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1 Problem 1(a) (problem 5.2.3)
Solve for 𝑥 and 𝑦 given

2 + 3𝑖
6 + 7𝑖

+
2

𝑥 + 𝑖𝑦
= 2 + 9𝑖

solution

Let 𝑧 = 𝑥 + 𝑖𝑦 be the complex number to solve for. The above becomes

2
𝑧
= 2 + 9𝑖 −

2 + 3𝑖
6 + 7𝑖

= 2 + 9𝑖 −
(2 + 3𝑖)(6 − 7𝑖)
(6 + 7𝑖)(6 − 7𝑖)

= 2 + 9𝑖 −
12 − 14𝑖 + 18𝑖 + 21

36 + 49

= 2 + 9𝑖 −
33 + 4𝑖
85

=
85(2 + 9𝑖) − 33 − 4𝑖

85

=
170 + 765𝑖 − 33 − 4𝑖

85

=
137 + 761𝑖

85

Therefore

2
𝑧
=
137 + 761𝑖

85

𝑧 =
170

137 + 761𝑖

=
170(137 − 761𝑖)

(137 + 761𝑖)(137 − 761𝑖)

=
23290 − 129370𝑖

597 890

=
23290
597890

−
129370
597890

𝑖

=
137
3517

−
761
3517

𝑖

But 𝑧 = 𝑥 + 𝑖𝑦. Hence

𝑥 + 𝑖𝑦 =
137
3517

−
761
3517

𝑖

Comparing real and imaginary parts shows that

𝑥 =
137
3517

𝑦 = −
761
3517
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2 Problem 1(b) (problem 5.2.4(iv))
Find the real part, imaginary part, modulus, complex conjugate and inverse of the fol-
lowing (iv) 1+√2 𝑖

1−√3 𝑖

solution

𝑧 =
1 + √2 𝑖
1 − √3 𝑖

=
�1 + √2 𝑖��1 + √3 𝑖�

�1 − √3 𝑖��1 + √3 𝑖�

=
1 + √3 𝑖 + √2 𝑖 − √2√3

4

=
1 − √6
4

+ 𝑖√
3 + √2
4

Hence the real part is 1−√6
4 and the imaginary part is √3+√2

4 . Therefore we can now
write

𝑧 = 𝑥 + 𝑖𝑦

=
⎛
⎜⎜⎜⎝
1 − √6
4

⎞
⎟⎟⎟⎠ + 𝑖

⎛
⎜⎜⎜⎜⎝
√3 + √2

4

⎞
⎟⎟⎟⎟⎠

The modulus is

|𝑧| = �𝑥
2 + 𝑦2

=

�
⃓
⃓
⎷

⎛
⎜⎜⎜⎝
1 − √6
4

⎞
⎟⎟⎟⎠
2

+
⎛
⎜⎜⎜⎜⎝
√3 + √2

4

⎞
⎟⎟⎟⎟⎠

2

=
�
7
16
−
1
8√

6 +
1
8√

6 +
5
16

=
�
3
4

The complex conjugate of 𝑧 is 𝑧∗. Hence

𝑧∗ = 𝑥 − 𝑖𝑦

=
⎛
⎜⎜⎜⎝
1 − √6
4

⎞
⎟⎟⎟⎠ − 𝑖

⎛
⎜⎜⎜⎜⎝
√3 + √2

4

⎞
⎟⎟⎟⎟⎠

The inverse is

1
𝑧
=
𝑧∗

𝑧𝑧∗

=
𝑧∗

|𝑧|2

=
�1−√6

4
� − 𝑖�√3+√24

�
3
4

=
1 − √6
3

− 𝑖√
3 + √2
3
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3 Problem 1(c) (problem 5.2.5)
Show that a polynomial with real coefficients has only real roots or complex roots that
come in complex conjugate pairs.

solution

Let
𝑝(𝑧) = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 +⋯+ 𝑎𝑛𝑧𝑛

be polynomial in 𝑧 where 𝑎𝑖 are all real. We just need to show now that if 𝜆 is a root,
then its complex conjugate 𝜆∗ must also a root. If the root happened to be real, then its
complex conjugate is itself. Hence nothing to do in this case. We only need to worry
about the case when the root is complex and show that its complex conjugate must also
be root.

