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1 Problem 1 (10.2.8)

Figure 1: Problem statement

Solution

1.1 Part 1
The ode to solve is

𝑥′′(𝑡) + 2𝑥′(𝑡) + 𝑥(𝑡) = 0 (1)
𝑥(0) = 1
𝑥′(0) = 0

This is a constant coefficient ODE. Assuming the solution has the form 𝑥 = 𝐴𝑒𝜆𝑡 and
substituting this back in (1) gives the characteristic equation (the constant 𝐴 drops out)

𝜆2𝑒𝜆𝑡 + 2𝜆𝑒𝜆𝑡 + 𝑒𝜆𝑡 = 0
�𝜆2 + 42𝜆 + 1�𝑒𝜆𝑡 = 0

Since 𝑒𝜆𝑡 ≠ 0, the above gives

𝜆2 + 2𝜆 + 1 = 0
(𝜆 + 1)2 = 0

Therefore 𝜆 = −1. (double root). Since the root is double, then the basis solutions are
𝑥1(𝑡) = 𝑒𝜆𝑡, 𝑥2(𝑡) = 𝑡𝑒𝜆𝑡 and the general solution is a linear combination of these basis
solutions. Therefore the general solution is

𝑥(𝑡) = 𝐴𝑒−𝑡 + 𝐵𝑡𝑒−𝑡 (2)

The constants 𝐴,𝐵 are found from initial conditions. At 𝑡 = 0 and using 𝑥(0) = 1 gives

1 = 𝐴 (3)

Solution (2) becomes

𝑥(𝑡) = 𝑒−𝑡 + 𝐵𝑡𝑒−𝑡 (4)

Taking derivative of (4) gives

𝑥′(𝑡) = −𝑒−𝑡 + 𝐵𝑒𝑡 − 𝐵𝑡𝑒−𝑡

Using 𝑥′(0) = 0 on the above gives

0 = −1 + 𝐵
𝐵 = 1 (5)

Substituting (3,5) in (4) gives the final solution

𝑥(𝑡) = 𝑒−𝑡 + 𝑡𝑒−𝑡

= (1 + 𝑡)𝑒−𝑡
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1.2 Part 2
The ode to solve is

𝑥′′′′(𝑡) + 𝑥(𝑡) = 0
As was done in the above part, substituting 𝑥 = 𝐴𝑒𝜆𝑡 in the above and simplifying gives
the characteristic equation

𝜆4 + 1 = 0

Hence the roots are 𝜆4 = −1 or 𝜆4 = 𝑒−𝑖
𝜋
2 . There are 4 roots that divide the unit circle

equally, each is 90 degrees phase shifted (anti clockwise)from the other, starting from
first root at phase −𝜋

2 = −45 degrees. Hence the roots are

𝜆1 = cos(−45) + 𝑖 sin(−45)
𝜆2 = cos(45) + 𝑖 sin(45)
𝜆3 = cos(135) + 𝑖 sin(135)
𝜆4 = cos(225) + 𝑖 sin(225)

or

𝜆1 =
√2
2

− 𝑖√
2
2

𝜆2 =
√2
2

+ 𝑖√
2
2

𝜆3 = −√
2
2

+ 𝑖√
2
2

𝜆4 = −√
2
2

− 𝑖√
2
2

Therefore the basis solutions are

𝑥1(𝑡) = 𝑒
� √2

2 −𝑖 √22 �𝑡

𝑥2(𝑡) = 𝑒
� √2

2 +𝑖 √22 �𝑡

𝑥3(𝑡) = 𝑒
�− √2

2 +𝑖 √22 �𝑡

𝑥4(𝑡) = 𝑒
�− √2

2 −𝑖 √22 �𝑡

The general solution is linear combination of the above basis solutions, which becomes

