Matrix adjoint is same as Transpose for real matrix. If Matrix is complex, then Matrix

adjoint does conjugate in addition to transposing. This is also called dagger.

+ _ *

So dagger is just transpose but for complex, we also do conjugate after transposing. That
is all.

If A;; = Aj; then matrix is symmetric. If A;; = —A;; then antisymmetric.

Hermitian matrix is one which At = A. If A" = —A then it is antiHermitian.

Any real symmetric matrix is always Hermitian. But for complex matrix, non-symmetric
1 —i

can still be Hermitian. An example is .

i 2

Unitary matrix Is one whose dagger is same as its inverse. i.e.

At = A1
ATA=1
Remember, dagger is just transpose followed by conjugate if complex. Example of unitary
matrix is % i ; . Determinant of a unitrary matrix must be complex number whose
magnitude is 1.

Also |Av| = |v| if A is unitary. This means A maps vector of some norm, to vector which
must have same length as the original vector.

A unitary operator looks the same in any basis.

Orthogonal matrix One which satisfies

AAT =1
ATA=1
Al = AT
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commute means [MN] = MN — NM. Also [MN], =

00
0 0)
Another property is that det(a;) = —1. Since they are Hermitian and unitary, then a;! = a;.

If H is Hermitian, then U = ¢! is unitary.

When moving a number out of a BRA, make sure to complex conjugate it. For example
(Bv1|vp) = 3"(v1|v,). But for the ket, no need to. For example (v, |3v,) = 3(v;[v,)

item (f|QIg)* = ((QUg) 1f) = (IQTI)
item when moving operator from ket to bra, remember to dagger it. (u|Tv) = (Ttulv)

item if given set of vectors and asked to show L.I., then set up Ax = 0 system, and check
|A|. If determinant is zero, then there exist non-trivial solution, which means Linearly
dependent. Otherwise, L.I.

item if given A, then to represent it in say basis ¢;, we say A,(fi) = (e, Ae;) = (er|Ale;). i.e
A11 =(ey, Aeq) and A, = (e1, Aey) and so on.

11 Gram-Schmidt

Let the input V4, V), -+, V,, be a set of n linearly independent vectors. We want to use
Grame-Schmidt to obtain set of n orthonormal vectors, called v;, vy, -+, v,,. The notation
(V1, V) is used to mean the inner product between any two vectors. The first vector v; is
easy to find777

Vi

- 1 1
N AT M)

The second
vy, = Vy —0v1{vy, V)

Where v; means v, but not yet normalized. Before we normalize v3, we need to show that
(v1,v5) = 0. But
(v1,79) = (v1, (Vo = 01{v1, V2)))

Expanding the above gives
(01,05) = (v1, Va) = (01,0101, V2))

But (vq, V) above is just a number. We can take it out of the second inner product term
above. The above becomes

(v1,0p) = (01, Vo) — vy, Vo ){(vq,01)
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But (v, v1) =1, since v; is normalized vector. The above becomes

(v1,05) = vy, Vo) — (01, V)
=0

Now we normalized v,

v

(D5, V5)

Uy =

Now we find v3

vy = V3 — (0101, V3) + 02(vy, V3))
vy

V{03, v5)

O3 =

And so on.

12 Modal analysis

given [X(t)) + M|x(t)) = 0, find the eigenvectors and eigenvalues of M. Then @ = [V,, V,]
is 2 X 2 matrix, transformation matrix. where each column is the eigenvector of M. Then
1X(£)) = DT |x(t)) and |x(t)) = ® |X(t)). The new system becomes IX(1)+QIX(t)) = 0 where
Q) is now diagonal matrix with eigenvalues of M on the diagonal. Solve using this. First
transform initial conditions to X(t). Then trandform solution back to |x(t)) using |x(t)) = ©

1X(£))-
13 Complex Fourier series and Fourier transform
Given f(x) which is periodic on 0 < x < L, so period is L, then Fourier series is
f(x) - L i c einzfnx
=N

Where
¢y = (nlf)
27

b f C e T
VL Yo
. 27

The basis are |n) = %6_ L " and L is the period.

