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1 Problem1 (9.5.11)

Problem 9.5.11. Important quantum problem. Consider the three spin-1 matrices:

Lo 1o Lo =i o 10 0
Se=—4|10 1| S§y=—|4i 0 -i| S,=|00 0 |,
V2910 V29 i o 00 -1

(9.5.55)

which represent the components of the internal angular momentum of some ele-
mentary particle at rest. That is to say. the particle has some angular momentum
unrelated to 7 x 7. The operator S? = S2 +S§ + 52 represents the total angular
momentum squared. The dynamical state of the system is given by a state vector
in the complex three dimensional space on which these spin matrices act. By this
we mean that all available information on the particle is stored in this vector.
According to the laws of quantum mechanics

o A measurement of the angular momentum along any direction will give only
one of the eigenvalues of the corresponding spin operator.

o The probability that a given eigenvalue will result is equal to the absolute
value squared of the inner product of the state vector with the corresponding
eigenvector. (The state vector and all eigenvectors are all normalized.)

o The state of the system immediately following this measurement will be the
corresponding eigenvector.

(a) What are the possible values we can get if we measure spin along the z-axis?
(b) What are the possible values we can get if we measure spin along the x or
y-axis?

(c) Say we got the largest possible value for S,. What is the state vector immedi-
ately afterwards?

(d) If S, is now measured what are the odds for the various outcomes? Say we got
the largest value. What is the state just after the measurement? If we remeasure
Sz at once, will we once again get the largest value?

(e) What are the outcomes when S? is measured?

() From the four operators Sq, Sy, S,.S?, what is the largest number of commut-
ing operators we can pick at a time?

(g) A particle is in a state given by a column vector

(3]

First rescale the vector to normalize it. What are the odds for getting the three
possible eigenvalues of S,? What is the statistical or weighted average of these
values? Compare this to (V|S,|V).

(h) Repeat all this for Sy.

Figure 1: Problem statement

Solution
) 010 ) 0 —-i O 1 0 O
S,=—1 0 1 S, =—|i 0 -i S;,=(0 0 0
X \/E y \/E ‘ z
010 0 7 O 00 -1

1.1 Parta

The first step is to find the eigenvalues of S,. These are the possible values that can be
obtained when measuring the spin along the z axis. Because S, is a diagonal matrix,

its eigenvalues are on the diagonal. Hence the eigenvalues are w; = 0,w, =1, w3 = -1.
Because the eigenvalues are different, S, is not degenerate. The values are

w1 = 0

Wy = 1

w3 = -1



1.2 Partb

Now we need to find the eigenvalues for S, and S,. The factor Lz is not included in the

following calculation, but added again at the end. This is to simplify the algebra.
For S,

|5, —wI|=0
- -1 0
i —w -i|=0
0 i —w
—w - | [
—w +1 =0
1 —w 0 —w

(—w)(@? + ) + i(-wi) = 0
(—a))(a)2 - 1) ~wi* =0
~w+w+w=0
~w’ +2w =0
a)(—a)2 + 2) =0
The eigenvalues are the roots of the above polynomial. They are
w1 =0
wy = V2
wy =2

1

Adding back the factor 7 which was in front of S, by multiplying the above results
with it gives
w1 = 0
Wy = 1
w3 = -1
For S,
ISy —wl| =0
- 1 0
1 -w 1[=0
0 1 -w
o 1 1 1
- - =0
1 -w 0 ~w

(-w)(@?-1) -1(-w) =0
—P+w+w=0
~w® +2w=0
w(2-w?) =0
The eigenvalues are the roots of the above polynomial. They are
w1 = 0
Wy = \/E
W3 = —\/E



1

V2

Adding back the factor —= which was in front of S, by multiplying the above results

with it gives

0)1:0
a)2=1
0)3:—1

This table gives a summary of result found so far before going to the next part.

Spin matrix Eigenvalues found
0 10
1
Sx:$1 01 0)1:0,0)2:1,0)3:—1
0 10
0 -1 0
1. :
Sy=$ 1 0 - a)1=0,a)2=1,a)3=—1
0 i O
10 0
SZ= 00 O a)1=0,a)2=1,a)3=—1
00 -1

The above table shows that the possible values if we measure the spin along the x or y

axis are {0,1, -1}.

1.3 Partc

From part (b) and taking the largest eigenvalue of S, as w, = +1, the question is asking
us to find the associated eigenvector |S, = w;). This is found by solving

) .
-w, — 0
V2 01 0
EURURE I
e 2w |27
1 (%] 0
0 % %)
In the above w, = 1. Therefore
] ) .
-1 — 0
V2 U1 0
1 1
A (1)
o L gl 10
V2
1 .
RZ:R2+$R1 gives _ _
1
-1 7 0
11
1
0 7 -1




2

R3:R3+\/§R2 — —
1
-1 7 0
1 1
O _E —2
0 0 0]

