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1 Problem 1 (10.4.3)

Problem 10.4.3. Show that the first four Hermite polynomials are

Ho = 1 (10.4.35)
H = 2 (10.4.36)
Hy = -2(1-24? (10.4.37)
Hs = —12(;,,—_%3,3) (10.4.38)

where the overall normalization (choice of ag or ay) is as per some convention
we need not get into. To compare your answers to the above, choose the starting
coefficients to agree with the above. Show that

o0
/ eV Hu(y)Hum(y)dy = bpm(v/72™n!) (10.4.39)
—o0

for the cases m,n < 2. Notice that the Hermite polynomials are not themselves
orthogonal or even normalizable, we need the weight function e~V in the inte-
gration measure. We understand this is follows: the exponential factor converts
w's to +'s, which are the eigenfunctions of a hermitian operator (hermitian with
respect to normalizable function that vanished at infinity) and hence orthogonal
Sor different eigenvalues.

Figure 1: Problem statement

Solution

1.1 Part1l
Starting with ode (10.4.12) which is
Y W) - YY) = 2 (y) (104.12)
Where € = % the energy of the particle. Let the solution be
-
Y(y) = ulye 2
2 N
=ez Y ay" (1)
m=0
Where

u(y) = Y auy" (1A)
m=0



Eq. (1) can be written as

—y2 n
ez E apy™  lim,_ g
YY) = "=
_y2
a,y'e 2 lim,
Substituting (1) in 10.4.12 gives
il = NP R
I 2 — 2 = — 2
o ue yeue eue
d - - - ) -2
2 - 2 |- 2 == 2
dy u'e uye y ue eue
-2 -y -2 -2 -y -2 -
ueZ—uyeZ—uyeZ—ueZ—yeZ —yueZ:—ZeueZ
-2 -2 -2 -2 -2 - -
(u e2 —u'ye2 —u'ye2 —ue? +yu62 —yu62=—2€u62

2

Dividing by e 2 # 0 gives

u” —u'y—u'y —u+y*u-y*u = —2eu
u” =2u'y —u = -2eu

Which becomes the Hermite ODE as given in 10.4.24
u’(y) - 2yu'(y) + (2e = Nu(y) = 0 (10.4.24)
From (1A)

— 2_: mym 1
= zn: (m—1a,y"" 2

Substituting the above in (10.4.24) gives

n n n
E m(m —1)a,y"™ 2 - 2y E ma,,y™ 1 + (2e - 1) E a,y" =0
m=0

m=0 m=0

n n n
Zm(m - 1)amy’”‘2 - ZZmamy’” + Z (2e =1)a,,y" =0
m=0

Y m(m = Da,y" 2+ Y (2e =1 -2m)a,y" =0

m=0 m=0



The first sum can start from m = 2 without affecting the sum, hence the above becomes

Zm(m ~1)a,y" 2 + Z (2e -1 -2m)a,y™ =0

m=2 m=0

Let m’ = m — 2 in the first sum, it becomes

n-2 n
Z (m" +2)(m" + 1)aml+2ym/ + 2 (2e =1-2m)a,y" =0
m’=0 m=0

Changing the index in the first sum from m’ back to m gives

n-2 n

Y+ 2)(m + Dagoy™ + Y, (e =1 - 2m)a,y™ =0

Combining terms gives

n-2 n
D ((m+2)(m + Daygn + 26 =1 =2m)ay,)y"™ + Y, e -1-2m)a,y™ =0 (1B)
m=0 m=n-1

Considering the second term above for now.

n

Y, (e -1-2m)a,y" =0

m=n-1
(2e -1-2m)a,, =0 m=nm=n-1

Looking at case m = n
e -1-2n)a, =0

but a,, # 0 since that is the highest order of the power series. If 2, = 0 then the dominant
term of the power series is lost. This means (2¢ =1 -2n) = 0 or

1
e=n+s (10.4.34)