𝑥(𝑡) = 𝑐1𝑒
� √2

2 −𝑖 √22 �𝑡
+ 𝑐2𝑒

� √2
2 +𝑖 √22 �𝑡

+ 𝑐3𝑒
�− √2

2 +𝑖 √22 �𝑡
+ 𝑐4𝑒

�− √2
2 −𝑖 √22 �𝑡

= 𝑐1𝑒
√2
2 𝑡𝑒−𝑖

√2
2 𝑡 + 𝑐2𝑒

√2
2 𝑡𝑒𝑖

√2
2 𝑡 + 𝑐3𝑒

− √2
2 𝑡𝑒𝑖

√2
2 𝑡 + 𝑐4𝑒

− √2
2 𝑡𝑒−𝑖

√2
2 𝑡

= 𝑒
√2
2 𝑡�𝑐1𝑒

−𝑖 √22 𝑡 + 𝑐2𝑒
𝑖 √22 𝑡� + 𝑒−

√2
2 𝑡�𝑐3𝑒

𝑖 √22 𝑡 + 𝑐4𝑒
−𝑖 √22 𝑡�

Using Euler relation, the above can be rewritten as

𝑥(𝑡) = 𝑒
√2
2 𝑡
⎛
⎜⎜⎜⎜⎝𝑐1 sin

⎛
⎜⎜⎜⎜⎝
√2
2

𝑡
⎞
⎟⎟⎟⎟⎠ + 𝑐2 cos

⎛
⎜⎜⎜⎜⎝
√2
2

𝑡
⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ + 𝑒−

√2
2 𝑡
⎛
⎜⎜⎜⎜⎝𝑐3 sin

⎛
⎜⎜⎜⎜⎝
√2
2

𝑡
⎞
⎟⎟⎟⎟⎠ + 𝑐4 cos

⎛
⎜⎜⎜⎜⎝
√2
2

𝑡
⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

1.3 Part 3
The ode to solve is

𝑥′′′(𝑡) − 3𝑥′′(𝑡) − 9𝑥′(𝑡) − 5𝑥(𝑡) = 0
As was done in the above part, substituting 𝑥 = 𝐴𝑒𝜆𝑡 in the above and simplifying gives
the characteristic equation

𝜆3 − 3𝜆2 − 9𝜆 − 5 = 0
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Since one root is 5, then the above can be written as
(𝜆 − 5)(Δ) = 0

Where
Δ =

𝜆3 − 3𝜆2 − 9𝜆 − 5
𝜆 − 5

Using long division gives
Δ = (𝜆 + 1)2

Therefore the roots of the characteristic equation are
𝜆1 = 5
𝜆2 = −1
𝜆3 = −1

roots 𝜆2, 𝜆3 are the same. 𝜆 = −1 is a double root. Therefore the basis solutions are
𝑥1(𝑡) = 𝑒5𝑡

𝑥2(𝑡) = 𝑒𝑡

𝑥3(𝑡) = 𝑡𝑒𝑡

Where 𝑡 multiplies the last basis 𝑥3(𝑡) due to the double root. The general solution is
linear combination of the above basis solutions, which gives

𝑥(𝑡) = 𝑐1𝑥1(𝑡) + 𝑐2𝑥2(𝑡) + 𝑐3𝑥3(𝑡)
= 𝑐1𝑒5𝑡 + 𝑐2𝑒𝑡 + 𝑐3𝑡𝑒𝑡

1.4 Part 4
The ode to solve is

(𝐷 + 1)2�𝐷4 − 256�𝑥(𝑡) = 0

This has the characteristic equation equation (𝜆 + 1)2�𝜆4 − 256� = 0. The roots of �𝜆4 − 256�
are given by 𝜆4 = 256. Let 𝜆2 = 𝜔. Therefore 𝜔2 = 256 which gives 𝜔 = ±16.

When 𝜔 = 16, then 𝜆2 = 16which gives 𝜆 = ±4 and when 𝜔 = −16, then 𝜆2 = −16which
gives 𝜆 = ±4𝑖.

The other part (𝜆 + 1)2 = 0 gives 𝜆 = −1, double root. Therefore the roots of the charac-
teristic equation are

𝜆1 = 4
𝜆2 = −4
𝜆3 = 4𝑖
𝜆4 = −4𝑖
𝜆5 = −1
𝜆6 = −1

Root 𝜆 = −1 is a double root. Therefore the basis solutions as
𝑥1(𝑡) = 𝑒4𝑡

𝑥2(𝑡) = 𝑒−4𝑡

𝑥3(𝑡) = 𝑒4𝑖𝑡

𝑥4(𝑡) = 𝑒−4𝑖𝑡

𝑥5(𝑡) = 𝑒−𝑡

𝑥6(𝑡) = 𝑡𝑒−𝑡

Where 𝑡 was multiplied by 𝑒−𝑡 in 𝑥6(𝑡) since the root is double. The solution is linear
combination of the above basis solutions, which gives

𝑥(𝑡) = 𝑐1𝑥1(𝑡) + 𝑐2𝑥2(𝑡) + 𝑐3𝑥3(𝑡) + 𝑐4𝑥4(𝑡) + 𝑐5𝑥5(𝑡) + 𝑐6𝑥6(𝑡)
= 𝑐1𝑒4𝑡 + 𝑐2𝑒−4𝑡 + 𝑐3𝑒4𝑖𝑡 + 𝑐4𝑒−4𝑖𝑡 + 𝑐5𝑒−𝑡 + 𝑐6𝑡𝑒−𝑡

= 𝑒−𝑡(𝑐5 + 𝑡𝑐6) + 𝑐1𝑒4𝑡 + 𝑐2𝑒−4𝑡 + 𝑐3 sin(4𝑡) + 𝑐4 cos(4𝑡)