The above is now in Echelon form. The system becomes

] , ]
-1 — 0
V2 4! 0
0 _1 1 {lo]=|0
2 2
(%] 0
|0 0 0]
v3 is a free variable, and v,, v, are the leading variables. Let v3 = 5. Second row gives
1 1 2 1 1
—-0y + —s = 0 or v, = —s. First row gives —v; + —v, = 0 orv; = —0v, or v; =
20275 2= 5 g1V 17 R0 1= 5% 1
1 (2
—| —=s] = s. Hence the solution (the eigenvector) is
(%) (the eigenvector)
(4] 5
2
’()2 = %S
O3 S

1
»n
= §||N _

Since s is a free variable, we will choose it so that the norm is 1. Therefore
sVI+2+1 =1

sv4d =1

§=—
2

Hence the state vector for the largest value of S, is

1
1 2
1] 2 1
1 1
2
1.4 Partd
1 0 O
S,=10 0 0
00 -1

We first need to find the eigenvectors |S, = w;) for S,. From part (a), the eigenvalues are
w1 = 0
Wy = 1
w3 = -1



For w; = 0 the associated eigenvector is found by solving

l-w;, 0 0 |[o]
0 -w; 0 |lwl|=]o

0 0 —1—a)1 O3

10 0]ln

0 0 Offval=10
00—1_03

v, is a free variable, and vy, v; are the leading variables. Let v, = s. Last row gives v3 = 0.
First row gives v; = 0. Hence the solution is

01 0
vy =|s
U3 0
N
=51
0_
Choosing s =1 gives
0
S; = w1) =1
0

For w, =1 we need to solve

l-w, O 0 Jlwu] o
0 -y 0 vyl =10

0 0 -1- w7 || 03 _0_

1-1 0 o |u] [0
0 -1 0 |lo]=]o
0 0 -1-1|us| |o]
0 0 o0lfw] Jo]
0 -1 0|lv]=]0
0 0 -2|los| ||

vy is a free variable, and v,, v5 are the leading variables. Let v; = s. Last row gives v; = 0.
Second row gives v, = 0. Hence the solution is

01 S
Oy = 0
(%] 0

1
s{0
0



Choosing s = 1 then
1

|Sz :w2> =10
0

For w; = -1 the associated eigenvector is found by solving

1-w; O 0
O —0)3 O
0 0 -1-ws
1+1 0 0
0 1 0
0 0 —1+1_
2 0 0]
010
00 0_

v3 is a free variable, and v;, v, are the leading variables.

v, = 0. First row gives v; = 0. Hence the solution is

01

%}

03

01

(%]

03

01

(%]

03

Let v3 = s. Second row gives

U1 0
Oy| = 0
(%] S
0
= 3|0
1
Choosing s = 1 gives
0
|SZ = a)3> =10
1
Summary table for S,
eigenvalue | eigenvector
o]
w =0 IS, =0) =
;_Od
"
wy =1 IS, =1) =
_0_
0
w3z = -1 IS, =-1)=|0
1




Calculating [(S, = a)ll\I/)I2 gives the odds of |S, = w;). W is the initial state vector.
Similarly, calculating (S, = a)ll\I’)I2 gives find the odds of |S, = w;) and similarly for
|SZ = C()3>.

W is the state vector from part (c), which is

T
2
1
W) =18, =1) = | 5
1
-2_
Hence the odds of |S, = 0) is
)
1
2 2
_ 2 _ Tl (L) 2t
.=t =|[o 1 of || = (55 -3
1
-E_
And the odds for |S, = 1) is
2
1
2 2
_ 2 _ Tl (L) 2
(s =P =[[1 0 0|5 _(5) .
1
2

And the odds for |S, = 1) is

5. = s’ ={|o 0 1]*

N = §||>—x NI =

1]

—

N =

S —

N
Il

el

The odds for |S, = 0) is 50%, the odds for |S, = 1) is 25% and odds for |S, = —1) is 25%.
The total is 100% as expected.

Summary table of results so far S,

eigenvalue | eigenvector probability of this outcome

w1 = 0 |Sz = (1)1> =1 P(O) = 50%

Wy = 1 |SZ = (1)2> =10 P(l) =25%

wy=-1 | IS, =ws) =|0| | P(-1) = 25%




1

The state just after the measurement is |S, = 1) = |0] since that is the state associated

0
with the largest eigenvalue w, = 1. This now becomes the initial state

1
W) =15.=1)=10
0

010

We know that S, = iz 1 0 1| with the eigenvalues found earlier as w; = 0,w, =

010

1, w3 = 1. Inpart (c) we found that|S, =1) = for S, associated with its largest eigenvalue

1
NI - §|H NI
L J

which is w, = 1. Therefore the odds of this is

S, =1l =|l; = 3 (L) =L 2 ose
se=1f=||3 5 3llof| =(3) =5 =2%

This says the odds of getting again the largest value (which is 1) is not likely since it is
not the highest possible odd being only 25% with 3 possible values.

