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1 Problem1a (9.1.6)

Show that the following row vectors are linearly dependent. (1 1 0), (1 0 1), (3 2 1).

Show the opposite for (1 1 0),(1 0 1),(0 1 1).

Solution

1.1 Part1l

Vectors ‘71, 172, \72 are Linearly dependent if we can find a, b, ¢ not all zero, such that
0‘71 + b‘_}z + C‘_/)z = 6

Applying the above to the vectors we are given gives

1 1 3 0
al1|+bl0]+c[2|=]|0
0 1 1 0
1 1 3)|a 0
1 0 2|b|=]0
01 1)lc 0

Ax =0 (1)

One way is to find det(A). If det(A) = 0 then there exists non-trivial solution x. Which
means linearly dependent, otherwise linearly independent.

0 2
11

1 2
01

10
01

det(A) =1 +3 =-2-1+43=0

Since det(A) = 0 then linearly dependent.

a

Another method is to actually solve for | b | to see if we can obtain non zero solution or

c
not. Using Gaussian elimination

Ry =R, -Ry
1 1 3
0 -1 -1
01 1
R3;=R3+R,
1 1 3
0 -1 -1
0 0 O
Hence the system becomes
1 1 3|a



Last row show that c is free variable. Hence it can be any value. Second row gives
~b—c=0o0rb = —c. Firstrow gives a+b+3c = 0o0ra = -b—3c = c—3c = —2c. Therefore
the solution is

a -2c
bl=| —c
c c
-2
=cl-1

1

a -2
bl=|-1
c 1

Since we found 4, b, ¢ not all zero which makes a\71 + sz + c172 =0, then the vectors are
Linearly dependent .

1.2 Part2
Vectors 171, 172, 172 are Linearly independent if the only solution to
a‘71 + b‘_}z + C‘—/)z = 6

iswhena =b =c = 0. As in part 1, we setup Ax = 0 system and solve it to find out.

1 1 0 0

al1|+Dbl0]+c|1|=]|0

0 1 1 0

0)fa 0

1 0 1|fp[=10

01 1)\c 0
Ax =0 (2)

One way is to find det(A). If det(A) = 0 then there exists non-trivial solution x. Which
means linearly dependent, otherwise linearly independent.

0
det(A) =1 ) -1

Since det(A) # 0 then linearly independent

Another method is to solve (2) directly. Using Gaussian elimination gives

Ry =Ry - Ry

11 0
0 -1 1
01 1
Rs; = R; + Ry
11 0
0 -1 1

en)
en)
N



Hence the system becomes
1 1 O0}la 0

0 -1 1||b]=10
0 0 2/ic 0
Last row gives ¢ = 0. Second row gives —b + c = 0 or b = 0. First row givesa+ b = 0 or
a = 0. Hence the solution is
a 0
b[=10
c 0

Therefore aVl + b\72 + c‘72 =0 implies that a = b = ¢ = 0, then the vectors are
Linearly independent .




2 Problem 1b (9.2.1 (ii))

Repeat the above calculation of expanding the vector in Eqn (9.2.32) but in the follow-
ing basis, after first demonstrating its orthonormality. At the end check that the norm
squared of the vector comes out to be 6.

1+iV3
4
_ N3+
V8

V3 (1+i)
V8

1) =

1) =

The vector is

[ 1+1 ]
V) = . (9.2.32)

Solution

First we need to check the basis given are orthogonal to each others, and each have norm
of 1 each. To check orthogonality

| ¥3a+)
_ (13 VBas) V8
4

REICED)
(13 NBa-y| VB
- 4 V8 V3 +i

4

_ ((1—1'\5)](@(1+i))+(_\5(l—i>)(«@ +i)

1 N7 NE 1
(-WB)B ) (B -V i)
- 48 B 48
V343 -3i+3 3++3i-3i+3

B 48 ) 48

=0



Since dot product is zero, then they are orthogonal to each others. To check the norm

| 1+iV3
1+iv3 \/_(1+1 4
<I|I>_( V8 ) B+
V8
1+iv/3
_[1=iv8 _VBa-d N
| 4 V8 )| B+
V8
_((L=iV3))((Lriv3) +(_\/5(1—i)][_\/§(1+i))
R 4 VB V8
(-WE)1+vE) (V3 -WE)(B + 45
B 16 " 8
_1+3 343
= +—
16 8
i 6
16 8