Fourier transform for non periodic f(x) is (sum above becomes integral)

1o
@ =5- [ ik

Ck = j: " f (x)e~kx gy




This gives rise to

1~
o -¥) = 5 f k=) g

14 RLC circuit

V(s) = I(s)(R + Ls + é)

1
I(s) = ——5Vi(s)
R+ILs+ =
Cs

As differential equation for current
R 1
I"(t) +2=I"(t) + —=I(t) =
() +25: 1) + =I() = 0

15 Time evaluation of spin state

H=-u-B
B
_Bg

me
3 eBhill O
2m,|0 -1

. eBh eBh
The eigenvalues are E, = 2mgm, E_= 2mem

d
h—|X) = H|X
ifi—1X) = H|X)

eBall O
=5 |X)
me{0 -1

Hence
ijfl(t) _ B x1(t)
)| 2me|x(h)
Bin(t) = S0 xy (1
m

e

eB
fixy(t) = — 5

e

xo(t)

18



The solution is

Where y = %

¢y =(5y = g|X>
1 1 et
e 1]
= —(e’Vt + e"Vt)
= cos yt

Probability to measure S, = g att > 0is P(t) = |c+|2 = cos? yt. And

h h
IX) = C+|Sx = E> + C—lsx = _E>

h
e = (S, = 51X

1 1 e it
SRILN I [
V2 42 et
1,. .
— E(ezyi.‘ _ ez]/t)
= isinyt

Probability to measure S, = —g att>0is P(t) = |c_|2 = sin? yt

16 Pauli matrices, Spin matrices

Pauli matrices There are 3 of these. They are

01 0 —i 1 0
01 = ,61 = ’01 =
10 i 0 0 -1

19
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There are also sometimes called a,, ay, a. Not to be confused by component x, y, z of an

= I. Also they are all Hermitians

ordinary vector. Important property is that 02 = (

(i.e. AT = A). This is obvious for the first and last matrix, since there are symmetric
and real (we know if a matrix is real and also symmetric, it is also Hermitian.). Another
important property is that they are unitary. i.e. A* = A7, Also any two anticommute.
This means [M, N], = MN + NM.

[Ux, o*y] = 2io,
For Pauli matrices, [ai, G]'] = 2i ) €;0x. Hence

[01,0,] = 2io3
[02,01] = —2io3
[01,03] = —2io,
[03,01] = 2io,
[0, 03] = 2i0y
[03,02] = =2i0¢
Eigenvalues of Pauli matrices can be only 1, -1.
Tr(o;) =0

And Pauli matrices do not commute. This means 0,0, # 0,0,.

1. .
Electron 5 Spin matrices

Spin matrix | Eigenvalues | Eigenvectors

g _afo 1] a ] ol
S | vl V2|1
g 0 —H b Al
Y721 ol |2 2 V2|1 V2|1
A 1 0
P2 ]2 2 of |

And usin Si,S' =il 2 ei'kSk' Hence [51,52] = thg, and [51,53] = —ihSZ and [52, Sl] =
& j k €if



—ihS; and [S,, S3] = ihS; and [S3, S1] = —i#S, and [S3, S,] = —ihiS;. Hence

And

And

And

Where S? = thl.

Electron 1 spin matrices

sts, =S2-$2 s,
= 112

St =52 -S2 +hS,
= 72

21
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Spin matrix Eigenvalues | Eigenvectors
HEEEE e
010 2 V2 2
S,=—1 0 1| |10, - 0 =
YU \2 T V2 V2
010 1 L 1
L_E_ -ﬁ_ _E_
o [y
0 —i 0 2 V2 2
1. . i i
Sy—$z 0 -i||10,-1 7 0 NG
0 i 0 1 L 1
2| V2] 2
10 0 1 0 0
1 -1
S;,=10 0 0 $,0,$ 0 1
0 0 -1 0
And
StS, =8%2-S52-hsS,
= 72
SIS =82-S2+Hh8S,
= 12
2 00
Where S? = 2R2] = H2[0 2 0]
0 0 2