Assuming 𝜆 is a root, then by definition of a root we have

𝑝(𝜆) = 0
= 𝑎0 + 𝑎1𝜆 + 𝑎2𝜆2 +⋯+ 𝑎𝑛𝜆𝑛

=
𝑛
�
𝑘=0
𝑎𝑘𝜆𝑘 (1)

Therefore, replacing 𝜆 by 𝜆∗ on both sides of (1) gives

𝑝(𝜆∗) =
𝑛
�
𝑘=0
𝑎𝑘(𝜆∗)

𝑘

But (𝜆∗)𝑘 = �𝜆𝑘�
∗
from complex numbers properties (equation 5.2.20 in book). The above

becomes
𝑝(𝜆∗) =

𝑛
�
𝑘=0
𝑎𝑘�𝜆𝑘�

∗

Since 𝑎𝑘 are real coefficients, then 𝑎∗𝑘 = 𝑎𝑘 and the above can be written as

𝑝(𝜆∗) =
𝑛
�
𝑘=0
�𝑎𝑘𝜆𝑘�

∗

Using property that 𝐴∗𝐵∗ = (𝐴𝐵)∗ where 𝐴 = 𝑎𝑘, 𝐵 = 𝜆𝑘 in the above. Now we can move
the complex conjugate outside the sum, using property that 𝐴∗ + 𝐵∗ = (𝐴 + 𝐵)∗. Hence
the above becomes

𝑝(𝜆∗) = �
𝑛
�
𝑘=0
𝑎𝑘𝜆𝑘�

∗

But from (1), we know that
𝑛
�
𝑘=0
𝑎𝑘𝜆𝑘 = 0, this is because 𝜆 is assumed to be a root.

Therefore the above gives

𝑝(𝜆∗) = 0∗

= 0

The above shows that 𝜆∗ is also a root if 𝜆 is a root. Therefore, the root can be either real,
or complex. If the root is complex, its complex conjugate is also a root. A real root is just
special case of complex root. QED.
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4 Problem 1(d) (problem 5.3.2)
For the following pairs of numbers, give their polar form, their complex conjugate,
moduli, product, the quotient 𝑧1

𝑧2
, and the complex conjugate of the quotient

𝑧1 =
1 + 𝑖

√2
𝑧2 = √3 − 𝑖

𝑧1 =
3 + 4𝑖
3 − 4𝑖

𝑧2 = �
1 + 2𝑖
1 − 3𝑖 �

2

solution

4.1 First pair

𝑧1 =
1 + 𝑖

√2
𝑧2 = √3 − 𝑖

The polar form of 𝑧 is 𝑟𝑒𝑖𝜃 where 𝑟 = |𝑧| and 𝜃 = arctan�𝑦𝑥�when 𝑧 = 𝑥 + 𝑖𝑦. The first step
is to write 𝑧 = 𝑥 + 𝑖𝑦

For 𝑧1

𝑧1 =
1 + 𝑖

√2

=
1

√2
+ 𝑖

1

√2

Hence 𝑥 = 1

√2
, 𝑦 = 1

√2
. Therefore |𝑧1| = �𝑥2 + 𝑦2 = �

1
2 +

1
2 = 1. And 𝜃 = arctan(1) = 450.

Therefore in polar

𝑧1 = 𝑟𝑒𝑖𝜃

= 𝑒𝑖�45
0�

= 𝑒𝑖
𝜋
4

For 𝑧2
𝑧2 = √3 − 𝑖

Hence 𝑥 = √3 , 𝑦 = −1. Therefore |𝑧1| = �𝑥2 + 𝑦2 = √3 + 1 = 2. And 𝜃 = arctan� −1

√3
� =

−300. Therefore in polar

𝑧2 = 𝑟𝑒𝑖𝜃

= 2𝑒𝑖�−30
0�

= 2𝑒−𝑖
𝜋
6

The complex conjugate is

𝑧∗1 = 𝑟𝑒−𝑖𝜃

= 𝑒−𝑖
𝜋
4

And

𝑧∗2 = 𝑟𝑒−𝑖𝜃

= 2𝑒𝑖
𝜋
6
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And moduli is

|𝑧1| = 𝑟
= 1

And

|𝑧2| = 𝑟
= 2

And product

𝑧1𝑧2 = �𝑟1𝑒𝑖𝜃1��𝑟2𝑒𝑖𝜃2�
= 𝑟1𝑟2𝑒𝑖(𝜃1+𝜃2)

But 𝑟1 = 1, 𝑟2 = 2, 𝜃1 = 450, 𝜃2 = −300. The above becomes

𝑧1𝑧2 = 2𝑒
𝑖�450−300�

= 2𝑒𝑖�15
0�

= 2𝑒𝑖
𝜋
12

And the quotient 𝑧1
𝑧2

is

𝑧1
𝑧2
=
𝑟1𝑒𝑖𝜃1
𝑟2𝑒𝑖𝜃2

=
𝑟1
𝑟2
𝑒𝑖(𝜃1−𝜃2)

