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1 Problem1(a) (8.1.1)

) . ) cosO@ sinf
Given rotation matrix Ry =
-sin@ cos0

} Verify that R9+9' = RQIRQ

Solution

cos(6+6") sin(0 + 9’)}

R ) =
0+0 [— sin(0 + 0’) cos(0 + 6)

But

— cos@ sinO’' || cos@ sinO
RQIRQ =

—-sin@ cos@' ||-sinf cosH

cos@’ cos —-sinB@’'sinf@ cosB’ sinf + sin 0’ cos B ]

—sin@ cosB —cos O’ sinf@ —sin O’ sin 6 + cos 6’ cos O
But from trig identities we know that

cos 6’ cos 6 — sin 6’ sin B = cos(6 + 6")
cos 0’ sin O + sin 6’ cos O = sin(6 + O”)
—sin 0’ cos O — cos 0’ sin 6 = —(sin 0’ cos O + cos O’ sin O)
= —sin(0 + 0’)
—sin 0’ sin @ + cos 0’ cos O = cos(6 + 6)

Substituting (3,4,5,6) into (2) gives

ROR cos(0+0") sin(6+6)
e —sin(@ + 0") cos(6 + 6)

Which is the same as (1). Hence
Rg+or = RorRy

(1)

(2)

(3)
(4)

(5)
(6)



2 Problem 1(b) (8.1.2)

Part 1

Recall from problem 1.6.4 in chapter 1, that the relativistic transformation of coordinates
when we go from frame of reference to another is

x" = xcosh 0 — ctsinh 0
ct/ = —xsinh @ + ctcosh 6

(ps. I added c to the formula as book assumes it is 1. This makes it more clear).

Where 0 is the rapidity difference between the two frames. Write this in matrix form.
Say we go to a third frame with coordinates x”’, ", moving with rapidity 6” with respect
to the one with primed coordinates. Show that the matrix relating the doubly primed
coordinates to the unprimed ones corresponds to rapidity 0 + 6.

Part 2. Find the expression of 0 in terms of the relative velocity.

Solution
21 Part1l
In Matrix form Lorentz transformation becomes
x’ B coshf —sinh@|| x ()
ct’ - sinh® cosh6 \ct
In the third frame (double primed), we have
x" B cosh8® —sinh&’ | x’ 2)
ct”’ - sinh @ cosh& ||ct’

Substituting (1) in the RHS of (2) gives
x// B
Ct//

[ cosh® —sinh 6’)[ coshf —sinh GJ cosh 0’ cosh 6 + sinh 6’ sinh @ —cosh 6’ sinh 0 — sinh 6’

(3)

—sinh @ cosh® ||-sinh@® coshO ||ct

cosh@ —sinh 6’][ coshf@ —sinh GJ(X]
But

—sinh @ cosh@’ ||-sinh® coshO —sinh 6@’ cosh 6 — cosh @’ sinh @ sinh 6’ sinh O + cosh 6’ ¢

—sinh(6 + 0”) cosh(6 + 6’)

cosh(6 + 6") —sinh(0 + 9')]



Substituting the above in (3) gives
x” cosh(6 +6’) —sinh(6+60)|[ x @)
o] |- sinh(6 + 0”’) cosh(6 + 6’) J\ct

cosh(6 + 6’) —sinh(0 + 0")
—sinh(6 + 0”) cosh(6 + 6’)

Therefore the matrix

Relates the unprimed frame to the doubly primed by rapidity 6 + 6’, which is what we
are asked to show.

2.2 Part2

Need to find the expression of 0 in terms of the relative velocity. The relative velocity it
taken as that between the unprimed (x, ct) and the one primed frame (x/, ct’).