Looking at case m =n —1

e-1-2(n-1))a,_; =0
e-1-2n+2)a,, =0
Qe +1-2n)a,; =0

1
Bute=n+ > hence the above becomes

1
(Z(n + E) +1- Zn)an_l =0

n+1+1-2n)a,, =0
2%—1 =0



This means
a,1 = 0 (2)
Now looking at case m < n — 2 from Eq. (1C) above

n-2
Z ((m+2)(m+1)a,n + 2e —1-2m)a,)y™ =0
m=0
(m + 2)(m + 1)ﬂm+2 +(2e—-1- 2m)am =0
—(e-1-2m)
2 = e m A )

1
Bute=n+ > therefore the above becomes

—(Z(n + %) ~1- Zm)
e T L
_ —(2n-2m)
T mA)m+1)™
2(n —m)

T T m+m+n™

(3)

If nis even then n—11is odd. Then a,,_; = 0 from (2). But due to the recursive formula (3),

this implies a; = a3 = a5 --- = 0. Which means all odd terms in the solution polynomial
vanish. And if n is odd, then n — 1 is even. Therefore a,,_; = 0, But due to the recursive
formula (3), this implies a5 = a, = a4 --- = 0. Which means all even terms in the solution

polynomial vanish.

Now Eq. (3) is the recursive relation used to determine all coefficients a;. For m = 0, (3)
gives

a, = —nay (4)
Form =1, (3) gives

_ 21

3 3 N

For m =2, (3) gives

_ 2(n-2)
“ETwE)
—22(n -2)
T
22(n -2
- %ﬂo (6)



For m =3, (3) gives

. 2(n-3)
BT BB+
_ 2(n-3)-2%(n-1)
- T 6)@) 3
23(n-3)(n-1)
- 5! =

(7)
For m = 4, (3) gives
. 2(n-4)
T G @+
_ 2(n-4)2%(n-2)n
T TG a4 v

:—pm—gm—m%% (8)

And so on. Therefore the solution to the Hermite ODE (2) is

n
u= Z a,y"
m=0
= ag + ay + ay? + azy® + agyt + asy® + agy® + -+
2(n—-1) 3+?m—mﬁ”ﬁ+?m—am—na5_?m—®m—mn

=agtay - na0y2 Y ay al 0 51 1Y ol

(9)

Which can be written as

2(, _ 3(1 — -
u(y) = ao(l o 2 (n4' 2)ny4 _2(n 46)'(71 Z)ny6 N )

2(n-1) 22(n-3)n-1)

Or
u(y) = agitg + ayiy
Where 1, u; are two linearly independent solutions for the second order Hermite ODE
where
22n-2n , 2’m-4)m-2n |
s v 6! yre
22(n-1) 3(n-3)n-1)
3! 5!
For even n the solution u((y) will eventually terminates, and for odd »n the solution u;(y)
eventually terminates. The even Hermite polynomials Hy, H,, Hy, -+ are found from u(y)

up=1-ny? +

2
Y+ ay® + -

Uy =y-

a0y6+ e



forn =0,2,4,--- and the odd Hermite polynomials H;, H3, Hs, --- are found from u; (y) for
n=1,3,5,--. The Hermite polynomials need to also be normalize at the end. The even
Hermite polynomials are the following

Forn=0

up(y) = ao(l - ”yz -

22(n - Z)ny4 _ 23(n—4)(n-2)n 6. )
4! 6! 0

_ao

Therefore
Hy(y) = ag

To find ag, the normalization f_ - e‘yan, W)H,(y)dy = 2"n'\r Oy, is used, where Hy(y) =
ay in this case. This gives

(o]

ﬁj%%@%@@=ﬁ5

f B eV addy = \n
% [ " Vdy=r
RENCRN

11021

Hence a5 =1 and
Hy(y) =1
Forn=2

up(y) = ao(l —ny? +

22(n—2)n 23(n—4)(n-2)n
il | o+
4l 6! .

= ao(1-2y?)

Therefore

Hy(y) = a5(1 - 27)
To find ay, There is an easier way to normalize H,,(x) than using the normalization integral
equation as was done above. This method will be used for the rest of the problem as it
is simpler. It works as follows. H,(y) = (1 - 2y2) is normalized as follows. The coefficient

in front of the largest power in y" is forced to be 2. In the above, the largest power is 2.
Hence n = 2. Therefore the coefficient is 22 = 4. But the coefficient is —2. Therefore the
whole expression is multiplied by —-2. This means ay = -2. Hence

Hy(y) = -2(1 - 2¢?)