Where Euler relation was used in the last step above to rewrite 𝑐3𝑒4𝑖𝑡 + 𝑐4𝑒−4𝑖𝑡.
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2 Problem 2 (10.2.11)

Figure 2: Problem statement

Solution

2.1 Part 1
The ode to solve is

𝑦′′ − 𝑦′ − 2𝑦 = 𝑒2𝑥 (1)

This is second order constant coefficients inhomogeneous ODE. The general solution is

𝑦(𝑥) = 𝑦ℎ(𝑥) + 𝑦𝑝(𝑥) (2)

Where 𝑦ℎ(𝑥) is the solution to 𝑦′′ − 𝑦′ − 2𝑦 = 0 and 𝑦𝑝(𝑥) is any particular solution to
𝑦′′−𝑦′−2𝑦 = 𝑒2𝑥. The homogenous solution is found using the characteristic polynomial
method as was done in the above problems. Substituting 𝑦 = 𝐴𝑒𝜆𝑥 in 𝑦′′ − 𝑦′ − 2𝑦 = 0
and simplifying gives

𝜆2 − 𝜆 − 2 = 0
(𝜆 + 1)(𝜆 − 2) = 0

The roots are 𝜆1 = −1, 𝜆2 = 2. Therefore the basis solutions are

𝑦1(𝑥) = 𝑒−𝑥 (3)
𝑦1(𝑥) = 𝑒2𝑥

Hence 𝑦ℎ(𝑥) is linear combination of the above, which gives

𝑦ℎ(𝑥) = 𝑐1𝑒−𝑥 + 𝑐2𝑒2𝑥

The particular solution is now found. Assuming 𝑦𝑝 = 𝐴𝑒2𝑥. But 𝑒2𝑥 is a basis solution of
the homogeneous ode. Therefore 𝑦𝑝 is multiplied by 𝑥 giving

𝑦𝑝 = 𝐴𝑥𝑒2𝑥

Substituting this back in (1) and solving for 𝐴 gives

𝑦′𝑝 = 𝐴𝑒2𝑥 + 2𝐴𝑥𝑒2𝑥

𝑦′′𝑝 = 2𝐴𝑒2𝑥 + 2𝐴𝑒2𝑥 + 4𝐴𝑥𝑒2𝑥

= 4𝐴𝑒2𝑥 + 4𝐴𝑥𝑒2𝑥

Eq (1) becomes

�4𝐴𝑒2𝑥 + 4𝐴𝑥𝑒2𝑥� − �𝐴𝑒2𝑥 + 2𝐴𝑥𝑒2𝑥� − 2�𝐴𝑥𝑒2𝑥� = 𝑒2𝑥

4𝐴𝑒2𝑥 + 4𝐴𝑥𝑒2𝑥 − 𝐴𝑒2𝑥 − 2𝐴𝑥𝑒2𝑥 − 2𝐴𝑥𝑒2𝑥 = 𝑒2𝑥

4𝐴 + 4𝐴𝑥 − 𝐴 − 2𝐴𝑥 − 2𝐴𝑥 = 1
3𝐴 = 1

𝐴 =
1
3
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Hence the particular solution is

𝑦𝑝(𝑥) =
1
3
𝑥𝑒2𝑥

Therefore from (2) the general solution is

𝑦(𝑥) = 𝑐1𝑒−𝑥 + 𝑐2𝑒2𝑥 +
1
3
𝑥𝑒2𝑥 (4)

𝑐1, 𝑐2 are now found from initial conditions. At 𝑥 = 0, (4) becomes

1 = 𝑐1 + 𝑐2 (5)

Taking derivative of (4) gives

𝑦′(𝑥) = −𝑐1𝑒−𝑥 + 2𝑐2𝑒2𝑥 +
1
3
𝑒2𝑥 +

2
3
𝑥𝑒2𝑥

At 𝑥 = 0 the above gives

0 = −𝑐1 + 2𝑐2 +
1
3

(6)

Eq (5,6) are now solved for 𝑐1, 𝑐2. From (5)

𝑐1 = 1 − 𝑐2

Substituting this back in (6) gives

0 = −(1 − 𝑐2) + 2𝑐2 +
1
3

𝑐2 =
2
9

Therefore 𝑐1 = 1 − 2
9 =

7
9 . The final solution (4) becomes

𝑦(𝑥) =
7
9
𝑒−𝑥 +

2
9
𝑒2𝑥 +

1
3
𝑥𝑒2𝑥

2.2 Part 2
The ode to solve is

𝑦′′ − 2𝑦′ + 𝑦 = 2 cos 𝑥 (1)