But 𝑟1 = 1, 𝑟2 = 2, 𝜃1 = 450, 𝜃2 = −300. The above becomes

𝑧1
𝑧2
=
1
2
𝑒𝑖�45

0+300�

=
1
2
𝑒𝑖�75

0�

=
1
2
𝑒𝑖

5𝜋
12

And the complex conjugate of the quotient is

�
𝑧1
𝑧2
�
∗

= �
1
2
𝑒𝑖

5𝜋
12 �

∗

=
1
2
𝑒−𝑖

5𝜋
12

4.2 Second pair

𝑧1 =
3 + 4𝑖
3 − 4𝑖

𝑧2 = �
1 + 2𝑖
1 − 3𝑖 �

2

The polar form of 𝑧 is 𝑟𝑒𝑖𝜃 where 𝑟 = |𝑧| and 𝜃 = arctan�𝑦𝑥�where 𝑧 = 𝑥 + 𝑖𝑦. Hence
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For 𝑧1

𝑧1 =
3 + 4𝑖
3 − 4𝑖

= √32 + 42 𝑒
𝑖 arctan� 43 �

√32 + 42 𝑒
𝑖 arctan�− 4

3 �

=
𝑒
𝑖 arctan� 43 �

𝑒
−𝑖 arctan� 43 �

= 𝑒
𝑖 arctan� 43 �+arctan�

4
3 �

= 𝑒
𝑖�2 arctan� 43 ��

= 𝑒𝑖�106.26
0�

For 𝑧2

𝑧2 = �
1 + 2𝑖
1 − 3𝑖 �

2

= �
(1 + 2𝑖)(1 + 3𝑖)
(1 − 3𝑖)(1 + 3𝑖) �

2

= �
−5 + 5𝑖
10 �

2

=
25 − 25 − 50𝑖

100

=
−1
2
𝑖

Hence 𝑥 = 0, 𝑦 = −1
2 . Therefore |𝑧1| = �𝑥2 + 𝑦2 = �0 +

1
4 = 1

2 . And 𝜃 = arctan(−∞) =
−900. Therefore in polar

𝑧2 = 𝑟𝑒𝑖𝜃

=
1
2
𝑒𝑖�−90

0�

=
1
2
𝑒−𝑖

𝜋
2

The complex conjugate is

𝑧∗1 = 𝑟1𝑒−𝑖𝜃1

= 𝑒
−𝑖�2 arctan� 43 ��

= 𝑒𝑖�−106.26
0�

And

𝑧∗2 = 𝑟2𝑒−𝑖𝜃2

=
1
2
𝑒𝑖

𝜋
2

And moduli is

|𝑧1| = 𝑟1
= 1
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And

|𝑧2| = 𝑟2

=
1
2

And product

𝑧1𝑧2 = �𝑟1𝑒𝑖𝜃1��𝑟2𝑒𝑖𝜃2�
= 𝑟1𝑟2𝑒𝑖(𝜃1+𝜃2)

But 𝑟1 = 1, 𝑟2 =
1
2 , 𝜃1 = 106.26

0, 𝜃2 = −900. The above becomes

𝑧1𝑧2 =
1
2
𝑒𝑖�106.26

0−900�

=
1
2
𝑒𝑖�16. 26

0�

And the quotient 𝑧1
𝑧2

is

𝑧1
𝑧2
=
𝑟1𝑒𝑖𝜃1
𝑟2𝑒𝑖𝜃2

=
𝑟1
𝑟2
𝑒𝑖(𝜃1−𝜃2)

But 𝑟1 = 1, 𝑟2 =
1
2 , 𝜃1 = 106.26

0, 𝜃2 = −900. The above becomes

𝑧1
𝑧2
= 2𝑒𝑖�106.26

0+900�

= 2𝑒𝑖�196. 26
0�

And the complex conjugate of the quotient is

�
𝑧1
𝑧2
�
∗

= �2𝑒𝑖�196.26
0��

∗

= 2𝑒−𝑖�196.26
0�
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5 Problem 2(a) (problem 5.3.5)
Consider series

𝑒𝑖𝜃 + 𝑒3𝑖𝜃 +⋯+ 𝑒(2𝑛−1)𝑖𝜃

Sum this geometric series, take the real and imaginary parts of both sides and show that

cos𝜃 + cos(3𝜃) +⋯ + cos((2𝑛 − 1)𝜃) =
sin(2𝑛𝜃)
2 sin𝜃

And that a similar sum with sines adds up to sin2(𝑛𝜃)
sin𝜃

solution

Let

𝑆 = 𝑒𝑖𝜃 + 𝑒3𝑖𝜃 +⋯+ 𝑒(2𝑛−1)𝑖𝜃 (1)