If we are given state vector V and asked to find expectation value when measuring along
x axis, then do (V|S,|V)




17 Quantum mechanics cheat sheet

17.1 Hermitian operator in function spaces

If Q) is Hermitian operator, then it satisfies

(ulQfoy* = (v|Qu)
( f u*(x)Q[v(x)]dx) - f o () Qu(x)]dx
f H()Q[o* (0)]dx = f 0 () Q[u(x)]dx

. d
For this, the boundary terms must vanish. For example, for the operator Q2 = —i—

17.2 Dirac delta relation to integral

1 .
- ipx
o(p) o j:ooe dx

17.3 Normalization condition

f U W, W, Bt = 1

17.4 Expectation (or average value)

23

If a system is in state of W, then we apply operator A, then the average value of the

observable quantity is the expectation integral
(4) = 1Ay
[ weAwax
T  WWx
Note that f_ : W(x)W(x)dx =1 if the state wave function is already normalized.
Given an operator X, acting on W(x, t) then
XW(x,t) = x¥V(x, t)
The expectation of measuring x is (assuming everything is normalized)
<X> - f W, DX, P
= f " W*(x, HxW(x, t)dx
= <x_>
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Given system is in state 1(x). What is the expectation value for x measurement. Is this
same as writing (X). Yes. it is

(WYlxly)

17.5 Probability

The probability that position x of particle is between x and x + dx is [W(x, £)/°dx. Hence
W (x, t)[” is the probability density.

Note that
(VW) = f ()P
Wilwy) = [ WiWadx

Given |WV) = a|W;) + b|W,) then the probabilities to measure a or b are

2

|al
P(a) = ———
O
b
Pb) = ———
O it
17.6 Position operator X
eigenvalue/eigenfunction X|x) = x|x) Where x is eigenvalue and [x) is position vector.
(xlx") = 6(x = x')
orthonormal eigenbasis {lx)} — for —oco < x < o

[ o dx =1

Vector form to function form | (x[¢)) = 1(x) probability at position x

Expansion of state vector i) | [i) = f_ : X" Wx'|ipydx" = f_ : Ix" Y (x")dx’

Eigenfunctions in deep well | Not defined for position operator

Operator matrix elements (x|x[x") = x’6(x — x") Operator is diagonal matrix.

17.7 Momentum operator p
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eigenvalue/eigenfunction

pldy) = plp,) Where p is eigenvalue and |¢,) is momentum eigenstate

orthonormal eigenbasis

(@plpp) =0(p— ')
{lpp) — for —co < p < o0

[ 1) pldp =1

Vector form to function form

() = Pp(x)

Expansion of state vector |’

W) = [ lopXplpdp

General Eigenfunction

(¥ly) = 9y() = = exp( %)

Operator matrix elements

(x|plx")y = —iho(x — x’)% Operator is not diagonal matrix.

17.8 Hamilitonian operator

H=T+V

Where T is K.E. operator and V is P.E. operator. Recall that p = mo and T = %mvz. Hence

52

i

2m’

eigenvalue/eigenfunction

a [V, » = E,lYe) Where E,, is eigenvalue (energy level)

Orthonormal basis of operator

<¢En(x)|77b}§m(x)> = 6(En - Em)

e )} — .
E I e, e, | dE =1

forn=1,2,--- (check)

Vector form to function form

(X, ) =Yg, (x)

Expansion of state vector [¢)

[Ye) = 2, [Ye, XYE, 1)

\/2 sin(@) O<x<L n?mh?
Eigenfunctions for deep well problem | (x|¢g) = Y(x) = L L E, =

son 2ml?
0 otherwise

Operator matrix elements

(XH]x') = %mv2 + V(x) = 6(x - x')(% + V(x’)) =0(x— x’)(;—}:di—z,z + V(x’))

The ODE for deep well is derived as follows.