This is second order constant coefficients inhomogeneous ODE. Hence the general solu-
tion is

𝑦(𝑥) = 𝑦ℎ(𝑥) + 𝑦𝑝(𝑥) (2)

Where 𝑦ℎ(𝑥) is the solution to 𝑦′′ − 2𝑦′ + 𝑦 = 0 and 𝑦𝑝(𝑥) is any particular solution to
𝑦′′ − 2𝑦′ + 𝑦 = 2 cos 𝑥. The homogenous is found using the characteristic polynomial
method. Substituting 𝑦 = 𝐴𝑒𝜆𝑥 in 𝑦′′ − 2𝑦′ + 𝑦 = 0 and simplifying gives

𝜆2 − 2𝜆 + 1 = 0
(𝜆 − 1)(𝜆 − 1) = 0

roots are 𝜆1 = 1, 𝜆2 = 1. (double root). The basis solutions are therefore

𝑦1(𝑥) = 𝑒𝑥 (3)
𝑦1(𝑥) = 𝑥𝑒𝑥

𝑦ℎ(𝑥) is linear combination of the the above which gives

𝑦ℎ(𝑥) = 𝑐1𝑒𝑥 + 𝑐2𝑥𝑒𝑥
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The particular solution is now found. Assuming 𝑦𝑝 = 𝐴 cos 𝑥. Taking all derivatives of
this solution gives the set {cos 𝑥, sin 𝑥}. Therefore

𝑦𝑝 = 𝐴 cos 𝑥 + 𝐵 sin 𝑥

Substituting this back in (1) to solve for 𝐴,𝐵 gives

𝑦′𝑝 = −𝐴 sin 𝑥 + 𝐵 cos 𝑥
𝑦′′𝑝 = −𝐴 cos 𝑥 − 𝐵 sin 𝑥

Hence (1) becomes

𝑦′′𝑝 − 2𝑦′𝑝 + 𝑦𝑝 = 2 cos 𝑥
(−𝐴 cos 𝑥 − 𝐵 sin 𝑥) − 2(−𝐴 sin 𝑥 + 𝐵 cos 𝑥) + (𝐴 cos 𝑥 + 𝐵 sin 𝑥) = 2 cos 𝑥

−𝐴 cos 𝑥 − 𝐵 sin 𝑥 + 2𝐴 sin 𝑥 − 2𝐵 cos 𝑥 + 𝐴 cos 𝑥 + 𝐵 sin 𝑥 = 2 cos 𝑥
cos 𝑥(−𝐴 − 2𝐵 + 𝐴) + sin 𝑥(−𝐵 + 2𝐴 + 𝐵) = 2 cos 𝑥

−2𝐵 cos 𝑥 + 2𝐴 sin 𝑥 = 2 cos 𝑥

Hence 𝐴 = 0 and 𝐵 = −1. Therefore the particular solution is

𝑦𝑝(𝑥) = − sin 𝑥

Eq (2) becomes

𝑦(𝑥) = 𝑐1𝑒𝑥 + 𝑐2𝑥𝑒𝑥 − sin 𝑥 (4)

𝑐1, 𝑐2 are now found from initial conditions. At 𝑥 = 0, (4) becomes

1 = 𝑐1 (5)

The solution (4) becomes

𝑦(𝑥) = 𝑒𝑥 + 𝑐2𝑥𝑒𝑥 − sin 𝑥 (6)

Taking derivative of (6) gives

𝑦′(𝑥) = 𝑒𝑥 + 𝑐2𝑒𝑥 + 𝑐2𝑥𝑒𝑥 − cos 𝑥

At 𝑥 = 0 the above gives

0 = 1 + 𝑐2 − 1 (6)

Therefore 𝑐2 = 0 and now Eq (6) gives the final solution as

𝑦(𝑥) = 𝑒𝑥 − sin 𝑥

2.3 Part 3
The ode to solve is

𝑦′′ + 16𝑦 = 16 cos 4𝑥 (1)

This is second order constant coefficients inhomogeneous ODE. Hence the general solu-
tion is

𝑦(𝑥) = 𝑦ℎ(𝑥) + 𝑦𝑝(𝑥) (2)

Where 𝑦ℎ(𝑥) is the solution to 𝑦′′ + 16𝑦 = 0 and 𝑦𝑝(𝑥) is any particular solution to 𝑦′′ +
16𝑦 = 16 cos 4𝑥. The homogenous is found using the characteristic polynomial method.
Substituting 𝑦 = 𝐴𝑒𝜆𝑥 in 𝑦′′ + 16𝑦 = 0 and simplifying gives

𝜆2 + 16 = 0
𝜆 = ±4𝑖
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The roots are 𝜆1 = 4𝑖, 𝜆2 = −4𝑖. The basis solutions are therefore

𝑦1(𝑥) = 𝑒𝑖4𝑥 (3)
𝑦2(𝑥) = 𝑒−𝑖4𝑥

Therefore 𝑦ℎ(𝑥) is linear combination of the the above.