1.5 Parte
P =52+57+53
2 2 2
1010 0 -1 0 1 0 O
=§101+—10—1+000 (1)
010 0O 1 O 00 -1
But
-2 _
010 01001 0 1 01
1 0 11 =1 0 11 0 1|1=]0 2 O
010 o10J010 |[101
42

o i of |0 i o]0 i of [-10 1
12 -

10 0| [tooltoo] [to0o0

00 =lo 0o ofloo of=[0 0 0




10

Hence (1) becomes

110 1 11 0 -1| [1 00
§:§02 0+§o 2 0|+[0 00
101 10 1 001
1 00l [1 00
=lo 2 ol+lo 0 0O
0 01| |0 01
2 0 0
=0 2 0
0 0 2]

Since S? is diagonal, then its eigenvalues are on the diagonal. They are all w = 2 with

multiplicity 3. It is a degenerate matrix. Since the outcome is the eigenvalue (it is a
measure of the spin angular momentum), then we see that the outcome is always 2,
since that is the only possible eigenvalue.

1.6 Partf

The operators are

200 1010 X 0 =i 0 10 0

S2=10 2 0 S,=—|1 0 1 S,=—|i 0 —i S.=10 0 0
X \/E y \/E ' Z

002 010 0 i 0 00 -1

Commutator is defined as
[M,N] = MN - NM

If [M,N] = 0 then they commute. We know that S,, Sy, S, do not commute with each
others per lecture notes. So we only need to check if S commutes with S,, Sy, S, or not.

82,5, ] = $%5, - 5,82
2 0 0olfo 1 0 010|200

1
020101——2101020
0 20 10 01 0)j0 0 2

0 1020
2|-—=12 0 2
0

2
\/_020

Hence S, S, commute. And



11

[$2,5,] = %5, - 5,82

1é()00—i0 10-—io 200
=—1lo 2 olli 0o -i|l-==|i 0o -illo 2 0
V2 . V2|
0 0 20 i 0 0o i oflo o2
(0 —2i 0 0 —2i 0
L o oil-lo o -
= —|2i =2i| — —|2i -2
V2 , V2 .
0 20 0 0 2 0
000
=0 0 0
000

Hence S?, S, commute. And

[$2,5.] = $%S. - 5.5?

200|[1 0o o]l [1 0o oll200
=lo 2 ollo 0 o|-]o 0 ollo 2 0
00 2)0o 0 -1 |00 -1]o 0 2
> 0 ol [2 0 0
=lo 0o of-lo 0 0
00 -2 |00 -2
(0 0 0
=0 0 0
00 0

Hence S?,S, commute. Therefore there are three sets of commuting operators. They
are {52, Sx}, {Sz, Sy}, {Sz, SZ}. So the maximum number of operators such that they all
commute with each others is two.

1.7 Partg

V) =

LWL =

The normis V1+4+9 = \/ﬁ Hence the normalized state is

V) =

1
12
Viz|,

In part (c) we found the eigenvalues and associated eigenvector for S,. Here they are
again



Summary table of results so far S,

12

eigenvalue | eigenvector
o]
wr =0 S, =wy) =1
_O_‘
]
a)2:1 |SZ:CU2>:O
a)3:—1 |SZ:CU3>: 0
_1<

We will now find the odds of getting |S, = w;) given the current state vector is |V') (after
normalizing). The odds are

1
KS, = 0|V = ! [o 1 o]z —( 2 )2— 4 = 28.571%
Z \/ﬁ \/ﬁ 14 .
And
2
1 ! 1V 1
(S, = +1V)P = —[1 0 0]2 =(—) = — =7143%
: Vid X Vid) 14
And
2
1 ! 3\ 9
(S, = 1|V = —[0 0 1]2 :(—) = — = 64.285%
: Via V14 14

Updated summary table of results so far S,

eigenvalue | eigenvector odd of getting this eigenvalue
o
wy =0 1S, = wy) = 1| | P(O) = =, = 28.571%
_04
A
wy =1 S, = wp) = |0] | P(1) = = =7.143%
_04
wy=-1 |18, =wy) = 0| | P(-1) = = = 64.285%
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The statistical average is

o))l 2 )

4

7
= —0.57143 (1)

The above is now compared to Now we compare (V|S,|V)
5V
—
1 0 0ff1
1
(VI(S:IV)y = —=(VI[o 0 o0 ]2] (2)

14
Vi 00 -1f3

But .
1 0 0|1 1

SIvy=l0 0 of2[=]0
0 0 -1|[3] |-3]

Hence Eq. (2) becomes

[ 1
1 1 *
VISV = —| —|1 2 3||o
ViV = = m[ ] 3
1 ,
=E(1—9)
_—8
T 14
= -0.57143 (3)

Comparing (1) and (3) shows it is the same value. This is the expectation value when
measuring S,.

1.8 Parth

Part (g) is now repeated, but using S,.. We found from the above part that

. 1
V) =—|2
Vi4
3
010
From part(b), we found the eigenvalues for S, = % 1 0 1|tobew; =0,y =1, w3 =
010

—1. But we did not find the associated eigenvectors yet in order to repeat part g as was
done for S,. So we need now to find the eigenvectors for S, before being able to answer
this part for S,.