=1

Since (I|I) = ||I||2 then ||I||2 =1 which means ||I]| = 1. Now we do the same for the second
basis

| VB
i \/§+i \/§
<11|11>_( (1+) )
V8 4 V3 +i
4
V3 (1+z)
_(-ivs ¥B- )
\/§ 4 3+z

_ V3 - i3 ( A +1) +[\/§—i}[\/§+i}

V8 4 4
:(\/5—1' 3) (\/§+1\/_) (V3 -i)(V3 +i)
3+3 3+1 e
8 16

6 4

8" 16

=1

which means ||II]| = 1. We finished showing the basis are orthonormal. Now we express
1+

the vector |V) =
3 +i

] in these basis. Let

V) = v1ll) + 0olII)
To find v, we take dot product of both sides w.r.t |I). This gives

V) = oy (I



But (I|I) = 1. Hence

vy = V)

1+iv3 B V3 (1+) L+i
e

15V yB+iv3 || 11
4 V8 )3 +i

1-iV3 )1 +1) (-3 +iV3 _

=) o[t 5 4

C1+i-iV3+V3  -3-3i+3i-3

= 1 + \/g

\/§(1+i—i\/§+\/§)+4(—3—\/§i+3i—\/§)

- WG

V8 +VBi-iV24 + V24 —12-443i +12i - 43

- e

_ V8424 -12- 4\/_ \/_\/_4\/§+12
48 48

12 4v3) 1 443 12
R J R (R

242 242

ol

@+f Wiwjﬂﬂ_@_%+wj

4>|H N I

vy = (V)
_[v3as+ \/§+i* 1+i
V8 4 V3 +i
_(vaa-y va-i|| Tt
V8 4 \/§+i
3—-iVv3)1+i -
_ (\/— 1\/\/5—)( +1)+(\/§4 Z)(\/g+1)
_\/§+i\/§—i\/§+\/§+3+\/§i—i 3 +1
= 7 7
_2V3  3+1
B4
—&+1
VB
23 1
T2v2

—1+\/§
Bl 2

|

1+\/——£—%) (1 V3 - y 1\/25]

|



Hence

|V>:(}I(l+«/§—3«/§—\/5)+%(1—\/§—\/8+3«/§))|1>+(1+\é]un
;(1“@3@@)”;(1\@%”@)]

3
1z

Now we check the square of the of norm of |V)

2
2

\f
+{1+4/=
2

= i(1+\/§3\/§\/5))2+(411(1\/5\/5+3\/§))2+[1+\/§J2

=6

VIR = |i(1+x/§—3\/§—\/€)+%(1—\/§—\/€+3\/§)

Verified.



3 Problem 1 c (9.2.3)

Show how to go from the basis

3 0 0
I>)=10 III) = (1 [IIIy = |2
0 2 5
To the orthonormal basis
0] 0]
! 1 -2
11y =10 12) =[5 13) =[5
0 2 1
M M
Solution
3 1
Using Gram-Schmidt method, let [1) = % =10 % =10|. Now
0 0
12) = |II) — [1){LIT)
0] [1] o
=|1|-1(0 [1 0 0] 1
_2_ »0_ 2
—0— "
=11]-10](0)
_2_ 0
o
=11
_2_
Hence o
0
0 1
=2 L _|g
= = = 5
1121 ) V1+4 )
|5 |




And

Hence

13)

[IIT) — (|L)CLIIT) + |2)¢2|I11))

.
2(=110
L_O_
:
21—110
5/ |lo
=
12
N
JHE
0
12
2-3
24
h5_g—
-
2
3
1
-5_

*0
1o o
5
"
0+ &2
, |V5
_\/g_

3)

+
Sl 5l o

B
Ll

Bl

5

10



Therefore the orthonormal basis are

1) =

o O =

2) =

e wl- o

3) =

— $||I\J o

11
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4 Problem 2

Use Tro; = 0, alz = I'and 0;0; = i}, €;jx0y to obtain the components of a general 2 X 2
matrix in the basis of {01, 05, 03, I}, where o; represents the Pauli matrixes and I is the
identity matrix.