I:h’[) = Eq
(T+V)y=Ep
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&
— —. Hence the above becomes

But V = 0insideand T
12 dZ
Mwﬂwm Ey()

2m
E‘P(x) + 7‘#(96) =

dZ
%00 +RY() = 0

Where k = ,/ h2 . The eigenvalues are k, from solving for boundary conditions at x = L.

Now solve as standard second order ODE, with BC (0) = 0,¢(L) = 0. The solution
becomes

\/g sink,x) 0<x<L

0 otherwise

P(x) = P(x) =
Where eigenvalues are k,, = %, n=1,2,3,--

18 Questions and answers

18.1 Question1

Problem says that the system is in some general state 1)(x) and asks what is the probability
distribution to measure momentum p ?

solution

The probability is |<qbp|¢>|2. What goes in the bra is the eigenstate being measured. What
goes in the ket is the current state.

@) = [ (@ g

= [ iy tgpax
= f Pp(0)P(x)dx
ipx
Now, for the deep well problem for 0 < x < L, we should know that ¢,(x) = \/;_h e and
Tt

2 nmx
= sin — 0<x<L
Y(x) will be given. For example g(x) = \/: ST * . Hence
0 otherwise

<¢w>‘f'1 :?JE nmx
= e Sln —aaXx
P 0 V2mh L L
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Now evaluate this integral and at the end take the square of the modulus. This will give
the probability distribution to measure p. The above was problem 4, in HW?7.

18.2 Question 2

Problem says that the system is in some general state 1(x) and asks what is the probability
distribution to measure position x ?

solution

The probability is |(x|1,b>|2. What goes in the bra is the eigenstate being measured. What
goes in the ket is the current state.

gy = [ Gl
= [ ot wpeas
= ()
Hence prob(x) = |(xl)|” = [P

18.3 Question 3

Problem says that the system is in some general state £ (x) and asks what is the probability
distribution to measure position x ?

solution

The probability is |(x|1,b)|2. What goes in the bra is the eigenstate being measured. What
goes in the ket is the current or given eigenstate.

L
() = fo ) o [y

_ f o W)
0
= (x)

Hence the probability is |1/)(x)|2. Now, for the deep well problem for 0 < x < L, we know
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2 sin = O<x<L
that Y (x) = L L then
0 otherwise
> 2
2 . nnx
|¢En(x)| = \/; sin T
2 . z(nnx)
= —sin“| —
LT

Is this correct? Checked, yes correct.

18.4 Question 4

Problem gives that the system is in some general state ¢,(x) (i.e. momentum eigenstate,
not energy eigenstate as above, due to having done momentum measurement done be-
fore) and then problem asks what is the probability distribution to measure position x

?

solution

The probability is |(x|¢)p)|2. What goes in the bra is the eigenstate being measured. What
goes in the ket is the current eigenstate.

L
(Xlpp) = fo (XX )X | ydx’

= fL o(x — x’)¢p(x’)dx’
0

= ¢p(x)
S 2 1
Hence the probability is |qbp(x)| - we know that ¢,(x) = N i then
2
2 1
(x) = eh
|¢P | \/ﬁ

1
2

Which is constant. So if we measure momentum first, then ask for probability of measuring
position x next, it will be the above. Same probability to measure any position? Is this
correct? yes.

18.5 Question 5

Problem gives that the system is in some general state ¢, (x) and asks what is the proba-
bility to measure momentum p’?
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The probability of measuring momentum p’ given that system is already in state [i),,) =

|p,) is |<¢>pf|qb,,>|2 where
Glon) = [ (G g
= [ Caigy il i
= [ oy,
~ 00 1 _ip/x 1 ﬂ
- j:oo 2mth exp( h )VZnh exp( h )dx

A [ exp(i(p - p')x}ix

but 6(p) = % f_z e'P*dx, therefore 6(;9 - p’) = % f_: ei(”‘p’)xdx.