The Lorentz transformation can also be written as

- ot
po X0 )
2
c2
-3
/ C
r = ——5 (2)
-3
But we also can write the above in terms of rapidity 0 as given in the text book as
x| [ coshO —sinhO] x 3)
ct’ —sinh@ coshO |(ct
Or
x" = xcosh 0 — ctsinh 6 (4)
ct’ = —xsinh O + ct cosh 0
t = —% sinh 6 + t cosh 6 (5)
Equating (1,4) and (2,5) gives the following two equations
- ot
a vz = xcosh 6 — ctsinh 6 (6)
(%
Vi-2z
-
—022 = —% sinh 6 + t cosh 6 (7)
1-Z

2



Dividing Eq (6) by Eq (7) to get rid of the root term gives

x—ovt xcosh® —ctsinh 6

X = 8
t—c—: —%sinh9+tcosh8 ®)

Dividing the numerator and the denominator of RHS of the above by cosh 0 gives

x-ot x —cttanh 6
t—-= t->tanh@
[ c

Now we solve for v, the relative velocity from the above by simplifying the above. This
results in

(x— Ut)(t - % tanh 6) = (t - Z—f)(x — cttanh 0)

2 2
X X ox?  ox
xt — —tanh 0 — vt? + vt=tanh 6 = tx — ct?* tanh 6 — — + —cttanh 6
c c c c
2 2
X X2 x X
v(—tz +t=tanh 6 + — — —ttanh 6) =tx — xt + — tanh 0 — ct* tanh 0
c 2 ¢ c
2 2
X X
v(—t‘2 + —2) = (— - ctz) tanh 0
c c
S
V=5 tanh 0
X
Z t2
02
xZ_CZtZ
= = Cc2t2 tanh 6

Therefore, the relative velocity is
v=ctanh 0



3 Problem 1(c) (8.2.4)

Find the inverse of Lorentz Transformation matrix from problem 8.1.2 and the rotation
matrix Ry. Does the answer makes sense? (You must be on top of the identities for hyper-
bolic and trigonometric functions to do this. Remember: when in trouble go back to the
definitions in terms of exponential).

Solution

The Lorentz Transformation matrix from problem 8.1.2 above is

x’ B coshf -—-sinh@|lx
t - —sinh@® cosh@ |\t

Where
3 [ cosh® -—sinh 6]

Lg =
—sinh® cosh®@

While the rotation matrix is
cos@ sinf
RQ =
—sinf@ cosBO
The question is asking to find the L' and Ry
a1 Ly ~Lyp
0 det(LQ) —L21 Lll

1 [cosh @ sinh 6]

cosh? 6 — sinh? sinh & cosh@

cosh@ sinh@
( ] (1)

sinh@ cosh®d

The inverse of the matrix undoes whatever the matrix does. Let us check this on the above
result.

cosh(-0) —sinh(-0) cosh(0) sinh(6)
<or| oo ) @

—sinh(-60) cosh(-0) - sinh(0) cosh(6)



We see that (2) is the same as (1). Hence the result of (1) makes sense. For the transfor-

mation matrix, we have
PN Ry —Rpp
0 det(RQ) —R21 Rll

1 [cos 6 -sin 6]

cos2 6 + sin? 0 sin@® cosf

cosf -—sinf
) (3)
sin@ cosf

The inverse of the matrix undoes whatever the matrix does. Let us check this on the above
result.

(4)

B sin(0) cos(6)

R cos(—6) sin(-0) cos(6) —sin(0)
o= —sin(-0) cos(-0) -

We see that (4) is the same as (2). Hence the result of (3) makes sense.



4 Problem 2(a) (8.3.4)

(1) Solve the following simultaneous equations using Crammer rule.

3x-y-z=2
x-=2y-3z=0
dx+y+2z=4
solution
In Matrix form
3 -1 -1}||x 2
1 -2 -3{ly|=10
4 1 2 )z 4
Then, using Crammer rule
2 -1 -1 32 -1 3 -1 2
-2 -3 1 0 -3 1 -2 0
4 1 2 4 4 2 4 1 4
X = —,y = ,Z =
3 -1 -1 3 -1 -1 3 -1 -1
-2 -3 1 -2 -3 1 -2 -3
4 1 2 4 1 2 4 1 2

But det(A) is (using expansion along the first row)

3 -1 -1
-2 -3 1 -3 1 -2
-2 -3[=3 -(-1) + (-1)
2 4 2 4 1
4 1 2
=3(-4+3)+(2+12)-(1+8)
=2
And
2 -1 -1
-2 -3 0 -3 0 -2
-2 -3[=2 -(-1) + (-1)
1 2 4 2 4 1
4 1 2

= 2(~4+3) + (12) - (8)
=2

(1)