For w; =0

_ 1 _
0 — 0
V2 U1 0
o9 A
e o |0
1 U3 0
0 &= 0
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Swapping R;, R, ]
1 1
v %
1
0 % 0
1
0 % 0
Rz =R3 - R,
- .
v ' %
1
0 % 0
0 0 0]

Now it is in echelon form. Hence the system becomes

(1 5 L
V2 V2 [[71
1 vy =10
0 % 0
U3
0 0 0]

: : : : : 1 1
v3 is free variable. Let v; = s. Second row gives v, = 0. First row gives $vl + $s =0

or v; = —s. Hence solution is

01 -S -1
=0 ]=5s|0
U3 S 1
Lets = %.Therefore o
-1
) -1 |vz2
|Sx:a)1>:_ 0]=10
V2 1 1
[ V2
For w, =1
) .
- — 0
“2 V2 U1 0
RS U | N
R K
1 U3
O E —Wy
: -
-1 — 0
V2 01 0
EERPERE U |
e |7
0 L 1 U3 O
V2




1
RZ = R2 + %Rl
-1
0
0
2
R3 = R3 + $R2
-1
0
| 0

o
5 0
L4
2 V2
1

5 1
L
5 0
L
2
0 0]

Now it is in echelon form. Hence the system becomes

[ 1
-1 5

1
0 =
0 0

. . . 1
v3 is free variable. Let v3 = s. Second row gives —502 +

V2 2\V2

0 S 1
2 2
272 = ES =S $
U3 s 1
Lets = % Therefore
R
1 2
1
Se=wp) = 5|42| = | 2 | =
1 1
L E .
For w; = -1
) .
—W3 % 0 vl
RS U | N
A K
1 U3
O % —W3
: -
1 — 0
V2 o
2o Al
V2 V2 (|72 T
1 U3
0 - 1

0

1

V2
O B

01 0
Oy | = 0
U3 0

V2

, 1 1 (2 L
gives —v; + —=v, = 0 or v; = —| —=s| = s. Hence solution is
\/_

r 1
NI~ §||H N =
L J

s=0o0rov, =

15

2 .
—s. First row

V2



1

Ry =Ry - \/ERl
1
0
0

2

R3 = R3— $R2
1
0
0

Now it is in echelon form. Hence the system becomes

[ 1
V' %

1
0 3
0 0

. . , 1
v3 is free variable. Let v3 = s. Second row gives 502+

ives v +iv =0orv ——L(—is)—s Hence solution is
A N A
0 S 1
2 2
2|=|"%%75"% =5|-2
U3 s 1
Lets = % Therefore
L
1 2 2
1 5 1
s = - 2|
1 L L
2 | 2 |

G- e e

NI+~ §|H

0

0

1

V2
0 4

ik

1

2

0 B

0

1
2s:Oorvzz—

16

2 .
—s. First row

V2
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Summary table of results so far S,

eigenvalue | eigenvector
1]
V2
w1 = 0 |Sx = a)1> =10
L
V2
1]
2
1
wy =1 15y =w2) = |75
E
L 2 g
B
2
1
0)3 = —1 |Sx = C()3> = _$
E
L 2 g

The odds of getting |S, = w;) given the current state vector is |V) are now found. Ex-
pressing |V) in the eigenbasis of S, gives

V) =1 1Sy = w1) + ¢ ISy = wp) + ¢3Sy = w3)

=c1 15y =0)+ 2 1Sy =1 + ¢3S =-1) (1)
Where
1
(5. = 0V 1[—101 ) 1(—1+3) 1(2)
C1 = = = ——F —— = —| — —_— == —] —
o Via [ V2 2 S Vi V2 V2] V14 \V2

L1
e s i3 Y-
Eq. (1) becomes

-1 >1— 1

1 2 - 1 j 1 1
|V>:ﬁ(—) (1) +ﬁ(‘5+2)$ *ﬁ(z“ﬁ) =

— 1 1

V2 2 5

The above is the representation of | V) in the eigenbasis of S,. The odds of each eigenvalue




is the square of the coefficients |c1|2, Iczlz,

2
c3| above. Therefore

P(0) = ! ( 2 ))2 _ 2 14.286%
V14 \\2 14 '
2
1 1
P(+1) = —(\/E + 2)) _ —(6 L 4\2 ) — 83.263%
V14 14
1 21
P(-1) = —(2 - \/E)) = —(6 - 4\/5) = 24.51%
V14 14
Updated summary table for S,
eigenvalue | eigenvector Odds of getting this eigenvalue
=
V2
w; =0 Se=w)=| 0| |PO)=1 =14.286%
2
V2]
T
2
wy =1 1S, = w,) = % P(1) = = (6 +4v2) = 83.263%
1
L E 3
1
ws=-1 |15, = ws) = —% P(-1) = (6~ 4v2) = 2451%
1
L E 4

The statistical average is

18

wl(%) ; wz(%(6 ; 4\/5)) ; a)3(11—4(6 - 4\5)) - 0(%) ; 1(%(6 ; 4\/5)) - 1(%(6 - 4\/5))