Solution

The Pauli matrices are
01 0 —i 1 0
01 = Oy = Oa =
"o *“li o *“lo 4

i Ek €ijko k l * ]
0;0 j =
I i=j
We are given basis {01, 05, 03,1} to use to express general 2 X 2 with. This implies that,
we want

A A
= (101 + Cp0y + C303 + C4I
Ay Ap
01 0o -] [1 o0 10
=C +C +C3 +Cy (1)
10 i 0 0 -1 01
. A Agp| .
Where c; are weights to be found and is any general matrix.
Apn Azz_

Taking the trace of the LHS and RHS of (1) gives

A Ap
A21 AZZ
All + Azz =0 TI'(Ul) +Cy TI'(Uz) +C3 TI'(U3) +Cy TI'(I)

But Tr(c;) = 0,i =1,2,3 and Tr(I) = 2. The above becomes

Tr = Tr(ci01) + Tr(cy0,) + Tr(czo3) + Tr(cyl)

A11 + A22 = 2C4

Apn +A
o, = 21 : 22 2)
We have found one of the weights. Now we need to find the remaining.
Pre multiplying both sides of (1) by 0, gives
A Ap »
(oF] =107 +C20102+C30103+C4011
Ay Ap
0 0 +1

But from properties of Pauli matrix, 02 = [and 010, = i 2 €12k0k = 1 (6121 01 + €120 + €12303

0 -1 0
iGg and 0103 = sz €130 = i(€13101 + €13207 + 613303) = —iUZ and 01l = 01, Hence the

above becomes

lO 1‘ —A11 Alzﬂ

= Cll + iCng - iC3UZ + C101
1 0||Ay; Ay

1 0|l [o =i
—1C +C
o -1| i ol

0C1

Ay Ay [01 0] ,
= + 1Co

01
10

):
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Taking the trace again of both sides gives

A1+ App =201
o= Ay + Agp
1 2

We now repeat the above process.

Pre multiplying both sides of (1) by o, gives

All A12

= (10901 + Cz(j% + C30203 + C4Gzl
A21 AZZ

02

0 0 -1
But from properties of Pauli matrix, 03 = land 0,01 = 12 €210k = i(€21101 + €5190, + €21303) =

-1 0 0
—iU3 and 0703 = ZZk €230 = i(€23101 + €93207 + €233G3) = —0q and 041 = Oy, Hence the

above becomes

0 —i||[An Arw ,
= —(Cq1103 + Czl — (301 + C409
i 0 A21 Azz
—1Ay; —1Ap 110 1 0 01 0 —i
= —(Cq1 +C —C3 +Cy
iAy  iAp o 1| ‘o 1| |t o] i o

Taking the trace of both sides of the above gives

—iA21 + iAlZ = 2C2

c Zi A12_A21
2 2

(4)

And finally, we repeat one more time to find final coefficient c3.

Pre multiplying both sides of (1) by o3 gives

All A12

= (10301 + Cp0309 + C30% + C4(73I
Ay Ap

03

0 -1 0
But from properties of Pauli matrix, a% =land 030; = iEk €31k0k = i(€31101 + €31007 + 631303) =

-1 0 0
iop and 030, = izk €30k0% = i(e32101 + €300, + 632303) = —ioq and 03] = 03, Hence the

above becomes

1 0l[An Ay .
= (110 — 1Cp01 + c3l + c4031
0 -1||An Ax
An ~Axn| Jo -] o1l [t o] 1o
= (11 —1Cy +C3 +Cy
—Ay; —Ap i 0 10 01 0 -1
Taking the trace of both sides of the above gives
A — Ay =263
A — Ay
CGg=—F7" (5)

2



Hence the weights are from Eq. (2,3,4,5) are

At Ap

N
i

G2 = E(Alz — A1)

_An-Ap
ST T

_An+Ap
“4=T

Therefore we can now write any A matrix as

A App
= (101 + Cp0y + C303 + C4I
Apn App
01 0 —i 1 0 10
=0 +C +C3 +Cy
10 i 0 0 -1 01
:A21+A12 01 +1(A12_A21)9 -1 +A11—A22 1 0 +A11+A22
2 1 2 i 2 0 -1 2
Verification
As an example, let us try the above on some random matrix A say
1 2
A=
5 99
Using (8) gives
Ay +Ap|0 1) i 0 —i| A —-Ap|l 0| Aj+Ax(l O
A= 22 12 4 i(AlZ_AZl) L AT A L An 22
2 1o 2 i 2 10 1 2 |01

But A1 =1, A =21, Ay; =2, Ay =99. Hence the above becomes

2+2il0 1 i . 0 —i] 1-99|1 O
= + =(2i-2) + — +
2 o 2 i 0 2 o 1
[ 2+42i il imi_ -98
o 22 0 1(2(21 2)) -%8
- 2+2i * i *
== 0 i(%(zi—Z)) 0 0
98 242 i ,n.
- + 50 - 1(5(21 —2))
o2 (i 98
> + 1(5(21 —2)) > + 50
o
2 99

Which is the correct A matrix.