For H,(y) (This is not required to find, but found for verification)

Forn=4
22(n - 2)n 23(n—4)(n-2)n
up(y) = ap|1 — ny? + 1 vt - a 6 4 ...
n=4
22(4 - 2)4
= a1 - 42 + Ty4)
4
= ap[1-4y% + —y4)
3
Therefore

4
Hy(y) = ﬂo(l — 4y + 5?/4)

Hy(y) = aq (1 — 4y + gy‘l) is normalized as follows. The coefficient in front of the largest

power in /" is forced to be 2". In the above, the largest power is y*. Hence n = 4. There-

fore the coefficient is 2* = 16. But the coefficient is %. Therefore the whole expression is
multiplied by 12. This means ay = 12. Hence

4
Hy(y) = 12(1 —4y” + gy‘*)
Now the odd Hermite polynomials are found. These are found from 14 (y)
Forn=1
2(n-1) 25(n-3)n-1)
+ a

uy(y) = al(y— 30 U 50 1y + )
) ) n=1

= gly
Hence

Hi(y) = a1y
H;(y) = a1y is normalized as follows. The coefficient in front of the largest power in y" is
forced to be 2. In the above, the largest power is y!. Hence 1 = 1. Therefore the coefficient

is 21 = 2. But the coefficient is 1. Therefore the whole expression is multiplied by 2. This
means a; = 2. Hence

Hq(y) =2y
Forn =3

2(n—-1 22(n-3)(n-1
uz(y)=a1(y— (n3! )y3+ (n 5!)(71 )a1y5+'-')

n=3
( 2(3 - 1) 3)
=m\y - 31 y




Hence

H3(y) = ; (y - %f)

Hi(y) = al(y - §y3) is normalized as follows. The coefficient in front of the largest power

in " is forced to be 2". In the above, the largest power is 1>. Hence n = 3. Therefore the
coefficient is 2° = 8. But the coefficient is —%. Therefore the whole expression is multiplied
by —12. This means a; = —12. Hence

2 3
Ha(y) = -12{y - 7y
The following gives the final results

Hy(y) =1
Hi(y) = 2y
Hy(y) = -2(1 - 21%)

2
Hj(y) = —12(1/ - 51/3)

4
Hy(y) = 12(1 — 42 + gy‘*)

1.2 Part?2

This part verifies the results obtained in part 1 above for m,n <2 using

(oo}

[ e HH )y = 207 8, M)

Forn=0,m=0

Eq (1) becomes
[ e HowHow)y = Vi
f e_yzdy = \/E

But [ ~ ¢V’ dy is the Gaussian integral which is /7 . Hence

Vi =R
Verified.

Forn=0m=1




10

Eq (1) becomes
[ e Ho )y = 0

f B e‘yz(Zy)dy =0

2f ye‘yzdy =0

But y is odd, and ¢V is even. Hence the LHS is integral over odd function. Hence it must
be zero. Therefore
0=0

Verified.

Forn=0,m=2

Eq (1) becomes

[ ey = 0

[ " e (=21 - 242))dy = 0

f e‘»'/z(—z + 4y2)dy =0
-2 f eV dy + 4 f vV dy =0

But [ “ e Vdy = \/m and [ T ReVdy = %, therefore the above becomes

2\ +4(%) =0
2y +2ym =0

0=0
Verified.

Forn=1,m=1

Eq (1) becomes

[ e mmmeiy =297

j: B e‘yz(Zy)(Zy)dy =2vn
4foo eV dy = 2\
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But [ " 2eVdy = % The above becomes
2\n =2vn

Verified.

Forn=1,m=2

Eq (1) becomes

(oe]

[ e ey = 0

[ e (y)(-2(1-22)y =0

f e (8y3 - 4y)dy =0

8 f eV dy — 4 f ye Vdy =0
Both integrals in the LHS are zero, since both are odd functions. Therefore
0=0
Verified.