And

And

2 -1
0 -3 1 -3 10
0 -3[=3 - +(-1) (3)
4 2 4 2 4 4
4 2
=3(12) - 2(2 +12) - (4)
=4
-1 2
-2 0 10 1 -2
2 ol=3 —(-1) +(2) (4)
4 4 4 41
4 1 4

=3(-8) + (4) + 2(1 + 8)
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5 Problem 2(a) (8.3.4)

(Done again using Gaussian elimination method)

(1) Solve the following simultaneous equations by matrix inversion

3x-y—-z=2
x-2y-3z=0
dx+y+2z=4
(2)
3x+y+2z=3
2x-3y—-z=-2
x+y+z=1
Solution
5.1 Partl
In Matrix form
3 -1 -1)fx 2
1 -2 =-3{ly|=10
4 1 2z 4
Then
-1
X 3 -1 -1 2
yl=(1 -2 -3 0 (1)
z 4 1 2 4

To find the matrix inverse, the method of Gaussian elimination is used.

3 -1 -1100
1 -2 -30120
4 1 2 001

Swapping R; and R,

P R—
_
_ N
o L
_ W
o = O
o O =
o O



R2:R2—3R1
1 -2 3010
5 8 1 -3 0
4 1 2 0 0 1
R3=R3—4R1
1 -2 30 1 0
0 5 8 1 -30
0 9 14 0 4 1
R, =9R, and Rj3 = 5R; gives
1 -2 -30 1 O
0 45 72 9 27 0
0 45 70 0 -20 5
R3=R3—R2
1 -2 -3 0 1 0
0 45 72 9 =27
O 0 -2 -9 7 5
_R o R
Ry =2/ R3=~
1 -2 -3 0 1 0
72 9 27
0 1 5 L & 0
9 7 5
0O 0 1 > 305
72
RZZRZ_ERCB
1 -2 -3 0 1 0
9 72\ (9 27 (72\[ 7 72\( 5
010 g-(g)5) E-E)) E))
9 7 5
0O 0 1 > - >
R1:R1+3R3
9 7 5
1 -2 0 3(5) 1+3(—§) 3(—5) 1 -2 0
01 0 -7 5 =10 1 0
9 7
Z - 2 0 0 1
0 0 1 - -

Llo o

11



R1:R1+2R2
27 19 15 1 1
010 -7 5 4 =101 0 -7 5
9 7 5 9 7
001 3 - - 001 I -I

Since now the LHS matrix is I, then the RHS is the inverse. Therefore

-1 1 1 1
3 -1 -1 2 2 2
1 -2 3| =|-7 5 4
4 1 2 2 7 >
2
Using the above in (1) gives
il
x 2 2 2|2
yl=(-7 5 4|0
z 2 7 S|4
2 2 2
1
=2
-1

Hencex =1,y =2,z =-1.

5.2 Part?2

In Matrix form

3 1 2]|=x 3
2 -3 -1||y|[=]-2

12

= NI

(1)



To find the matrix inverse, the method of Gaussian elimination is used.

(O8]
—_
N
—_
(@]
(@)

—_
—_
—_
(@)
(@)
—_

Swapping R; and R,

—_
—_
—_
(@]
—_

R, =R, - 2R,
11 100 1
0-5-301 -2
31 2100
R; =Ry - 3R,

RZ = 2R2, R3 = 5R3

0 -10 -6 0 2 -4
0 -10 -5 5 0 -15

R3 =R3—-R,
1 1 1 0 0 1
0 -10 -6 0 2 -4
0 0 1 5 -2 -11
_ R
Ry = ~10
1110 O 1
3 1 2
01 z 0 = :
0015 -2 -11
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R, =R, - 2R,
1t 0 0 1 1110 0 1
010 -6 =-3-2 2-¢-1|=[o10 -3 1 7
001 5 5 11 001 5 -2 -11
Ry = Ry - Rs

110-5 2 12
10 -3 1 7
001 5 -2 -1
Ry =R;-R,
10021 5
010 -3 1 7
001 5 -2 -1

Since now the LHS matrix is I, then the RHS is the inverse. Therefore

3 1 2 -2 1 5
2 3 -1 =(-3 1 7
1 1 1 5 -2 -11

Using the above in (1) gives

X -2 1 5 3
yl=1-3 1 7 ||-2
z 5 -2 11|11

Hencex = -3,y = -4,z =8.
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6 Problem 2(b) (8.3.5)