0

98
2

1+99
2

+

H

50 0
0 50

|

14

10
0 1
(8)

|



5 Problem 9.2.5

15

Prove the triangle inequality starting with ||V + W||2. You must use Re(V|W) < | (V|W) |
and the Schwarz inequality. Show that the final inequality becomes an equality only if

|V) = a|W) where a is real positive scalar.

Solution

Note: I am using ||V]| to mean the norm or magnitude of a Vector and |a| for absolute

value.

The Schwarz inequality is given in 9.2.44 as
[ CVIW) I < IIVIIIWII
The triangle inequality we need to prove is given in (9.2.45)
IV + Wl < [IVI[ + IW]]
Starting with

IV + WIP = ((V + WV + W))
= (VIV) + (VIW) + (W|V) + (W|W)
= (VIV) +(VIW) + (VIW)* + (W|W)
= [VIP + 2Re(VIW) + [ W]/

Applying Schwarz inequality | (VIW) | < ||[V]|[|[W]| to the above gives
IV + WIP < [IVIP + 2[[VIIIIWI| + W2

Hence the above becomes 5
IV + WIP < (IVIl + W)

Which means the same as
IV + W < ([VI| + [[W|

Which is the Schwarz inequality.

(9.2.44)

(9.2.44)
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6 Problem 9.3.5

You have seen above the matrix R, (9.3.19) that rotates by % about the z axis. Construct
a matrix that rotates by an arbitrary angle about the z axis. Repeat for a rotation around
the x axis by some other angle. Verify that each matrix is orthogonal. Take their products
and verify that it is also orthogonal. Show in general that the product of two orthogonal
matrices is orthogonal. (Remember the rule for the transpose of a product).

Solution
Equation 9.3.19 is
0 -1 0
e
RZ(E) = 1 0 0
0 0 1

To construct rotation matrix €2, we follow this guideline.

Qp Qp Qg3
Q,(0) =[Qy Qpn Qp
Q3 Q3 Qg

The first column of (2 is the representation (components) of [1’) in terms of the original
basis vectors [1), |2), |3) before rotation.

Using normal notation, this is the same as saying first column gives the components of
¢} in terms of unit original basis e,, ¢, e,. The second column of € is the components of
|2’) in terms of the original basis vectors [1), [2), |[3) and third column is components of
13) in terms of the original basis vectors [1), |2), |3).

The representation is found using dot product. For example, first column of Q is

Qqp = A1)
Oy =(21")
Q3 = 3[1")

And so on for the rest of the columns. For an angle 0, a diagram helps to see the
representation. Since the dot product is the projection of [1’) on the original basis. In
other words (1[1") is the projection of [1’) on [1) and (2|1") is the projection of [1”) on |2)
and so on. So we can read the components directly from the diagram.

3)

3 Projection of 2') on 2)

Projection of 2') on 1)

Projection of 1') on 1)

Figure 1: Rotation around z by arbitrary angle 0

We see from the diagram that

A1’y = [[1lI[1"]] cos O
= cos
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Since basis vectors have norm of 1. And
)y =112/ln’|| sin @

and (3|1") = 0 since the projection of [1”) on [3) is zero, since rotation is around z axis,
hence vectors on xy plane remain in the xy plane. The above gives us the first column
of Q). So now we have

cosO Qqp Q3

QZ(Q) = [sin O sz Qz3
0 Qs Qx
The second column of Q are the projections of [2) on [1), |2), |3) which are
112"y = [[L[[l12’]| sin O
= sin 0

But this is in the direction of negative 1) so we need to add a negative sign. Hence
112"y = —sin 6.

212"y = 112l[12"]| cos 6
= cos 6

and (3|2") = 0 since rotation in only in the xy plane. For the third column, we see that
3’) remains the same as original 3). Hence no change here. Therefore

cosf —-sinf 0
Q,(0) =[sinf@ cosO 0
0 0 1

We now do the rotation around x axis to find Q x(qb)

projection of |3’) on |2)

> [2)

projection of |2’) on |2)

Figure 2: Rotation around x by arbitrary angle n

We see from the diagram that
=1
And
2') = (cos §)2) + (sin §)3)
And
3') = —(sin )2) + (cos ¢)3)
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Therefore
1 0 0
Qx(qj) = |0 cos¢p -sing
0 sing cos¢

Where the first column of the above matrix, is the components of 1’) expressed in terms
of1),2),3) and the second column is the components of 2’) expressed in terms of 1), 2), 3)
and third column is the components of 3’) expressed in terms of 1), 2), 3).