Forn=2,m=2

Eq (1) becomes

(o0]

[ ety = @2

e ((20-22)(20 - 2)ay = 8
f B (16y* — 16y +4)e¥'dy = 8/
16 foo yre V' dy - 16 foo vV dy + 4 foo eVdy = 8y/n

But f_oo y4e‘y2dy = E\/E and f_oo yze_yzd}/ = %\/E and f_m e‘»‘/zdy = /7. The above becomes

16(§\/E) - 16(%\/5) +4yn =8y

4
124/ —8Vn +4vr =8y
8y =8yn

Verified. This completes the solution.



2 Problem 3 (10.4.4)
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v o o

Problem 10.4.4. Consider the Legendre Equation
(1—2®)y" = 2zy +1(1+ 1)y =0

(10.4.40)

Argue that the power series method will lead to a two term recursion relation and
find the latter. Show that if | is an even (odd) integer, the even(odd) series will
reduce to polynomials, called P;, the Legendre polynomials of order . Show that

P =1

P = =
1 2

P2 = —(3.’E - 1)
2

Py = %(5&:3 —3z)

(10.4.41)
(10.4.42)

(10.4.43)

(10.4.44)

(The overall scale of these functions is not defined by the equation, but by conven-
tion as above.) Pick any two of the above and show that they are orthogonal over

the interval —1 <z < 1.

Solution

Figure 2: Problem statement

2.1 Part1l

The Legendre ODE is given by 10.4.40 as (L is used instead of / as it is more clear because
I looks like 1, depending on font used.)

(1-2)y” - 2xy + L(L+ 1)y = 0

Let the solution be

Then

(oe]
y= Z a,x"
n=0

[ee]
y =Y, naxt!
n=0

o
= ) na,x"!
n=1

(10.4.40)



And
Yy’ =Y, n(n-1)a,x"2
n=1
= Z n(n —1)a,x"2
n=2
Substituting the above results back in (10.4.40) gives

1-x? 3 n(n —1)a,x"2 - 2x 3 na,x" 1+ L(L+1) 3 a,x" =0
(

n=2 n=1 n=0

D n(n = 1Dax"2 = x2 Y n(n - Da,x"2 = Y] 2na,x" + Y, (L +1Da,x" =0
n=2 n=2 n=1 n=0

Z(n +2)(n + 1)a, ,x" - Z n(n—1)a,x" - Z 2na,x" + Z L(L+1)a,x" =0
n=0 n=2 n=1 n=0

For n = 0 only the above gives

(n+2)(n+1)a,x"+LIL+1)a,x" =0
2a, + L(L+1)ag =0
L(L+1)

ap = — 5 ap

For n =1 only Eq (1) gives

(n+2)(n+1)a,ox" —2na,x" + L(L +1)a,x" =0
(3)(2)@3 —2aq + L(L + 1)511 =0
_ 2ﬂ1 — L(L + 1)&1

6
C2-L(L+1)

6

as

ay

And for n > 2, Eq(1) gives the recusive relation

((n+2)(n+1)a,n, —nn-1)a, -2na, + L(L +1)a,)x" =0
(n+2)(n+1a,., —nn-1a, -2na,+LL+1)a, =0

n+2)(n+1a,., =mn-1)+2n—-L(L+1))a,

13
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Hence the two term recursive is

_nn-1)+2n-L(IL+1)

= 1
fin2 m+2)n+1) " )
Forn=2
nmn-1)+2n—-L(L+1)
= a
% n+2)n+l) 2
22-1)+4-L(L+1)
= a
8 ?
6-L(IL+1)
= ——————————————gz
12
Buta, = _L(gﬂ)ao hence the above becomes
6—L(@L+1)(-L(L +1)
= a
o4 12 2 0
Forn =3
nn-1)+2n-L(L+1)
as = a
> (n+2)(n +1) 3
3 3(3—1)+6—L(L+1)a
T (B+23B+1) O
12-L(L+1)
= ——03
20
Buta; = 2 LI+ a1, hence the above becomes

as

C12-LL+1)(2-LL+1)
-T2 ( 6 ”1)