For the matrix

1 2 3
A=14 5 6
7 8 10

Find the cofactor and the inverse. Verify that your inverse does the job.
Solution

The cofactor matrix Ac- has elements (Ac)i]. = (—1)i+j |A|1.]. where |A|Z.]. is determinant of A

with row i and column j removed. Hence
+An —Ap +Ags

Ac=|-Ay +Ap —Axp (1)

+Az; —Azp +Asz3



Where

A =P =2
"7 s 10
I L] B
2707 10l
P L D
13 78
2 3
Ay = =4
8 10
1 3
Azz— :—11
7 10
12
Aps = =6
7 8
A= 3= 3
31 5 6
an = 3l = 6
2"l o6
A= =3
N VR

Substituting all the above into (1) gives the cofactor matrix

The inverse of A is

[ 2 —(-2) +(-3)

=[-4) +(-11) ~(-6)

+(-3) ~(-6) +(-3)

(2 2 3

4 -11 6

-3 6 -3
1

-1 T

= A
det(A)” €

16

(2)



So we just need to find det(A) and transpose the cofactor matrix. But
det(A) = All - 2A12 + 3A13
By expanding along the first row. Hence

det(A) = (2) - 2(=2) + 3(=3)

= -3
Hence (2) becomes
T
2 2 =3
A_lz_— —
3 4 -11 6
-3 6 -3
(2 4 -3
=3 2 11 6
-3 6 -3
2 4
R
=l 2 nu
3 3 2
1 -2 1

To verify

AA =14 5 6 2 11 5

3 3
7 8 10
1 -2 1
10
= 10




And

Verified. It does the job.

2 4
"3 3
_2 n
3 3
1 -2
1 0 0
010
0 0 1

1 2 3
4 5 6
7 8 10

18
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7 Problem 3(a) (8.4.3)

Show that

(MN)" = NtM?
Consequently the product of two Hermitian matrices is not generally Hermitian unless
they commute.

solution

Al is called the adjoint of matrix. It is the transpose of A followed by taking the complex
conjugate of each entry in the result. Hence for a real matrix A the adjoint is the same
as transpose, since complex conjugate of real value is itself. So we start by finding the

transpose (MN)" then at the end apply conjugate.
T
(MN)! = (MN),
= ) MyNy
k
= 2 MGN;
k
= 2 NieMj
k

- (V1)

if

The sum above over k, where k goes from 1 to the number of columns in M (which must
be the same as the number of rows in N for the product to be possible). The above shows
that

(MN)T = NTMT

Therefore
MN)" = (N™MT)’
= (NT) (M)
= NTMm*
A matrix A is called Hermitian if AT = A or At = —A. Also, any real matrix A is always
Hermitian.

Assuming M, N are Hermitian, and assuming for now that we look at the positive case.
i.e. Mt = M, Nt = N. Hence

MINT = (NM)'
Now, if N, M commute, then NM = MN and the above becomes
MINT = (MN)

Hence the product MTN' is Hermitian. But if N, M do not commute, then we can not say
that.
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8 Problem 3(b) (8.4.19)

(1) Show that

Tr(MN) = Tr(NM) (8.4.53)
(First part only).
solution

The trace of a matrix A is the sum of elements on the diagonal. The matrix must be square
for this to apply. Hence

Tr(A) = Y} Aw

Where the sum v is over the number of rows or columns (since they are the same, since
matrix is square)

In the following, we will use the definition of matrix product given by (MN)I.]. = 20 M Ny
where the sum k is over the number of columns of M. Now we can write

Tr(MN) = Y,(MN)__
= Z(ZkaNkv)
v \k
= E(E Nkvak)
v \k

Assuming N, M are square matrices, then we can replace the inner sum to be over v
instead of k, since these will be the same for square N, M. Hence the above becomes

Tr(MN) = E(ZNUUMUU) (1)
(4 4
Now we do the same for product NM.
Tr(NM) = D J(NM)_
(4