𝑦ℎ(𝑥) = 𝑐1𝑒𝑖4𝑥 + 𝑐2𝑒−𝑖4𝑥

Which can be written, using Euler formula as

𝑦ℎ(𝑥) = 𝑐1 cos 4𝑥 + 𝑐2 sin 4𝑥

The particular solution is now found. Assuming 𝑦𝑝 = 𝐴 cos 4𝑥. Taking all derivatives of
this, the basis for 𝑦𝑝 becomes {cos 4𝑥, sin 4𝑥}. But cos 4𝑥 is a basis of 𝑦ℎ. Therefore this set
is multiplied by 𝑥. The whole set is multiplied by 𝑥 and not just cos 4𝑥 because the set
was generated by taking derivative of cos 4𝑥.

The basis set for 𝑦𝑝 now becomes {𝑥 cos 4𝑥, 𝑥 sin 4𝑥}. Hence 𝑦𝑝 is linear combination of
these basis, giving trial 𝑦𝑝 as

𝑦𝑝 = 𝐴𝑥 cos 4𝑥 + 𝐵𝑥 sin 4𝑥 (4)

Therefore

𝑦′𝑝 = (𝐴 cos 4𝑥 − 4𝐴𝑥 sin 4𝑥) + (𝐵 sin 4𝑥 + 4𝐵𝑥 cos 4𝑥)
𝑦′′𝑝 = (−4𝐴 sin 4𝑥 − 4𝐴 sin 4𝑥 − 16𝐴𝑥 cos 4𝑥) + (4𝐵 cos 4𝑥 + 4𝐵 cos 4𝑥 − 16𝐵𝑥 sin 4𝑥)

= −8𝐴 sin 4𝑥 − 16𝐴𝑥 cos 4𝑥 + 8𝐵 cos 4𝑥 − 16𝐵𝑥 sin 4𝑥

Substituting the above back in (1) gives

(−8𝐴 sin 4𝑥 − 16𝐴𝑥 cos 4𝑥 + 8𝐵 cos 4𝑥 − 16𝐵𝑥 sin 4𝑥) + 16(𝐴𝑥 cos 4𝑥 + 𝐵𝑥 sin 4𝑥) = 16 cos 4𝑥
sin 4𝑥(−8𝐴 − 16𝐵𝑥 + 16𝐵𝑥) + cos 4𝑥(−16𝐴𝑥 + 8𝐵 + 16𝐴𝑥) = 16 cos 4𝑥

Hence

−16𝐴𝑥 + 8𝐵 + 16𝐴𝑥 = 16
−8𝐴 − 16𝐵𝑥 + 16𝐵𝑥 = 0

Or

8𝐵 = 16
−8𝐴 = 0

First equation gives𝐵 = 2. Second equation gives𝐴 = 0. Therefore the particular solution
(4) becomes

𝑦𝑝 = 2𝑥 sin 4𝑥
From (2), the general solution becomes

𝑦(𝑥) = 𝑦ℎ(𝑥) + 𝑦𝑝(𝑥)
= 𝑐1 cos 4𝑥 + 𝑐2 sin 4𝑥 + 2𝑥 sin 4𝑥 (5)

𝑐1, 𝑐2 are now found from initial conditions. At 𝑥 = 0, (5) becomes

1 = 𝑐1
Hence the solution (5) becomes

𝑦(𝑥) = cos 4𝑥 + 𝑐2 sin 4𝑥 + 2𝑥 sin 4𝑥 (6)

Taking derivative of the above

𝑦′(𝑥) = −4 sin 4𝑥 + 4𝑐2 cos 4𝑥 + 2 sin 4𝑥 + 8𝑥 cos 4𝑥

At 𝑡 = 0 the above gives
0 = 4𝑐2

Hence 𝑐2 = 0 and the final solution (6) becomes

𝑦(𝑥) = cos 4𝑥 + 2𝑥 sin 4𝑥
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2.4 Part 4
The ode to solve is

𝑦′′ − 𝑦 = cosh 𝑥 (1)

This is second order constant coefficients inhomogeneous ODE. Hence the general solu-
tion is

𝑦(𝑥) = 𝑦ℎ(𝑥) + 𝑦𝑝(𝑥) (2)

Where 𝑦ℎ(𝑥) is the solution to 𝑦′′ + 𝑦 = 0 and 𝑦𝑝(𝑥) is any particular solution to 𝑦′′ + 𝑦 =
cosh 𝑥. The homogenous is found using the characteristic polynomial method. Substi-
tuting 𝑦 = 𝐴𝑒𝜆𝑥 in 𝑦′′ + 𝑦 = 0 and simplifying gives

𝜆2 − 1 = 0
𝜆 = ±1

roots are 𝜆1 = 1, 𝜆2 = −1. The basis solutions are therefore

𝑦1(𝑥) = 𝑒𝑥 (3)
𝑦2(𝑥) = 𝑒−𝑥

Therefore 𝑦ℎ(𝑥) is linear combination of the the above.