And so on. The solution becomes

y= Zanx”

n=0
= ay + ayx + X% + a;x3% + agxt + agxd + -
L(L+1) 2 I(L+1) 6—L(L+1)\[LL+1) 12-LIL+1)\(2-LL+1)
= g+ mxX - — agx? + c X3 - D 5 agxt + 20 . ax° +

_ ao(l B L(L2+ 1)x2_(6—L1(§+1))(L(L2+ 1))x4+ ) +a1(x+ 2—L(6L+ 1)x3+ (12—L2(0L+ 1))(2—L(6L+1))x5 N )

Or
y(x) = agyo(x) + ayy1(x)
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Where
yo(¥) =1 L(L2+ sz _ (6 - Ll(é +1))(L(L2+ 1))9{4 L
@) =x + 2-LL+D) 5 (12—L(L +1))(2—L(L +1))x5 .
6 20 6

Where 1, y; are two linearly independent solutions. The even Legendre polynomials
are obtained from y,(x) for integer L = 0, 2,4, --- and the odd Legendre polynomials are
obtained from y;(x) for integer L =1,3,5, ---.

ForL=0
y(x) = ap(1)
Since all higher terms vanish. Choosing a7 = 1 then
Py(x) =1

ForL=2

3 L(L+1) , (6-LIL+1)\(LIL+T)\ ,

y(x) —ao(l > X ( 1 > X* 4
22 +1 -22+1)\(2(2+1
(1222 D (62224 D)2C+DY
2 12 2
= ao(l — 3x2)

Since all higher terms vanish. Choosing ay = —% then

Py(x) = %(3x2 -1)

ForL =1

Since L is odd, then y4(x) is used now.

J) = al(x+ 2-L(L+1) 5 (12—L(L +1))(2—L(L +1))x5 N )
6 20 6
_ al(H 2—(2+1)x3 N (12 —2(16+1))(2—(2+1))x5 N )

= aX
Since all higher terms vanish. Choosing a; =1 then

Pi(x) =x
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ForL =3

Y0 = | x 6 20 6

2-33+1) 5 (12—3(3 +1))(2—3(3 +1))x5 N )

) S P

=aq|x +

5
= ——3
a|x 3x)

6 20 6

Since all higher terms vanish. Choosing a; = —; then

3 5,
P3(X) —E(.X' — gx )
= 1(5x3 ~ 3x)
Summary
Py(x) =1
Pi(x) =x
1
pz(X) = §(3x2 - 1)
1
P5(x) = §(5x3 —~ 3x)
2.2 Part2

To show any two are orthogonal over -1 < x < 1. Selecting Py(x) and P;(x), then

j: 11 Py(x)P1(x)dx = f 1 xdx

1 1
=511,
= 2a-1)
=0

Hence Py(x) and P;(x) are orthogonal to each others. Verified.



3 Problem 3 (10.4.5)
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Problem 10.4.5. The functions 1, x, =2, - - are linearly independent—there is no
way, for example, to express x> in terms of sums of other powers. Use the Gram—
Schmidt procedure to extract from this set the first four Legendre polynomials (up
to normalization) known to be orthonormal in the interval —1 < z < 1.

Figure 3: Problem statement

Solution

Let
{lx)} = {l,x,xZ, X3, ]

Where |x;) =1, |x,) = x,|x3) = ¥2 and so on. Let

Py = |x1)
=1

Normalizing gives

Py

Py 1 _\F

TN “ V2
P i

Py = |xp) = Po(Polxy)

1 1
=X- §< §|x2>
1 pl
:x——f xdx
2J4

And

=x-0

=X

Normalizing gives

P, X X 3
Pl = = = = —-X
I1P1]| fl 24 \/2 2
I, x-ax 3



And
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P; = |x3) = (Po{Pylx3) + P1{P1lx3))

Normalizing

1 1 3 3
\/;<\/;|X3> + \/;x( 5 x|x3)]

1 ! 3 !
= f x2dx + =x f xxzdx)
2J., ¥ )

12T 3
~|= +—xf edx
2[3_1 27 J ]
11

55[1 - (-1)°]+ o)