Now we need to verify that 3,(6) and Qx((p) are orthogonal. What this means is that
each column of the matrix is orthogonal to each other column in the same matrix. One
to way to do that is to multiply the matrix by its transpose. If we get the identity matrix
as a result, then the matrix is orthogonal.

Verify Q,(0) is orthogonal

o J

cos@ -—-sin0

O J

cos@ -sin0

Q,(0)Q5(0) = |sin® cosO 0lsin® cos6 0

o o0 1o 0

—_
|

cos@ -sinf cosf sin0

0 0
=|sin@ cosO O0Of|-sin@ cosf 0
1 1

0 0 0 0
cos? 6 + sin® O cosfsinf —sinOcosH 0O
= |sin O cos 6 — cos Osin O sin® 0 + cos? 0 0
i 0 0 1
100
=0 1
0 01
Verified.
Verify Q) x(qb) is orthogonal
i T T
1 0 O (|11 0 0
Qx((p)Q;((p) =[0 cos¢ -sing|[0 cos¢p -—sing
0 sing cosg |0 sing cos¢
1 o0 o |r o 0
=(0 cos¢p —-sing||0 cos¢ sing
0 sing cos¢ |[[0 —sing cos¢
1 0 0
=0 cos? ¢ + sin® ¢ cos ¢ sin @ — sin ¢ cos ¢
0 sin¢cos @ — cos@sing sin® ¢ + cos? ¢
100
=010
0 01

Verified.
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The product is
1 0 0 cosf -sinf 0
Qx((P)Qz((P) =|0 cos¢ —sing|lsin® cosO 0
0 sing cos¢ 0 0 1
[ cos0 —sin 0 0

= [cos¢psin® cosOcosp —sing

singsin@ cosOsin¢g cos@

To show that the is also orthogonal, then, using A = (Q x(¢)QZ<¢))(Qx(¢)QZ(¢))T then

1r T
cos 0 —sin 0 0 cos 0 —sin 6 0
A =|cospsinf cosOcos¢p —sing|lcos¢psin® cosOcos¢dp —sing
singpsin@ cosOsing cos¢ [[singsin@ cosOsing cos@
cos 0 —sin 0 0 || cos® cosgsing® singsin®
=|cos¢psin® cosOcosdp —sing||-sinO® cosOcos¢p cosOsing
singsinf cosOsing cos 0 —sin¢ cos ¢
Expanding gives
cos? 6 + sin? O cos 0 cos ¢ sin @ — sin 0 cos 0 cos ¢ cos Osin ¢ sin 0 - sin
A = |cos ¢ sin 6 cos O — sin O cos O cos ¢ cos? ¢rsin? O + cos? O cos? ¢ + sin’ cos ¢ sin? Osin ¢ + cos? 0 cos
sin ¢ sin 0 cos 6 — sin O cos Osin¢  sin ¢ sin O cos ¢ + cos? O'sin ¢ cos ¢ — cos P sin ¢ sin® ¢ sin? O + cos? O'si
Simplifying
1 0 0
A=|0 cos? (sin? 0 + cos? 0) + sin? ¢ cos ¢ sin? O'sin ¢ + cos? O cos ¢ sin ¢ — sin ¢ cos P
0 sin¢sin® 6 cos ¢ + cos? Osin ¢ cos ¢ — cos P sin P sin? ¢(sin2 0 + cos? 6) + cos? ¢
1 0 0
-0 cos? ¢ + sin ¢ cos ¢ sin qb(sin2 0 + cos? 19) —sin¢ cos ¢
0 sin¢cos qi)(sinz 0 + cos? 8) — cos ¢ sin @ sin? gb(sinz 0 + cos? 9) + cos? ¢
1 0 0
=10 cos? ¢ + sin® ¢ cos ¢ sin ¢ — sin ¢ cos ¢
0 sin¢cos¢ —cos@psing sin? ¢ + cos? ¢
1 00
=10 1 0
0 0 1

Since the result is identity matrix, then the product Q x(¢)Q . (qb) is an orthogonal matrix.
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Now need to show in general that the product of two orthogonal matrices is orthogonal.
Let A, B be both orthogonal. Hence AAT = I and BBT = I. Now

(AB)(AB)" = (AB)(BTA)
= ABBTAT
But BBT = I. Therefore
(AB)(AB)T = AIAT
= AAT

But also AAT = I. Therefore
(AB)(AB)" =1

Therefore AB is orthogonal. QED.
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7 Problem 9.5.6

The Cayley-Hamilton theorem states that every matrix obeys its characteristic equation.
In other words, if P(w) is the characteristic polynomial for the matrix Q, then P(()
vanishes as a matrix. This means that it will annihilate any vector. First prove the theorem
for a Hermitian () with nondegenerate eigenvectors by starting with the action of P(€2)
on the eigenvectors.