The above is now compared to

1
VISV) = 2=V
But )

1

0 %

siVy=|% 0

1

0 %

4
-2v2

= 0.80812

SxV)

|-
—_

e}
-

2

-

e}

-
(@]

o FHl-
® o =
1
o

5%

(1)

(2)
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Hence Eq. (2) becomes

V2
<V|lev>=% %[1 2 3] 242
V2

l(\/i +4V2 +3\/§)

" 14
= 0.80812 (3)

Comparing (1) and (3) shows it is the same value.This is the expectation value when
measuring S,
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2 Problem 2
Prove the following results on commutators:
[A,B+C] = [A,B] +[A,C]
[A+B,C]=[A,C]+I[B,C]
[A, BC] = B[A,C] + [A, B]C
[AB,C] = A[B,C] +[A,C]B
Solution
2.1 Partl

By definition of commutator, which is [A, B] = AB — BA, then

[ALB+C]=AB+C)-(B+QO)A
=AB+ AC-BA-CA
= (AB-BA)+ (AC-CA)
=[A,B] +[A,C]

2.2 Part2
By definition of commutator, which is [A, B] = AB — BA, then
[A+B,C]=(A+B)C-C(A+B)
=AC+BC-CA-CB
=(AC-CA)+ (BC-CB)
=[A,C]+[B,(C]

2.3 Part3
By definition of commutator, which is [A, B] = AB — BA, then
[A,BC] = A(BC) - (BC)A
Adding and subtracting BAC on the RHS gives
[A,BC] = BAC + ABC - BCA - BAC
= (BAC - BCA) + (ABC - BAC)

= B(AC - CA) + (AB-BA)C
= B[A,C] + [A,B]C

2.4 Part4
By definition of commutator, which is [A, B] = AB — BA, then

[AB,C] = (AB)C — C(AB)
= ABC - CAB

Adding and subtracting ACB on the RHS gives

[AB,C] = ACB + ABC - CAB — ACB
= (ABC - ACB) + (ACB - CAB)
= A(BC - CB) + (AC - CA)B
= A[B,C] + [A,C]B



3 Problem 3
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Follow the discussion of s, = s, + is, for the electron spin to derive the matrix represen-

tation of s_ = s, —is,,

Solution

Experiments show that S, has two possible values (eigenvalues) of

basis of S,

Gives

Consider S_ = S, - iS,. Then

[S.,S.1=]S., S, - iS,]
=[S.,8.1-1[S., S, |
Bllt, USil’lg [Si/ S]] =i Ek eiijk. Hence
[S.,S,] = ifiS,
[S.,8,] = -ins,

Substituting (2,3) into (1) gives

[S.,5-]

ihS, — i(~ihS,)
ihS, + 2(1S,)
= iiS, - 1S,

= #(iS, - S,)

= —H(S, - iS,)
= —hS._

Therefore we see that

[S.,S.1=S,S.—-S_S, = -hS_

This implies
S§,5.=S8_5,-hS_

Therefore

S,S_[1) =(5_S, —haS)L)
= S_S.[1) — S_[1)

But S,|1) = ZIl) then the above becomes
f
S.S_[1) = S_Ell) —hS_|1)

h
= (E - ﬁ)S_Il)

h
= —ES_|1>

h h . .
575 Using eigen-

(1)

(3)
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The above shows that S_[1) is eigenvector (eigenstate) of S, with eigenvalue —Z which

is compatible with experiments. Because S,|2) = —ZIZ) then let

S_1y = cf2) (4)
We now need to find c. Taking the adjoint of both sides of (4) gives
1St = c*(2|

Therefore
ISt S_[1) = c*c(22)
= [c[*(2|2)

0
Since c is real. But (2|2) = [O 1][1} = 1. The above becomes

st s_1) = Ief* (5)
To find ¢, we need now to calculate (1|St S_[1). But
t
sts_=(s,-iS,) (S:-1S,)
= (St +ist)(s. - 1iS,)
Since S,, S, are Hermitian operators then St =S, and S; = 5,. The above now becomes
StS_ = (S, +iS,)(S.—iS,)
=52 - i5¢S, + 15,5y + Sﬁ
= 52 +52-i(S,S, - 5,5,)
=52+ S§ —i[S,, Sy]

Where [S,, Sy] is the commutator. But [S,, Sy] =1ih Ek €;jkSk- Using i=1,j =2forx,y, then
[S;,5;] = ifi(€121S1 + €122S7 + €12353) = 1S3 = ihS,. Therefore the above now becomes

StS_ =82+ 82— i(ihsS,)
= S% + S5 + 1S, (6)
Substituting (6) in (5) gives
(1)(S2 + S2 + 1S, )[1) = |

But $? = S2 + S? + 52. Hence S2 + 55 = 5% — §2. Using this in the above gives

(1)(S? - 8% + 1S.)I) = |ef? (7)
sl 0O 2
But S, = 5[ = ZI' And since there is

Hence52—ﬁl ot 0 —ﬁl 0
0 —1| © 4o <1llo <1l 4lo 1

nothing special about the z direction, then S2 = Si = S2. Therefore S? = S2 + Sﬁ +52 =

2
TI+ I+ %I = Zﬁzl. Eq. (7) now becomes

3 72
QU2 = +hS.1) = Icl?