11

p)

o)
1
3

P,

1Pl

2_1

V=
2 1

X -3
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And
P3 = |x4) — (Po{Polxg) + P1{P1lxg) + Py(P;|xy))

=x3 - \/7 \/7|x4>+\/ix(\/ix|x4>+\/7 3x% - (\/7 3x2 — |x4>]
=x3 - Ef 3dx+2xflxx3dx+z(3x —1)[_1(3x - ) 3dx)
=x3 - %Jix3dx+gxf_llx4dx+g(3x2—1)f_ll( x —x)dx)
1
+ + §(3x2 - 1)(0))
1
=~ (5l ], + el

=3 - %[1 - (-1*]+ Ex[1 - (—1)5])

5

[_

X
5

3x
2 -1
3

=x3 - 1[0] + %X[Z])

8
3
= 3_Z
X 5x
Normalizing
p, = 13
) = o
|P5]|
3_3
_ - ox
fl 23— ) (58 = 2x)dx
1 5 5
x> - %x

- \/z
175
\/ﬁ 3
-
_ /@) (x3 _ §x)
8 5
= \/Z(5x3 -~ 3x)

These are the first 4 Legenrdre polynomials. The scaling is different from the last problem
due to difference in method used to normalize them. The following table shows the final
result and difference in scaling.



P, Problem 10.4.5 result | Problem 10.4.4 result
1

Po@) | 3 1

P;(x) g X X

Py(x) \ﬁ (3x2 - 1) ~(3:2-1)

2 8 2

7 (5,3 (.3

P3(%) \/g(Sx — 3x) >(5x% - 3x)

20
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4 Problem 4 (10.4.10)

Problem 10.4.10. Solve Laguerre’s Equation which enters the solution of the hy-
drogen atom problem in quantum mechanics

zy’ +(1—z)y +my =0 (10.4.65)

by the power series method. Show that there is a repeated root and focus on the
solution which is regular at the origin. Show that this reduces to a polynomial
when m is an integer. These are the Laguerre polynomials L,,. Find the first four
polynomials choosing co = 1. Show that Ly and Lo are orthogonal in the interval
0 < x < o0 with a weight function e~*. (Recall the gamma function.)

Figure 4: Problem statement

Solution

Since the ODE is singular at x = 0 then Frobenius series is used. Let
y=x° 2 Cpx"
n=0

o

+
E CpX" e co#0
n=0

Hence

(0]
y' = )1+ s)e,x e

n=0
o0

Yy’ = Y, (n+s)(n+s—1)c, "2

n=0

Substituting this in the ODE (10.4.65) gives

oo (o9 (o)
X Z(n +5)(n+s—1)c, X2 + (1 -x) E(n +5)c, X" 4 m Z X" =0
n=0 n=0 n=0

o0 (o] o0 (o]
n+8)(n+s—1c, x5+ ¥ (n+8)c, a1 =N (n+8)c, ™ +m Y, c, x5 =0
n n n
n=0 n=0 n=0 n=0

i((n +s)(n+s—1)+ (n+s))c,x"* 1 + i(m — (1 +5))c, X" =0
n=0 n=0

To make all power on x the same, the second sum is rewritten by shifting the index. This
gives

i((n +5)n+s—1)+ (n+3s))c, X"+ + i(m —(n-1+38))c, X" 1=0
n=0 n=1
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Forn=0

(n+s)n+s-1)+(m+s)c,x"**1=0
(n+s)n+s—-1)+m+s))cyg=0

But by definition ¢y # 0. Therefore the indicial equation is
m+s)(n+s-1)+(n+s)=0

But n = 0. This becomes

s(s=1)+s=0
s2—s+s=0
2=0

Hence root is s = 0 (repeated root). Since there is a repeated root, then this is degenerate
case. First solution y;(x) is the assumed form but with s = 0. This means

y1(x) = 20 Y] X"
n=0

And the second solution is

Yo(x) =y Inx +x° Z b, x"
n=0

=y Inx+ anx”
n=0

But this solution y,(x) is not bounded at x = 0 due to Inx blowing up at origin. The
regular solution is only y;(x). So y(x) will be used from now on and not y,(x). Therefore

i) = Y ne,x!
n=0
Y = Y nln - 1), x"2
n=0
Substituting the above in ODE (10.4.65) gives
X 2 n(n—1)c,x" 2+ (1-x) Z ne, X" 1 +m Z c,Xx"=0
n=0 n=0 n=0
Y n(n = De,x ™+ Y ne,xt =Y ne,x + Y me,x =0
n=0 n=0 n=0 n=0