𝑦ℎ(𝑥) = 𝑐1𝑒𝑥 + 𝑐2𝑒−𝑥

Which can be written, using Euler formula as

𝑦ℎ(𝑥) = 𝑐1 cosh 𝑥 + 𝑐2 sinh 𝑥

The particular solution is now found. Assuming 𝑦𝑝 = 𝐴 cosh 𝑥. Taking all derivatives of
this, the basis for 𝑦𝑝 becomes {cosh 𝑥, sinh 𝑥}. But cosh 𝑥 is basis of 𝑦ℎ. Therefore this set
is multiplied by 𝑥. The whole set is multiplied by 𝑥 and not just cosh 𝑥 because the set
was generated by taking derivative of cosh 𝑥.

The basis set for 𝑦𝑝 becomes {𝑥 cosh 𝑥, 𝑥 sinh 𝑥}. Hence 𝑦𝑝 is linear combination of these
basis, giving trial 𝑦𝑝 as

𝑦𝑝 = 𝐴𝑥 cosh 𝑥 + 𝐵𝑥 sinh 𝑥 (4)

Therefore

𝑦′𝑝 = 𝐴 cosh 𝑥 + 𝐴𝑥 sinh 𝑥 + 𝐵 sinh 𝑥 + 𝐵𝑥 cosh 𝑥
𝑦′′𝑝 = 𝐴 sinh 𝑥 + 𝐴 sinh 𝑥 + 𝐴𝑥 cosh 𝑥 + 𝐵 cosh 𝑥 + 𝐵 cosh 𝑥 + 𝐵𝑥 sinh 𝑥

= 2𝐴 sinh 𝑥 + 𝐴𝑥 cosh 𝑥 + 2𝐵 cosh 𝑥 + 𝐵𝑥 sinh 𝑥

Substituting the above back in (1) gives

(2𝐴 sinh 𝑥 + 𝐴𝑥 cosh 𝑥 + 2𝐵 cosh 𝑥 + 𝐵𝑥 sinh 𝑥) − (𝐴𝑥 cosh 𝑥 + 𝐵𝑥 sinh 𝑥) = cosh 𝑥
sinh 𝑥(2𝐴 + 𝐵𝑥 − 𝐵𝑥) + cosh 𝑥(𝐴𝑥 + 2𝐵 − 𝐴𝑥) = cosh 𝑥

Hence

2𝐵 = 1
2𝐴 = 0

Therefore 𝐵 = 1
2 , 𝐴 = 0 and (4) becomes

𝑦𝑝 =
1
2
𝑥 sinh 𝑥

From (2), the general solution becomes

𝑦(𝑥) = 𝑦ℎ(𝑥) + 𝑦𝑝(𝑥)

= 𝑐1 cosh 𝑥 + 𝑐2 sinh 𝑥 +
1
2
𝑥 sinh 𝑥 (5)
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𝑐1, 𝑐2 are now found from initial conditions. At 𝑥 = 0, (5) becomes

1 = 𝑐1

Hence the solution (5) becomes

𝑦(𝑥) = cosh 𝑥 + 𝑐2 sinh 𝑥 +
1
2
𝑥 sinh 𝑥 (6)

Taking derivative of the above

𝑦′(𝑥) = sinh 𝑥 + 𝑐2 cosh 𝑥 +
1
2
sinh 𝑥 +

1
2
𝑥 cosh 𝑥

At 𝑡 = 0 the above gives
0 = 𝑐2 cosh 𝑥

Hence 𝑐2 = 0 and the final solution (6) becomes

𝑦(𝑥) = cosh 𝑥 +
1
2
𝑥 sinh 𝑥
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3 Problem 3 (10.3.5)

Solve 𝑥2𝑦′ + 2𝑥𝑦 = sinh 𝑥with 𝑦(1) = 2

Solution

Dividing by 𝑥 ≠ 0

𝑦′ + 2
𝑦
𝑥
=

sinh 𝑥
𝑥2

The integrating factor is 𝐼 = 𝑒∫
2
𝑥𝑑𝑥 = 𝑒2 ln 𝑥 = 𝑥2. Multiplying both sides by this integration

factor makes the left side a complete differential

𝑑
𝑑𝑥

�𝑦𝑥2� = 𝑥2
sinh 𝑥
𝑥2

𝑑
𝑑𝑥

�𝑦𝑥2� = sinh 𝑥

Integrating gives

𝑦𝑥2 = � sinh 𝑥𝑑𝑥 + 𝐶

𝑦𝑥2 = cosh 𝑥 + 𝐶

𝑦 =
cosh 𝑥
𝑥2

+
𝐶
𝑥2

(1)