(Verified from the instructor that the above is the only part required to prove).
Solution

A matrix () with nondegenerate eigenvector is diagonalizable. This is by definition, as

it implies that for the matrix with n eigenvalues, it is possible to find n orthonormal
eigenvectors associated with the eigenvalues. What this means is that we can write

Q = RDR!

Where R is n X n matrix, whose columns are the n eigenvectors of (2 and D is a diagonal
matrix which has the corresponding eigenvalues w,, w,, -+, w,, on the diagonal of D.
Since P(Q) is polynomial in €, then we can write

P(Q) = Z 1, QF
k

o ;
> a(RDR™) (1)

k=0
But L

(RDR—l) = RD¥R1
2 /-’L

To show the above, consider (RDR—l) = (RDR—l)(RDR—l) = RDR-IRDR™! = RD?R"!
and similarly for any higher powers. Eq. (1) now becomes

n
P(Q) = Y] ;RDFR™
k=0

n
= R(Z aka)R—l
k=0

But ZZ:O a,DF = P(D), which means applying operator on D only. Hence the above
becomes

P(Q)=RP(D) R (2)
(o, 0 0 0]
0 wp, 0 O
But since D is a diagonal matrix, having the structure D = ,then P(D) =
0 O 0
0 0 0 wy

Pw) 0 0 0
0  plw) O 0
0 0 ~ 0
0 0 0 plwy)

. Eq (2) now becomes

Pw) 0 0 0

0 w) 0 0
PQ) = R p(wy) R-1
0 0 - 0

0 0 0 plwy
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But P(w,) = p(wy) = - = p(w,) = 0, since each w; is a root of the characteristic polyno-
mial of matrix Q. Therefore the above reduces to

0

P(Q) =R

0 0
00
00
0 0

o o o o

0
0

[0 0 0
0000
00 -~ 0
00 0 0

This proves the Cayley-Hamilton for the case of Q) with nondegenerate eigenvectors,
which is what we are asked to show.

7.1 Appendix

(We are not asked to do the matrix inverse part only, but I did it for practice. Not for
grading).

[ 1 1
N .
1 31 8 4
Show that [0 2 0] =0 % 0 [ by using Cayley-Hamilton theorem. Also show
01 4 11
° 76
a [, 1 ]
131 |V z T
that|0 2 0| =[gp L o]
2
0 41
0 -2 1
Solution

Cayley-Hamilton theorem says that a matrix Q) obeys its characteristic equation. In other
words

PQ) =0
1,Q" +a, Q"1+ +3;Q+ay;=0

Multiplying both sides of the above by the inverse Q™! gives

1, Q"1 +a, Q"2+ +a;+4)Q71 =0
1,Q" ' +a, Q"2+ 401y

Q1= - (1)

1 31
We now apply the above to the first matrix. For Q = |0 2 0|, we first need to find the

01 4
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characteristic equation.

1 31 1 00
detf|0 2 0|-A{0 1 0Of|=0
01 4 0 01

1-A 3 1

0 2-A 0 |=0

0 1 4-A

2-A 0
4-A

0 0 0 2-A7
0 4-Al |0 1
1-M(@2-1)E-1)=0
-A%+712-141+8=0
A3 —7A%+141 -8 =0

1-A) -3 + =0

Therefore, using Cayley-Hamilton, the above becomes
Q3-702+140-8=0
Where now Q is the matrix itself. Multiplying both sides by Q™! gives
02-70+141-8071 =0
-8Q71 =-0Q2+70Q-14I
1
-0l = §(—Q2 + 70— 141)
Q71 = 2(Q%-7Q +14]) (2)

So to find matrix inverse Q™! we just need to calculate Q? and then simplify the result.
But

13 1)1 31

Q*=10 2 0/|0 2 0

0 1 4fl0 1 4

1
4
6

(@)

5
0

1
= o
0 16



Substituting the above in Eq. (2) gives

Q=

1
8

oo | —

1 10
0 4
0 6
1 10
0 4
0 6
8 11
0 4
0 -1
_n
8
1
2

.
0
16
.
0

16|
-2
0
2

I,
,

AN
.