= ;(Ek: vaMkv)
= g(g Mkavk)

Assuming N, M are square matrices, then we can replace the inner sum to be over v
instead of k, since these will be the same for square N, M. Hence the above becomes

Tr(NM) = Z(ZMUUNUU) (2)

[

Comparing (1,2) shows they are the same. Hence Tr(MN) = Tr(NM). Note that this
solution assumed that M, N are both square matrices of the same size.
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9 Problem 3(c) (8.4.20)

Consider four Dirac matrices that obey
Where the Kronecker delta symbol is defined as follows

5

;=1 ifi=j,0ifi#] (8.4.57)

Thus the square of each Dirac matrix is the unit matrix and any two distinct Dirac ma-
trices anticommute. Using the latter property show that the matrices are traceless. (Use
equation (8.4.54)

solution

Eq (8.4.54) from the book says
Tr(ABC) = Tr(BCM) = Tr(CAB) (8.4.54)

Some definitions first. Two matrices A, B anticommute means AB = —BA. A matrix is
traceless means the trace of the matrix (the sum of the diagonal elements) is zero.
There are Four Dirac matrices My, My, M3, M. Each is 4 X 4 matrix.

From MIM] + M]Ml = 261]1 then

MM, = 26,1
MM, = 5,1
MM; _ I

0ii

Premultiplying both sides by M; gives

M;M;M; M
o )
Taking trace of both sides
M;M;M;
Tr(M;) = Tr( L Z)
Oji
= l TI'(M]MZMZ)
611
But Dirac matrices anticommute. Hence M;M; = —M;M,;. The above becomes
1
Tr(M;) = = Tr(M;M;M;)

1



Using property Tr(MiMjMi) = Tr(MjMiMl-) the above becomes

But Ml2 = I, therefore

Tr(M;) = —% Tr(M;M;M;)
1

1

Te(M;) =~ Te()

22

The above is possible only if Tr(Mj) = 0 since — is just a number. The above is like saying

bii

n = —3n which is only possible if n = 0. Hence the trace of any Dirac matrix is zero, which

means it is traceless.
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10 Problem 4(a) (8.4.5)

Show that the following matrix U is unitary. Argue that the determinant of a unitary
matrix must be unimodular complex number. What is it for this example?

1+i3 V3 (1+)

4 22
U =
-V3(1+)  i+V3
242 4

solution
A matrix U is unitary if UT = U™!. Where U™ means to take the transpose followed by
complex conjugate. For the above

Up —Uip
Uy Un

1

_1 —
det(U)

(1)

But

1+iv3 V3 (1+)

4 242
det(U) =
—\3(1+)  i+V3
22 4

4 4 22 242

1, 3.
=—i—|—=i
4 4

_ 1+i\/§)(i+\/§)_(\/§(1+i))(—\/§(1+i))
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Hence (1) becomes

i+/3 V3 (1+i)

Ul = 1 4 22
I[V3a+)  1+iV3

22 4

i+3 _\/5(1+i)
4 242
=-1

V3(1+i) 143

22 4

_ J(Hf ) (—i)(— \/5(1+i))

22
o) cofea

(1—N§ ) V3(i-1)
S D 1)
| VBas) B




Now U" is found.

Comparing (1,2) shows they are the same. Hence U is unitary.

_ (UT)*

1+ivV3 V3 (1+i)
4 242
—\3(1+)  i+V3
2v2 4
[ 1+iv3  —V3(1+i)
4 22
V3 (1+i) i+v3
[ 13 VB
4 242
V3(1-)  -it+V3
[ 153 VB
4 242
V3(1-i)  -i+V3

T*

25

A unimodular complex number z is one whose |z| = 1. For this example, we found above
that |U| = i. But |i| = 1. Verified.
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11 Problem 4(b) (8.4.8)

Show that if

then
2 _ 10
01

Now consider F(L) = " and show by writing out the series and using L? = —I, that the
series converges to a familiar matrix discussed earlier in the chapter.