Y (n(n 1) + n)c,x" "t + Y (m - n)e,x" =0
n=0 n=0
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To make powers on x the same, the index of the first sum is shifted to give

i (m+Dn+m+1))c,pq1x™ + i(m — e, x" =0
n=0

n=-1

But when n = -1 the first sum is zero. So the first sum index can start n = 0 which gives

Z((n +Dn+ (n+1))c, X" + E(m —n)c,x" =0
n=0 n=0
Now the sums are combined to give

i[((n +1n+ m+1))c,q + (m—n)c,]x" =0
n=0

Hence recursive relation is

(n+1)n+m+1))c 4 +(m—n)c, =0

n-—m
C = C
LT+ n+m+1) "
n-—m

=——¢
mn+2n+1"
Forn=0
C1 = —mcy

Forn=1

:1+2+1C1

Forn=2

BT ia412

2—m(m2—m )
= — CO

_(2- m)(m2 - m)

—m3 + 3m? - 2m
36
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Forn =3
n-m
=— ¢
R S R
3-m

=—0

9+6+1

3—m(-m3+3m%-2m
- c

16 36 0

(3- m)(—m3 +3m? - Zm)

_ C
(16)(36)
_om*—6m® +11m? - 6mc
- 576 0
And so on. The solution becomes
Y1(X) = cp + C1X + 0% + c3x° + cgxt + -+
. m? —m 2, —m3 + 3m? = 2m 5, m* — 6m® + 11m? — 6m -
=cq— x CoX cox* + -
oMo+ =% 36 0 576 0
. +m2—m2+—m3+3m2—2m3+m4—6m3+11m2—6m4+
= — x cee
B 36 * 576

Setting cy = 1, the solution is

=1 _}_mz—m2+—m3+3mz—2m3_|_7714—6m3+11mz—6mx4+
=1-mx X X

S 4 36 576

For integer m these are polynomials given by

Form=20
Lo(x) =1
Since rest of terms are zero.
Form=1
Li(x)=1-x

Since rest of terms are zero.
Form =2
1,
Lr(x)=1-2x+ Ex
Since rest of terms are zero.

Form=3

3?-3
Ly(x) =1-3x+ 2 4 3
3(x) X 1 X 36 X
3 1
=1-3x+-x*- =3
X 2x 6x




Since rest of terms are zero. Hence

Lo(X) =1
L) =1-x

1
Ly(x)=1-2x+ Exz

3 1
Ly(x)=1-3x+ Exz —~ EXS
Or
Lo(X) =1
Ll(X) =1-x

1
— 2
Ly(x) = 5(2 —4x+x )
1
_ 2_ .3
Ls(x) = 6(6 —18x +9x° —x )
The following shows that L, (x), L,(x) are orthogonal on 0 < x < co with weight ™

S S 1
j;) Ly (x)Ly(x)e ™ dx = j; (1- x)(E(Z —4x + xz))e‘xdx

ol 1 5
- f (——x3 +=x2 - 3x + 1)e‘xdx
.\ 2V T2

1 (o] 5 o0 (o) (o)
= _—— f X Xdx + = f x2e¥dx -3 f xe *dx + f e *dx
2Jy 2Jy 0 0

To evaluate these integrals the following relation will be used

(e}
f x"e™ = n!
0

Therefore
f e ¥dx=3!=6
0
f x2eXdx =21=2
0
f xe ¥dx=1'=1
0
And

f et = e = ~(0-1) =1
0

25



26

Using these results gives
o0 1 5
[ L@La@edx = -26) + 52 -3() +1
0
=0

This shows that L;(x), Ly(x) are orthogonal on 0 < x < co with weight e™*. This complete
the solution.
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