But S.[1) = gll). This is because [1) is an eigenvector for S, with an eigenvalue Z The
above becomes

3, h 7 2
VR Ny =
QU2 == + o1y = I

3., h
K2 _ — 2
QUL =+ 1) =1d
A2y = |cf?

R2AL) = |cf?

2 = |cf?
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We pick
c="h

Now that c is found, then Eq. (4) above becomes
S_[1)y = h|2) (8)
The same method is now repeated for finding S_|2)

S.5_12) = (S_S, — KS_)I2)
= 5_5.[2) - hS_[2)

But S,|2) = —;IZ). The above becomes

h
S,5_12) = —S_EIZ) - hS_|2)

h
= (_E - h)S_IZ)

{2

The above shows that S_|2) is eigenvector (eigenstate) of S, with eigenvalue —3? which
conflicts with experiments. This means

S_|2) = 02) 9)

is the only logical result. Therefore now we have all the information to find matrix
representation of S_ using (8,9), which is

o _|@sm as
sy @s-2)

[172)  (11012)

2f2) (2/02)

:h<1|2> 0}
~<2|2> 0

- ->0<

10 0

| ‘,1<

Therefore

Which is what we are asked to show.
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4 Problem 4 (9.6.2)

Find the solutions x(t), x,(t) with initial conditions x;(0) = 0,x,(0) = 0 and X;(0) =
1, %2(0) = vs.

Solution

2k k

k
RIS
- e

1

Figure 2: Coupled system to solve

The first step is to draw the free body diagram for each mass. Let us assume that first
mass is at some positive distance x; > 0 so that the first string is in tension, and that
xp > x1 > 0 so that the middle spring is in tension also, and the third spring is in
compression. Any other configuration will also work as well. Based on this, the free
body diagrams are

ma mI2_
ke 2k(z
2 —3?1) 2]€(ZE2 —Jl‘l) k‘l’g
1 €2
mzy = —kxy + 2k(xy — x1) may = —2k(xg — x1) — kg

Figure 3: Free body diagram

From the free body diagram, we can now write the equation of motion based on F = ma
from each mass. This gives

mX, = —kx1 + 2k(x2 - xl)
me = —Zk(xz - xl) - ka

or
7’1’15&1 = —kX1 + kaZ - 2kx1
mjffz = —2kX2 + kal - kXZ
or
mx, = xl(—k - Zk) + XZ(Zk)
mx, = x1(2k) + X2(—2k - k)
or
3k 2k
X1=—"""X1+—Xp
m
2k k
Xop = —Xq — 3—XZ
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In matrix form the above becomes
| k[ 2w
5&2 mi 2 -3 Xo

w| k|3 -2fu|_[o]
] m-2 3| |0

%) + Mix) = [0) (1)

Where the operator M is
k{3 -2
M=— (1A)
m-2 3

In (1), the state vector is |x) is represented using basis [1) =

1 0
and |2) = | |, since we
0 1

can write
) = x1[1) + x,[2)

In these basis, called the natural coordinates, we see than operator M is not diagonal.
This makes solving (1) harder, since it is now a coupled system of ODE's.

We would like to decouple (1) to make solving each ODE separate and easier. To do
this, we change the basis of M. The new basis are |I), |II). These are the eigenvectors
of M. Since M is Hermitian, then its eigenvalues will be real, and its eigenvectors are
orthogonal. So now we need to first find the eigenvalues of M given in (1A) by solving

det(M — wl) =0
k|3 -2 1 0]
det| — -w =0
m|-2 3 0 1_

k3w -2
det| — =0
ml 2 3-w

. . k . . .
This gives (we remove the factor — for now, then add it at the end to simplify the
computation)

B-w)@B-w)-4=0
w?—6w+5=0
(w=-5)(w-1)=0

Hence the eigenvalues are (now we add back the factor %)

5k

k
w1 = — w1 = —
m m

k
For wq = -
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We need to solve

3k w 2k _ o
m 1 m Z)1 0
2% 3k B

= = —wq|2]
m m
3k k 2k
m m m 01
2k 3k k Uy 0
m m ml| " -
2k 2k
m m || 01
2% 2% |[o,| |0
m m |- -

R2:R2+R1

. . . . 2k 2k
Hence v, is free variable. Let v, = s. First row gives —0Up - —5 = 0 or v; = s. Hence

solution is
(4] S 1
= =S
(% S 1

11
) =IM=wp) = EL]