S o =

l
—_

—

=N W

@)

I'h O ’_\l

—_

+14

+14

S o =

al
—_

S =B, O O = O

—_

I’_\ O OII

24
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8 Problem 9.5.10

Show that the following matrices commute and find a common eigenbasis

1 01 2 1 1
M=10 0 0 N=[1 0 -1
1 01 1 -1 2

Solution

The matrices commute if MN = NM. But

10 1l[2 1 1
MN=[0 0 of[1 0 -1

1011 -1 2

3 0 3]

=10 0 0

3 0 3

And

> 1 1][1 01
NM=I[1 0o -1llo o o
1 2101 01

r —

1
W oo W

We see that MN = NM therefore they commute.

Now we need to find the common eigenbasis. To do this, the eigenvalues and corre-
sponding eigenvectors for M and N are now found.

We start with matrix M.

To find eigenvalues for M, we solve the equation
det(M - AI) =0

Where A represent the eigenvalues. The above becomes

1 01 1 00
det{|{0 0 0|-A{0 1 0f|=0
1 01 0 01

1-A4 0 1
0 -A 0 [=0

1 0 1-4

-A 0 0 -A
1-2) + =0

0 1-A] 1 ©
1-A)(-AQ-A)+A=0
2A2-A%=0

A22-1)=0
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Hence the roots (eigenvalues) are A = 0 with multiplicity 2 and A = 2. For each A; now
we find the corresponding eigenvector [v;).

A=2
We now need to solve Mv = Av for v. This implies
M-ADv=0
1-A 0 1 || 0
0 -A 0 ||v|=]|0
1 0 1-Aflvs 0

But A = 2 and the above becomes
-1 0 1|{un 0
0 -2 0/f{lval=10
1 0 -1f|vs 0

R; =Rz + R4
-1 0 1
0 -2 0
0O 0 O

The system becomes

0 0 0llos |0

Since last row is zero, then we have one free variable v; and two leading variables vy, v,.
Let v3 = 5. Second row gives v, = 0 and first row gives —v; +s = 0 or v; = s. Hence the
solution is

U1 S
v = (0
U3 s
1

=slo

1

Since s is free variable, we can pick any non-zero value for it. Let s = 1 and the above
becomes

U1 1
Oy = 0
(%] 1

The above is the eigenvector that corresponds to A = 2. Now we find the eigenvectors
that correspond to A = 0. Hopefully we will be able to find two of them.

A=0
We now need to solve Mv = Av for v. This implies
M-ADv=0

1-4 0 1 |91 0
0 -A 0 Oy = 0
1 0 1-Allws| |0



But A = 0 and the above becomes

1 0 1j[9r 0
0 0 Offvw|=10
1 0 1flvs 0
R3 = R3 — R; gives
101
000
000
Hence the system becomes
1 0 1|7 0
0 0 Ofjv2|=1|0
0 0 Oflvs 0
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We see that v3, v, are free variables and v, is leading variables. Let v = s,v, = t. From
first row, v; +s = 0 or v; = —s. Therefore the solution is

01 =S
Upl =t
U3 s

-1 0

=s| 0 [+¢t1

1 0

Picking s =1,t = 0 gives one eigenvector as

U1 -1
Oy = 0
U3 1

Picking s = 0,t = 1 gives second eigenvector as

01 0
Oy = 1
(%] 0

So we were able to find two eigenvectors from one eigenvalue A = 0, which is good. This
table summarizes the result we have found so far for the matrix M

eigenvalue | multiplicity

corresponding eigenvector(s)

1
A=2 1 0
1
-1] o
A=0 2 0l
0

Now we normalized them. This gives



28

eigenvalue | multiplicity | corresponding normalized eigenvector(s)
1
A=2 1 —lo
B V2
1
-11 |0
A=0 2 —| 0
= 7|0
1110
For the matrix N