Solution
oL (L)
O TV o M
2! 3!
2 3
0 -1 1 0 -1 1 0 -1
=1+0 + =02 +—0° + e (1)
1 0 28 |1 0 311 0
But
2
0 -1
=]
[1 0

0 Al _[o affo | __
1 0| |1 ollt ol
_ 27 . 16¢ }
o -1 [o <1]fo =1

= :—L
1 0 1 0oll1 o
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And so on. Hence (1) becomes

1 1 1 1 1 1
oL _ _ 27 3 4 57 _ 67 _ 7
et =1+ 6L —2!61 —3!6L+4—!61+5!6L 6!61 7!6L+

1 0] 0 -1 1 1 0l 1 .o <1 1 1t of 1 .o =1] 1 |1 0
= +0 S—or -—0’ + —64 + —65 S— —
01 1 0| 2 o1 3 |17 o 4 (o 1] 5 |1 of 6 |0 1

_[r o] o 0| _1|ex of 1o | 1]e* of 1]o -e°| 1]ec o
o1 6 0 20 2] 313 o 4o o4 Ses o 60 o8
[ lgp loa lps, . gL los_ lps o
_1 26 +4!6 6!6+ 6+3!6 5!6+
- 1 15 1l loa lpe

7] 3!8 +5!8 1 29 +4!8 6!9+

_cos(G) —sin@
sin(0) cos(0)

Hence

efl = Rg

Where Ry is the rotation matrix in 2D.
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12 Problem 4(c) (8.4.10)

Show that if H is Hermitian, then U = ¢! is unitary. (Write the exponential as a series and
take the adjoint of each term and sum and re-exponentiate. Use the fact that exponents
can be combined if only one matrix is in the picture).

solution

A matrix His Hermitian if H' = H. Where the dagger means to take the transpose followed
by conjugate. If H is real, then this implies the same as saying H is symmetric. A unitary
matrix U means one whose dagger is same as its inverse. i.e.

ut=u-t

Starting from the input given, expanding in Taylor series gives

U =et

o GH? GH)®  GH)'  (H)  (H)°

R T TR TR TSI
. 2 HS H4 H5 H6

=I+iH-—-i—+—+i— - —

( H? H* H® ) ( H® H° )
=ll-=—+ == | +il[H-=—+ =-
2! 4! 6! 3! 5!
Hence
. . H'I'Z H'l'4 H+6 ' . H+3 H'l'5
u:I— + — _ZH—_+_—"'
2! 4! 6! 3! 5!

Where the +i changed to —i in the above since we are taking complex conjugate. But
H' = H since matrix H is Hermitian. The above becomes

HZ H4 H6 HS H5
u*:(1——+———---)—i(H——+——---)
2! 4! 6! 3! 5!
H

= e_i
But e = U1 from definition of U = ¢, Therefore

ut=u-!

Hence U is unitary.
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13 Problem 5 (8.4.17)

Show that

[3.5’][3.3]= d-bl+ic - (@xD) (1)

-
Where @, b are ordinary three dimensional vectors and

-

0 =io,+ ]a + ko,
solution

The LHS of (1) is

[6’- ﬁ’][a’ : E] = (oxax +0ya, + azaz)(axbx +0yb, + ozbz)
= 0%a,by + 0,0,0.b, + 0,0,a,b,
+ 0,0,y + Uy ayb, + 0,0,a,b,
+0,0,a,b, + 0,0,a,b, + o2a,b,

But for Pauli matrix 612 = [. Hence the above becomes

[5’~ ﬁ’][a : E’] = I(axbx + a,b, + azb)+ox0yaxby+oxazaxbz+ayaxaybx+ayozaybz+ozc7xasz+ozayazby

But 0,0, = —0,0, and 0,0, = 0,0, and 0,0, = —0,0,. (I verified these by working them
out). Hence the above becomes

[5’- ﬁ][a’ . E] = I(axbx +a,b, + azb) +0,0,a,b, + 0,0,a,b, — 0c0,a,b, + 0,0,a,b, - 0,0,a,b, — 0,0,a,b,

Y
= I(axbx +a,b, + azb) + (axcy)(axby - aybx) + (0,0,)(ab, —a,b,) + (ayaz)(aybz - azby)