Letu = %, then du = %dx. The integral becomes

h 0 4 4
Gl =5 [ e
1
= —(2mo(p-p))
=o(p-r')
19 Position, velocity and acc in different coordinates

system

In polar, just remember these

7= pe,
d7 = e,dp + eypde
o dr
v=—
dt
L dp o dg
= BPE €¢pE
d . .
Eep = (i)%
d R



Given7 = p¢,, then

U= pe, + p%ép
= P2, + py
And similarly for a.
7= (p-pd?)e, + (o +2p¢)e,

This is much better than the alternatives.

In Cylindrical
de, = eydep
déql) = —épd¢
de, =0

dr is different coordinates

Cartessian
dr = 2,dx +&,dy + &,dz
Cylindrical
dr = 2,dp + eppd¢ + 2,dz
Spherical

dr = &,dr + 2grd0 + 2,7 sin Od¢

v is different coordinates

Use these for finding Lagrangian.

In Cartessian
Polar

Spherical

1 1

30
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20 Gradient, Curl, divergence, Gauss flux law, Stokes

The gradient V is vector operator. In Cartessian

Voo d s d s d
~%ox Yy 9z
If
ox

In Cylindrical

Vf=|pZ

In spherical

d 14 1 0

+eg——— + eqbpSl—n@%

1 of
psin6 do

For conservative force
F=-VV

Notice that — [F-dF = [VV - dF = ffto dV = V(to) - V(from) also 561_-“ -dr = 0 for
rom

conservative force.



32

The curl in Cartessian

e & &
= Jd dJ d
V XF = B c?_y >
F, F, F,
In Cylinderical
e, &y &
= J 19 d
V XF = z9_p ;@ o
F, Fy F,
In Spherical
& & &g
= d 1 J 194
VXE=15 panoas poe
F, Fy Fo
Divergence This is scalar. see cha7b.pdf
V.-F
Gauss law
From Wiki

It states that the flux of the electric field out of an arbitrary closed surface is proportional to the
electric charge enclosed by the surface.

Gauss’s law can be used in its differential form, which states that the divergence of the electric field
is proportional to the local density of charge.

surface integral
—N—

[ [Fas :fV(V-P)dV

line integral
—_——

SEP-df =fs(v X F)-ds

Stoke’s theorem
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Also divergence of the curl is zero.

V- (VxF)=0
From the net

The characteristic of a conservative field is that the line integral around every simple closed con-
tour is zero. Since the curl is defined as a particular closed contour line integral, it follows that
curl(gradF) equals zero.

And curl of a gradient is the zero vector.

V x(VE)=0

21 Gas pressure

average speed of gas particles is v,,,; or take avergae of the squares of each particle velocity

and then take the square root at end. Or

_ 3RT
0= _—
m
Where R is the gas constant, T is gas absolute temperature and m is molar mass of each

gas particle in kg/mol.

dn
dn = f(v)dv,dv,dv,

Where dn is the number denity of gas particles (how many particles per unit volume with
velocity between v and v + dv)



Average speed of particles

_ [ J [ of@dvdo,do,

n
1 (oe] (o] (o]
= f_ ) f_ N f_ . of (v)do,dv,do,

1 27T T 00 '
= EL:O fgzo j;zovf(v)(vz sm@)dvd6d¢

1 277 T )
- - f o [ sin6de f Fo)Pdo
¢=0 0=0 v=0

n

1 S
- E(Zn)(— cos 0); » f(v)o*dv

_ —%(Zn)(—l 1) f : F(o)otdo
At ™
=— fv . f(v)o*dv

Pressure

dF = F;dN
B (vaz

At
= 2mv2dnAA

)dnAszAt

Hence

b [ar
AA
:mevgdn

:2mfdvxfdvy ff(v)v%dvz

This integral can be evaluated in spherical coordinates.