At 𝑥 = 1 the above becomes

2 = cosh 1 + 𝐶
𝐶 = 2 − cosh 1

Hence the solution (1) becomes

𝑦(𝑥) =
cosh 𝑥
𝑥2

+
2 − cosh 1

𝑥2

=
1
𝑥2
(cosh 𝑥 + 2 − cosh 1)

Where 𝑥 ≠ 0
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4 Problem 4 (10.3.8)
Solve

�1 + 𝑥2�𝑦′ = 1 + 𝑥𝑦

Solution

𝑦′ =
1 + 𝑥𝑦
1 + 𝑥2

=
1

1 + 𝑥2
+

𝑥𝑦
1 + 𝑥2

Therefore

𝑦′ − 𝑦
𝑥

1 + 𝑥2
=

1
1 + 𝑥2

(1)

This is linear in 𝑦 first order ODE. It has the form 𝑦′+𝑝(𝑥)𝑦 = 𝑞(𝑥). The integration factor
is

𝐼 = 𝑒∫𝑝(𝑥)𝑑𝑥

= 𝑒−
∫ 𝑥

1+𝑥2
𝑑𝑥

But ∫ 𝑥
1+𝑥2𝑑𝑥 =

1
2 ln�1 + 𝑥2�. Therefore

𝐼 = 𝑒−
1
2 ln�1+𝑥

2�

= 𝑒ln�1+𝑥
2�
− 12

= �1 + 𝑥2�
− 1
2

=
1

√1 + 𝑥2

Multiplying both sides of (1) by this integrating factor makes the left side a complete
differential

𝑑
𝑑𝑥�

𝑦
1

√1 + 𝑥2
� =

1

√1 + 𝑥2
1

1 + 𝑥2

𝑑
𝑑𝑥�

𝑦
1

√1 + 𝑥2
� =

1

�1 + 𝑥2�
3
2

= �1 + 𝑥2�
− 3
2

Integrating gives

𝑦
1

√1 + 𝑥2
= ��1 + 𝑥2�

− 3
2𝑑𝑥 + 𝐶 (2)



13

To integrate ∫ 1

�1+𝑥2�
3
2
𝑑𝑥, let 𝑥 = tan 𝑢, then 𝑑𝑥 = �1 + tan2 𝑢�𝑑𝑢. Hence

�
1

�1 + 𝑥2�
3
2

𝑑𝑥 = �
1

�1 + tan2 𝑢�
3
2

�1 + tan2 𝑢�𝑑𝑢

= �
1

�1 + tan2 𝑢�
1
2

𝑑𝑢

= �
1

�1 + sin2 𝑢
cos2 𝑢

�
1
2

𝑑𝑢

= �
cos 𝑢

�cos2 𝑢 + sin2 𝑢�
1
2

𝑑𝑢

= � cos 𝑢 𝑑𝑢

= sin 𝑢

But sin 𝑢 =
sin 𝑢
cos 𝑢

�
1+ sin2 𝑢

cos2 𝑢

= tan 𝑢

√1+tan2 𝑢
= 𝑥

√1+𝑥2
. Hence

�
1

�1 + 𝑥2�
3
2

𝑑𝑥 =
𝑥

√1 + 𝑥2

Therefore the final solution (2) becomes

𝑦
1

√1 + 𝑥2
=

𝑥

√1 + 𝑥2
+ 𝐶

𝑦 = 𝑥 + 𝐶√1 + 𝑥2 (3)
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5 Problem 5 (10.3.9)

Solve (a) 𝑦′ + 𝑥𝑦 = 𝑥𝑦2 (b) 3𝑥𝑦′ + 𝑦 + 𝑥2𝑦4 = 0

Solution

5.1 Part a
The ode has the form

𝑦′ + 𝑝(𝑥)𝑦 = 𝑞(𝑥)𝑦𝑚

Where 𝑝(𝑥) = 𝑥, 𝑞(𝑥) = 𝑥 and 𝑚 = 2. Therefore this is Bernoulli ODE. The first step is to
divide throughout by 𝑦𝑚 = 𝑦2 which gives

𝑦′

𝑦2
+ 𝑝(𝑥)𝑦−1 = 𝑞(𝑥) (1)

Setting

𝑣(𝑥) = 𝑦−1 (2)