(2)
Now we will simplify RHS of (1) and see if we get the same result as above.
7-bl+id- (axb) —I(axb +ayb, +ab )+za (axq)
e € e
= I(axbx+ayby+azbz) +i(ax oy oz)- ay ay 4,
by b, b,
= I(a,hy +ayb, +a.b.) + 1(o-x o, ) (aybz ~(axh, — aby) ab, - aybx)
= I(u by +ayb, +a,b )+ z( ) (uybz a,b, —axb, ab, —aybx)
= (a by +ayb, +a,b ) z( ( . azby) +0y(a.b, )+az(axby aybx))
= (a by +a,b, +ab ) zax(a b, - azby) +io0,(ab, - axbz) + zoz(axby - aybx)

(3)
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But from property of Pauli matrices (eq 8.4.48) in text, we have (Verified these by working
them out)

i0, = 0,0, (4)
ioy = 0,0, (5)
—i0y, = 0,0, (6)

Substituting (4,5,6) into (3) gives

d-bl+i5 - (7% D) = [(ayby + ayb, + a,b,) + (0,0.)(a,b. - 0.b, ) = (020.)(a:by - a,b,) + (00,)(axb, — a,b,)

= I(aby + ayb, + a.b) + (0,0.)(ayb; - aby) + (0:0.)(asb, — aby) + (050, ) (a:b, — a,by)

(7)

Comparing (2,7) shows they are the same. Hence

[¢-a]o-3| =7 B+ (@x7)



31

14 Problem 6

(a) Consider a horizontal spring-mass system. The spring has a spring constant k and is
fixed at one end. The other end is attached to a block of mass m that can move without
friction on a horizontal surface. The spring is stretched a length a beyond its rest length
and let go. Without solving the problem using Newton’s second law, find the angular
frequency of oscillations and show that it is independent of a.

(b) Derive the Planck mass, length, and time in terms of Planck’s constant #i, Newton’s
constant G, and speed of light c. Evaluate these quantities in SI units. (10 points)

(c) Identify the relevant physical quantities and use dimensional analysis to find the
characteristic length for a black hole of mass M.

solution

14.1 Part (a)

I was not sure if we are supposed to solve this using dimensional analysis or using Physics.
So I'solved it both ways. Please select the method that we are supposed to have used.

Using physics

Taking the relaxed position (which is also the equilibrium position as x = 0) and spring

extension is measured relative to this, then spring potential energy is given by V' (x) = %kx2
and the Force the spring exerts on the mass is F = —kx. Using the relation

V' (x) = mw?x

Then
kx = mw?x
k = mw?
Hence
k
W =+]—
m

Where m is the mass of the block attached to the spring. We see the angular frequency of
oscillations w is independent of a. The mass will oscillated around x = 0 from x = +a to
x = —a. When it is at x = +a the force on the mass will be maximum of F = —ka and the
velocity will be zero there. When the mass at x = 0, the force is zero, but the velocity of
mass will be largest there. The maximum amplitude of the mass from equilibrium is a.

Using dimensional analysis

Let us assume that the angular frequency of the spring depends on the attached mass m
and on the spring constant k and on the initial displacement a (we will find later that it
does not depend on a).
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The units of angular frequency w is radians per second or T~!. Units of mass m is M. Units
of k are MT~2 (force per unit length). And initial extension is length with units L. Hence
assuming

w = mkYa* (1)

Using dimensional analysis we replace the above with the units of each physical quantity
which gives

T = [MF[MT2] L]

— Mx+yT—2yLz
Comparing exponents gives
-2y =-1
x+y=0
z=0

Hence y = + and x = —= and z = 0. Therefore Eq. (1) becomes
11
w=m 2k2

k

m

Which is the same result obtained above. This shows that w does not depend on 4, because
z=0.