1

7 then

Lets =

k
For w; = 5—
- m

We need to solve

3k 2k
m 2 m U1
2% 3k o |0
m m 2_ c T
3k _k 2k
m m m U1
% % _gklo| |0
m m m
2k 2k,
m m |]91 0
% _2|lu,| o
m m|l| C T
Ry=Ry— Ry
2k 2k )
= _Z|ln 0
m m —
0 0 02‘ 0
. . . . 2k 2k
Hence v, is free variable. Let v, = s. First row gives U] - —5 = 0 or v; = —s. Hence

solution is
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1

7 then

Lets =

Iy = M = wp) = —|
= = WH) = —
2 VAR

Summary table of results so far M

eigenvalue | eigenfrequncy | eigenvector
k k 1 [1
m=t |\ I = %H

1
w, = 5= x |11>=L[J

m V2

The transformation matrix ® becomes

o =|in 1]

1 1 -1 )
V2[1 1
Now that we found the transformation matrix ® we can use it to transform [X) + M|x) = 0

which is the natural coordinates basis [1), |2), to the modal coordinates based on basis
\I), |II) as follows

[x) = DIX) (3)
%) = DIX) (4)

Where
1X) = XqlIy + X,|II)

is the state vector in the modal coordinate and |X) is the acceleration of the state vector
in modal coordinates. Applying Eq. (3,4) to [¥) = M]|x) gives the system in the modal
coordinates as

DX + MD|X) =0

Premultiplying both sides by ®T (since @ is real, then transpose is same as dagger),
gives

OTO|X) + DTMD|X) = 0 (5)
But by definition of the modal transformation matri

OTp =1 (6)

111 -1
-1 1]f1 1 2

1
IThis can also be shown for ® = i[ ] by working it out. TP = %
1

V2 [q
10
0 1
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And by definition of the transformation matrixﬂ

—0)1 0
OTMD =
0 Wy

£
m

5k
m

0

Using (6,7) in (5) gives the system in modal coordinates

LI

X+ " IX)=0
0 %
m
k
X ~ 0flx 0
NEE e (8)
X2 0 % XZ 0

The above is what solve, since it is now decoupled. Comparing (8) to (1) which is
repeated below

. 3k _2k
X1 N m om||X1 _ 0 )
j&z _% % X9 0
m m
Shows clearly why (8) is much simpler to solve in the modal coordinates basis |I), |II)

since it is now decoupled, while Eq (1) which is in natural coordinates basis [1), |2) is
coupled.

Eq (8) is now solved for |X), and at the end transformed back to |x) using Eq. (3). Eq
(8) above can be written as two separate ODE’s

.. k
X1+—X1:O
m
X +5kX =0
2 m 2 =

Before solving the above, the initial conditions, given in the natural coordinates, needs to
be transformed to modal coordinates. It is not clear which initial conditions we should
use, since book uses

x(t=0)=x0) (¢t=0=0
XZ(t = O) = xz(O) xZ(t = O) =0

And in the HW pdf, we are also asked to use the following initial conditions

xl(t=0) =0 xl(t=0) =0
.X'z(t = O) =0 .X'z(t = O) =0y

Should we solve it for both cases, or just the second case? I will solve the problem for
both cases, since I am not sure which to pick.

T

— . 1|1 =1 «|3 211 -1
This can also be shown by working it out as follows. ®'M® = — = —

211 -2 3211

| =

2m

which becomes ®TM® = L[

L»—\
_
eed
—
by @
|
® N
eeed
—
[ERN
|
—_
| S ————
1
o 3
Il o©
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41 Partl

Solving using book initial conditions

x1(t=0)=x0)  %(0)=0
Xp(t =0) =x(0)  %(0)=0

Since |x) = ®|X) then the inverse is
1X) = dx)
But ®! = ®T therefore

1X(0)) = @ T1x1(0))

x0| 1t 4] a0
X0)| V2[1 1 [%0)
11 1o
V2|1 1[00)
1 [ 1(0) +x00)
V2 |-x1(0) + x,(0)
And
1X(0)) = ®7|%,(0))
O 11 1f[O] o
0| V2|1 1% o
_|«@] |0 .y L .
Since [ (0)} = 0 . Now that we found the initial conditions in modal coordinates, we
X2

can solve Eq. (8). Here it is again

%] |5 ofx]
RE R H ©
X, o * Xa| (O
X0 _ 1 [ 1(0)+x0)
| X2(0)) 2 |-x1(0) + x2(0)
%0 [o
X,0)] [0
The first equation of (9) becomes
.. k
Xl + _Xl = 0
m
1
X1(0) = $(x1(0) + x(0))
%,(0)=0

The solution is

X;(t) = Acos

\/gt) +B sin(\/%t] (10)
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Where A, B are the constants of integrations. At t = 0 and from the initial conditions,

the above becomes .

V2

Taking time derivative of (10) gives

: | k | k [ k k
Xy =—-Ay[— sir{ —t)+B — cos( —t]
m m m m

Since X;(0) = 0 then the above becomes

k
0=B4y/—
m

Hence B = 0. Therefore the solution of Eq (10) is

k
X = %(xl(O) + x,(0)) cos[\/% t) (11)

Tthe second ODE in (9) is now solved.