To find eigenvalues for M, we solve the equation
det(N - AI) =0
Where A represent the eigenvalues. The above becomes
2 1 1 100

det|/[1 0 -1|-A[0 1 0f|=0
1 -1 2 0 01

2-4 1 1
1 -A -1(=0
1 -1 2-A
-A -1 1 -1 1 -A
(2-1) - + =0
-1 2-A t 2-A} |1 -1

Q-M)A2-A)-1)-Q2-A+1D+(-1+1)=0
A3 +4A2-1-6=0
A —4)24+1+6=0

Lets guess A = —1 is a root. Then the above becomes -1 -4 -1 + 6 = 0. Good. So (A +1)
is a factor. Doing long division

A —4A2+ A1 +6
=A2-51+6
A+1) "

Therefore the polynomial becomes
(A2-51+6)(A+1)=0
A=-2)(A-3)(A+1)=0

Hence the roots (eigenvalues) are A = 2,4 = 3,4 = —1. For each A; now we find the
corresponding eigenvector [v;).

A=2
We now need to solve Nv = Av for v. This implies
(N-ADv=0
2-1 1 1 (|7 0
1 -A -1 ||vaf=]|0
1 -1 2-A (%] 0



29

But A = 2 and the above becomes

1 -1 0
1 -2 -1
0 1 1
Ry =Ry — Ry
1 -1 0
0 -1 -1
0O 1 1
Rs = Ry + Ry _ _
1 -1 0
0 -1 -1
0 0 0

Hence system becomes

0 0 0fw| |0

Free variable is v; and leading variables are v, v,. Let v3 = 5. Second row gives —v,—s = 0
or v, = —s. First row gives v; — v, = 0 or v; = v, = —s. Hence solution is

01 -5

vy =|-s

U3 S
-1
=s|-1

1

Let s =1 therefore

U1 -1

vyl = -1

U3 1

A=3

We now need to solve Nv = Av for v. This implies
(N-ADv=0

2-1 1 1 ||=
1 -2 -1 |[w|=]o
1 -1 2-Al|vs| |0

[en}



But A = 3 and the above becomes

-1 1
1 -3
1 -1
Ry =Ry + Ry
-1
0
1
R3=R;+ R4
-1
0
0
Hence system becomes
-1 1
0 -2
0 0
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1 (|91 0
=1{]jva| =10
_1 7)3 0
1 1
-2 0
-1 -1

1 1

-2 0

0 0
171 0
Ofloa| = (0
0 'U3 0

v3 is free variable and vy, v, are leading variables. Let v; = 5. Second row gives —2v, = 0

or v, = (. First row gives —v; +s =0 or v;

Let s = 1. The solution becomes
(%1

(%}
03

A=-1

= s. Solution is

©n

s{0

— o

We now need to solve Nv = Av for v. This implies

(N-ADv=0
2-4 1 1 ||™1
1 -A =1 ||| =
1 -1 2-Af|vs 0
But A = -1 and the above becomes
3 1 1{|un 0
1 1 -1 Oy =

1 -1 3 (%]

0
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Swapping R, and R; to keep pivot 1 gives

1 1 -]
31
1 -1 3]
R, =R, - 3R,
1 1 -1
0 -2 4
-1
Ry=Rs-Ry
1 1 -1
0 -2
0 -2
R3=R3—-R;
1 1 -1
2 4
0 0

Hence system becomes

v3 is free variable and vy, v, are leading variables. Let v3 = s. Second row gives —2v,+4s =
0 or v, = 2s. First row gives v; + v, —s =0 or v; = —v, + s = =25 + 5 = —s. Solution is

01 -
Uyl =|2s
U3 S
-1
=s|2
1
Let s = 1, the solution becomes
U1 -1
Uyl =12
U3

This table summarizes the result we have found so far for the matrix N
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eigenvalue | multiplicity | corresponding eigenvector(s)
-1
A=2 1 -1
| 1
1
A=3 1 0
1
-1
A=-1 1 2
| 1

Now we normalized them. This gives

eigenvalue | multiplicity | corresponding normalized eigenvector(s)
1
A=2 1 )
- V3
1
1
A=3 1 —lo
- V2
-1
A=-1 |1 —|2
- \3
1

Now we compare the eigenbasis for M and N. This table shows the final result

Operator eigenvalues | eigenbases
101 1 1] [o
1 1
M=[0 0 O 2,0,0 $O,$0,1
1 01 _1 1_ 0
21 1 1 1] [«
N=[1 0 -1]|23-1 21|, =|o|, = 2
- 7~ \/5 ’\/E ’\/6
1 -1 2 _1 1_ 1

Looking at the above, we see that all basis are common (linear combinations of M eigen-
vectors associated with zero eigenvalue can be used to generate two of N eigenvectors).
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