14.2 Part (b)

Plank mass

Using dimensional analysis, let m, be the Planck mass. Using units M,L, T for mass,
length and time respectively, then the units of m, is M. Since we want m,, to be expressed
in terms of #i, G, ¢, then we write

m, = H*GYc (1)

And then solve for x, y, z exponents such that RHS gives units of M. We know that units
of i = ML?T~! and units of G = M'L*T 2 and units of ¢ = LT!. The above becomes

M = (ML2T) (ML3T2) (LT )
= MX[2xT—X MY 3T~V 2=
= M* Y [ 2x+3y+z T—x—2y—z



Therefore we need to satisty the following equations

x-y=1
2x+3y+z=0
-x=-2y-z=0
Or
1 -1 0|« 1
2 3 1|yl=]0
-1 -2 -1)\z
The augmented matrix is
1 -1 0 1
2 3 10
-1 -2 -1 0
R, = Ry - 2R,
1 -1 0 1
0O 5 1 =2
-1 -2 -1 0
R3 =R3+ Ry
1 -1 0 1
0O 5 1 -2
0 -3 -1 1
Ry = 3Ry, Rz = 5R;
1 -1 0 1
0 15 3 -6
-15 -5 5
R3=R3+R,
1 -1 0 1
0 15 3 -6
0O 0 -2 -1

33

System is now in echelon form, so no more transformations are needed. The system

becomes
1 -1 0])fx 1
0 15 3 |ly|l=|-6
0 0 -2z -1
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i - =1 i - _ L
Last row give =2z = —1 or z = 7. Second row gives 15y + 3z = —6 or 15y + 3(2) = -6, or
y= —% and first row givesx —y =1or x + % =1, hence x = % The solution is
1
x 2

v|=|- (2)
V4

1
2
Using (2) in (1) gives

my, = h*GYc*

1 11

=h2G 2c2

3 fic
“VG

Units in SI Using ¢ = 299792458 m/s and % = 1.054571817 x 1073 J.s, and G = 6.6743015 X
107! m3kg~1s72, the above gives

(1.054571817 X 10—34)(299792458)
m.,, =
(6.6743015 x 10—11)
=21764x107% kg

Planck length

We now repeat the above method, but for Planck length which has units L. Therefore the
equation is
l, = GYc? (3)
And now we solve for x,y,z exponents such that RHS gives units of L. We know that
units of i = ML?T~! and units of G = ML3T2 and units of ¢ = LT~!. Using dimensional
analysis, the above becomes
L = (ML2T ) (ML3T2) (LT)
= M* LZxT—x MY L3y T—Zy [ZT~%
L = Mx—yL2x+3y+zT—x—2y—z
Therefore we need to satisty the following equations
x-y=0
2x+3y+z=1
-x=-2y-z=0
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Similar steps using augmented matrix will now be done. No need to duplicate these again.
The final solution is

NI—= NI-=

vl= (4)
ya

Using (4) in (3) gives

I, = *GYc*

hG
N

Units in SI Using ¢ = 299792458 m/s and % = 1.054571817 x 1073 J.s, and G = 6.6743015 X
107! m3kg~1s72, the above gives

| J (1.054571817 x 10-34) (6.6743015 x 10-11)
a (299792458)°
=1.6163 x 10~ meter
Planck time
We now repeat the above method, but for Planck time which has units T. Therefore the
equation is

t, = GV (5)

And now solve for x, y, z exponents such that RHS gives units of T. We know that units
of i = ML?>T! and units of G = M~'L3T~2 and units of c = LT~!. The above becomes
T = (ML2T) (MLPT2) (LT1)
= M* LT XMY[3YT-2Y[ 2T
T = MY ] 2x+3y+z-x-2y-z

Therefore we need to satisty the following equations

x-y=0
2x+3y+z=0
-x-2y-z=1
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Similar steps using augmented matrix will now be done. No need to duplicate these again.
The final solution came out to be

NI—= NI=

yl= (6)
Z

Using (5) in (6) gives

t, = GV
1 1 5

— Kh2G2c 2

_ [nG
N&

Units in SI Using ¢ = 299792458 m/s and # = 1.054571817 x 1073 J.s, and G = 6.6743015 X
107! m3kg~1s72, the above gives

J (1.054571817 x 10-34)(6.6743015 x 10-11)
t, =

(299792458)°
=5.3912 x 10~* second

14.3 Part (c)

The characteristic length of a black hole should depend on its mass M and universal
gravitational constant G and c. Therefore

L. = M*GY¢*
The units of G = M~ 1L3T~2 and units of ¢ = LT!. The above becomes
L, = M*(MLPT2) (LT)
— Mx—yL3y+zT—2y—z

Hence
x-y=0
3y+z=1
2y+z=0
Solving gives
b 1
yi=11
z -2



Hence
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