Taking derivatives of the above w.r.t. 𝑥 gives

𝑣′(𝑥) =
−1
𝑦2

𝑦′(𝑥) (3)

Substituting (2,3) into (1) gives

−𝑣′(𝑥) + 𝑝(𝑥)𝑣(𝑥) = 𝑞(𝑥)

But here 𝑝(𝑥) = 𝑥 and 𝑞(𝑥) = 𝑥. The above becomes

−𝑣′(𝑥) + 𝑥𝑣(𝑥) = 𝑥
𝑣′(𝑥) − 𝑥𝑣(𝑥) = −𝑥

This is linear ODE in 𝑣(𝑥). The integrating factor is 𝑒∫−𝑥𝑑𝑥 = 𝑒−
𝑥2
2 . Multiplying both sides

of the above by this integrating factor makes the left side a complete differential

𝑑
𝑑𝑥�

𝑣𝑒−
𝑥2
2 � = −𝑥𝑒−

𝑥2
2

Integrating gives

𝑣𝑒−
𝑥2
2 = −�𝑥𝑒−

𝑥2
2 𝑑𝑥 + 𝐶 (4)

To integrate ∫𝑥𝑒−
𝑥2
2 𝑑𝑥, let 𝑢 = 𝑥2. Then 𝑑𝑢 = 2𝑥𝑑𝑥. Substituting gives

�𝑥𝑒−
𝑥2
2 𝑑𝑥 = �𝑥𝑒−

𝑢
2
𝑑𝑢
2𝑥

=
1
2 �

𝑒−
𝑢
2 𝑑𝑢

=
1
2
𝑒−

𝑢
2

−1
2

= −𝑒−
𝑢
2

But 𝑢 = 𝑥2. Therefore

�𝑥𝑒−
𝑥2
2 𝑑𝑥 = −𝑒−

𝑥2
2
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Substituting the above in (4) gives

𝑣𝑒−
𝑥2
2 = 𝑒−

𝑥2
2 + 𝐶

𝑣 = 1 + 𝑒
𝑥2
2 𝐶

But 𝑣 = 𝑦−1, therefore

𝑦−1 = 1 + 𝑒
𝑥2
2 𝐶

𝑦(𝑥) =
1

1 + 𝑒
𝑥2
2 𝐶

Where 𝐶 is constant of integration.

5.2 Part b
The ode is

3𝑥𝑦′ + 𝑦 + 𝑥2𝑦4 = 0

Dividing by 3𝑥 for 𝑥 ≠ 0 gives

𝑦′ +
𝑦
3𝑥

+
𝑥
3
𝑦4 = 0

𝑦′ +
1
3𝑥

𝑦 = −
𝑥
3
𝑦4

Now this ODE has the Bernoulli form,

𝑦′ + 𝑝(𝑥)𝑦 = 𝑞(𝑥)𝑦𝑚

Where 𝑝(𝑥) = 1
3𝑥 , 𝑞(𝑥) = −𝑥

3 and 𝑚 = 4. Therefore this is Bernoulli ODE. The first step is
to divide throughout by 𝑦𝑚 = 𝑦4 which gives

𝑦′

𝑦4
+ 𝑝(𝑥)𝑦−3 = 𝑞(𝑥) (1)

Setting

𝑣(𝑥) = 𝑦−3 (2)

Taking derivatives of the above w.r.t. 𝑥 gives

𝑣′(𝑥) =
−3
𝑦4

𝑦′(𝑥) (3)

Substituting (2,3) into (1) gives

−
1
3
𝑣′(𝑥) + 𝑝(𝑥)𝑣(𝑥) = 𝑞(𝑥)

But here 𝑝(𝑥) = 1
3𝑥 , 𝑞(𝑥) = −𝑥

3 . The above becomes

−
1
3
𝑣′(𝑥) +

1
3𝑥

𝑣(𝑥) = −
𝑥
3

𝑣′(𝑥) −
1
𝑥
𝑣(𝑥) = 𝑥

This is linear in 𝑣(𝑥). The integrating factor is 𝑒−∫
1
𝑥𝑑𝑥 = 𝑒− ln 𝑥 = 1

𝑥 . Multiplying both sides
of the above by this integrating factor make the left side a complete differential

𝑑
𝑑𝑥�

𝑣
1
𝑥�

= 1
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Integrating gives

𝑣
1
𝑥
= 𝑥 + 𝐶

𝑣 = 𝑥2 + 𝑥𝐶 (4)

But 𝑣(𝑥) = 𝑦−3. Therefore the above becomes

𝑦−3 = 𝑥2 + 𝑥𝐶

𝑦3(𝑥) =
1

𝑥2 + 𝑥𝐶

Or

𝑦(𝑥) = �𝑥2 + 𝑥𝐶�
− 1
3
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