(x1(0) + x2(0)) = A

.. 5k
X2 + —X1 =0
m

1
X5(0) = E(_xl(o) +x2(0))
0

X,(0) =

[5k ) . ( [5k )
—t|+ Bsin| 4/ — ¢ (12)
m m

Where A, B are the constants of integrations. Att =0,

The solution is

Xy, = Acos

x
V2

Taking time derivative of (12) gives

. |5k |5k |5k k
X, =-A 5— sin[ 5—1,‘)+B 5— cos[ S—t)
m m m m

At t = 0 the above becomes

(=x1(0) + x2(0)) = A

5k
0=By/=
m

Hence B = 0. The solution of Eq (12) becomes

X, = %(—xl(O) + x,(0)) cos(\/% t] (13)

Therefore the solution is

1 k
—(x1(0) + x,(0)) cos \/%t
=] " e (14)

S0 +x%,(0) COS(‘/% |

This is the final solution. But it is in modal coordinates. This is transformed back to
natural coordinates using Eq (3)
lx) = OIX)
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Therefore

vy = —

1 _1] %(M(O) + x,(0)) Cos(\/g t)
_1 1 %(—Jﬁ(o) + x5(0)) cos(\/‘?nzt)
1 _%(Jq(O) +x(0)) cos(\/g t) —~ %(—xl(O) + x,(0)) cos(\/fﬂz t)

] _2 %(xl(O) + x,(0)) cos(\/gt) + %(—xl(O) + x,(0)) cos(\/ilz t)
: (x1(0)4—xé(0))cos(\/§;t)—k(xl(O)——xz(O))Cos(\/ggt)
_ - (15)

2 (x1(0) + x2(0)) COS(\/E t) — (x1(0) — x,(0)) cos(\/fnz t)

x1(t) = M cos[\/g t] + M cos( %k t] (16)

Xo(t) = M cos[\/é t] - M cos[ %k t] (17)

The above is the final solution in the natural coordinates. The above is repeated using
the other initial conditions given in the PDF file.

N

Hence

4.2 Part2

Solving using book initial conditions

Xl(tZO) =0 xl(t:O) =0
.XZ(t = O) =0 xz(t = O) =0

Using |x) = @|X) then
1X) = &7 1x)

But®! = ®T then

1X(0)) = @T|x1(0))
YN
2 1 1]

11 1o
V2|1 1o

X1(0)
X5(0)

And
1X(0)) = ®7|%,(0))

O 11 1|ho
%50)| V2|1 1)|x(0)
3 1 P01+02
_$L—01+vz
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Now that we found initial conditions in modal coordinates, we can finally solve the (8).
Here it is again

5 £ oo <1 ol
m 0
I (18)
X2 0 % X2 O
X:,0)] o]
X,(0) 0
X0 1 |oi+0
%50 V2|-o1+0
The first equation of (18) becomes
.k
Xl + —X1 =0
m
X1(0) =

. 1
X1(0) = —(v; + vp)

V2

k . k
\/%t) + B sm(\/% t] (19)

Where A, B are the constants of integrations. Att =0,

The solution is (since SHM)

X1 = Acos

0=A

| ( k ]
X1 = Bsin| 4/ —t
m

Taking time derivative of the above gives

) k k
X1 = By/— cos|y[—t
m m
At t = 0 the above becomes
1 [ k
_ = Ba/—
\/E (01 +0y) -

B = (Ul + Uz

\/_

The solution (19) becomes

Therefore the solution of Eq (19) is

X; = \/g(vl + vy) sin(\/gt] (20)

The second ODE in (18) is now solved.

.. 5k
Xz + —X1 =0
m

X5(0) =
X,(0) = L(—01 + 1)

V2
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) nsnl{E) .
m m

Where A, B are the constants of integrations. Att =0,
0=A

, ( [5k )
X, = Bsin| 4/ —t
m

) 5k 5k
Xy = By/— cos|+[/—t
m m
At t = 0 the above becomes

1 5k
(- + = B+ —
(=v1 +0p) -

V2

The solution is

X, = Acos

The solution (21) becomes

Taking time derivative gives

m
B = 10k (-v1 +1p)

Therefore the solution of Eq (21) is
5k
Xy = A/ (—0y + 0y) sin[ 2y (22)
k m

Therefore the solution state vector is
m . k
% (v1 +vy) sm(\/% t)
X) = (23)

m . 5k
Tok (-”01 + Uz) Sll’l(ﬂz t)

This is the final solution. But it is in modal coordinates. It is now transformed back to
natural coordinates using Eq (3)

x) = @|X)

4 2—";(vl+vz)sin(\/gt)
1 v opan(yE
VE s YE) - JE o+ wpsinf {E
V| T v apin ) Y o eoinf
\/g(vl+vz)sin(\/§t)— %(—Ul+vz)sin(\/fnzt)
B s iy )+ Y cor+ omsin{yE )

x1(t) = %\/%(vl + vy) sin(\/%tJ + zmﬁ (v1 —vy) sin[\/%t) (25)
xy(t) = %\/%(’01 + vy) sir{\/% tJ + % (-v1 + vz)sin[\/%t] (26)

The above is the final solution in the natural coordinates.

Therefore

lx) =

(24)

Hence
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