34
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net energy density of gas

Hence

1
E= fimvzdn
1
= —mfffvzdn
2
1
zimfff(v§+v§+v§)dn
3
= Emfffv%dn
3 (o] (e} (o] 2
= Emf dvxf dvyf vz f (v)do,

:3mf dvxf dvyf 02 f (v)dv,
—00 —00 0

2
P=-E
3

AndE = gnKT — P = nKT for ideal gas.

22 Table of study guide

chapter topics

ch7c.pdf PDE’s, seperation of variables, Lagrangian method

ch7b.pdf Position, velocity and acc in different coordinates. Gradient, Curl and
Div.

ch7a.pdf Multivariable calculus. Jacobian. Gravitional field for shell, Pressure
and energy of gas

chéb.pdf First order ODE’s. Second order Constant coefficients. under,over and
critical damping

ché6a.pdf Second order ODE'’s. Variable coefficient. Power series methods. Her-
mite ODE.

ch5c.pdf Function spaces. Hermitian operators. Complex Fourier series.
Fourier transform. Deep well probem
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ch5b.pdf Linear vector spaces and QM. Probability when making measure-

ments. Commutation. Schrodinger equation. Spin operators S, S, S..
Pauli matrices. Time evolution of spin state. Solving mass/spring prob-
lem using normal modes.

ch5a.pdf Linear vector spaces. Linear independence. Gram-Schmidt. Linear

operators. Finding eigenvalues and eigenvectors for matrices. Coordi-
nates transformation between orthonormal basis.

ch4.pdf Matrices and Determinants. 2D rotation matrix. Lorentz transforma-

tion. Pauli matrices. Levi-civita. Properties of determinants. Solution
to linear equations. Cramer rule. Dimensional analysis.

ch3.pdf Complex numbers. Taylor series expansion. Solving x"* = 1. Integrals.

x+ia

Completing the squares for f ~ etin? gy Gaussian integral, N slit in-

tererence. Single slit diffraction.

ch2.pdf Gaussian and exponential integrals. Evaluating Gaussian integral.

Evaluating “x"edx = n!. Zeta function. Gamma function. Ster-
ling formula.

chl.pdf Taylor series. Convergence test. Taylor series of common functions.
Using Taylor series to find equilibrium point for small oscillations.
Pendulum.
23 Questions
1. Do all spin matrices always have same eigenvalues? this is the case for S, S,, S, for
electron. NO. depends spin number.
2. How do we get the probability of measuring S, = —g orS, = g to be %? is it because
there are two eigenvalues, and it is 50% each? see class notes lecture 5b. page 9.
. h
Answer: Current state vector is |S, = §>'
3. Does the order matter? In page 5, lecture 5B, could we do C, = (5, = gISZ = g) or
C. = (5. = 315, = 3) ? Resolved.
4. Why is (V|S,|V) gives the The statistical average of measuring S, given current state

vector is |[V) ? Resolved.



37

. Can we just move the H operator to RHS, as in x” + Mx = 0 instead of x" = —Mx.
This way no need to work with negative eigenvalues? Yes.

. HW 5, last problem, I do not see how M, N share all the 3 eigenvectors. I get only
one common eigenvector. I also do not understand the comment in my solution to
refer to set of vectors as basis? What does this mean? Also, we know M, N commute,
and so they share a common basis, but the question is asking which ones they share?
Resolved.

. For Pauli matrices, [oi, aj] = 2i 3} €;30%. and for spin % it is [Si, S-] = ih Ek €ijkSk- SO

what is it for spin 17 is it still [Si, S]-] = ih Y, €Sk ? Yes.

. I think W(x, t) is just the eigenfunction corresponding to the eigenvalue just mea-
sured. So if the operator used is the position operator X, then it is called W(x). If the
operator used is momentum operator P, we call it ¢,(x), but should it be really be
W, (x)? If the operator is Hamiltonian A, then the eigenvalue is the energy level E
and the W is called Wg(x). Any of these are also called the wave function W(x). Is
this correct? I think so.
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