Then

𝑒2𝑖𝜃𝑆 = 𝑒2𝑖𝜃�𝑒𝑖𝜃 + 𝑒3𝑖𝜃 +⋯+ 𝑒(2𝑛−1)𝑖𝜃�
= 𝑒𝑖3𝜃 + 𝑒5𝑖𝜃 +⋯+ 𝑒(2𝑛−1)𝑖𝜃+2𝑖𝜃

= 𝑒𝑖3𝜃 + 𝑒5𝑖𝜃 +⋯+ 𝑒(2𝑛+1)𝑖𝜃 (2)

Hence (2-1) gives

𝑒2𝑖𝜃𝑆 − 𝑆 = 𝑒(2𝑛+1)𝑖𝜃 − 𝑒𝑖𝜃

𝑆�𝑒2𝑖𝜃 − 1� = 𝑒(2𝑛+1)𝑖𝜃 − 𝑒𝑖𝜃

𝑆 =
𝑒(2𝑛+1)𝑖𝜃 − 𝑒𝑖𝜃

𝑒2𝑖𝜃 − 1
Hence

𝑆 =
𝑒𝑖𝜃�𝑒𝑖2𝑛𝜃 − 1�
𝑒2𝑖𝜃 − 1

= 𝑒𝑖𝜃
�𝑒𝑖𝑛𝜃�𝑒𝑖𝑛𝜃 − 𝑒−𝑖𝑛𝜃��

𝑒𝑖𝜃�𝑒𝑖𝜃 − 𝑒−𝑖𝜃�

=
𝑒𝑖𝑛𝜃�𝑒𝑖𝑛𝜃 − 𝑒−𝑖𝑛𝜃�

�𝑒𝑖𝜃 − 𝑒−𝑖𝜃�

= 𝑒𝑖𝑛𝜃
�𝑒𝑖𝑛𝜃 − 𝑒−𝑖𝑛𝜃�

�𝑒𝑖𝜃 − 𝑒−𝑖𝜃�

= 𝑒𝑖𝑛𝜃
sin 𝑛𝜃
sin𝜃

= cos(𝑛𝜃 + 𝑖 sin 𝑛𝜃)
sin 𝑛𝜃
sin𝜃

=
cos(𝑛𝜃) sin(𝑛𝜃)

sin𝜃
+ 𝑖

sin2(𝑛𝜃)
sin𝜃

But cos(𝑛𝜃) sin(𝑛𝜃) = 1
2 sin(2𝑛𝜃) . Therefore the above becomes

𝑆 =
sin(2𝑛𝜃)
2 sin𝜃

+ 𝑖
sin2(𝑛𝜃)
sin𝜃

Hence

Re(𝑆) =
sin(2𝑛𝜃)
2 sin𝜃

(3)

Im(𝑆) =
sin2(𝑛𝜃)
sin𝜃

(4)
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Now we look at the LHS. Since 𝑆 = 𝑒𝑖𝜃 + 𝑒3𝑖𝜃 +⋯+ 𝑒(2𝑛−1)𝑖𝜃, then

𝑆 = (cos𝜃 + 𝑖 sin𝜃) + (cos 3𝜃 + 𝑖 sin 3𝜃) +⋯ + (cos(2𝑛 − 1)𝜃 + 𝑖 sin(2𝑛 − 1)𝜃)
= (cos𝜃 + cos 3𝜃 +⋯ + cos(2𝑛 − 1)𝜃) + 𝑖(sin𝜃 + sin 3𝜃 +⋯ + sin(2𝑛 − 1)𝜃) (5)

Comparing (5) and (3,4) shows that

cos𝜃 + cos 3𝜃 +⋯ + cos(2𝑛 − 1)𝜃 = Re(𝑆)

=
sin(2𝑛𝜃)
2 sin𝜃

And

sin𝜃 + sin 3𝜃 +⋯ + sin(2𝑛 − 1)𝜃 = Im(𝑆)

=
sin2(𝑛𝜃)
sin𝜃

Which is the result we are asked to show.
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6 Problem 2(b) (problem 5.3.6)

(1) Consider DeMoivre’s theorem, which states that (cos𝜃 + 𝑖 sin𝜃)𝑛 = cos 𝑛𝜃+ 𝑖 sin 𝑛𝜃.
This follows from taking the 𝑛𝑡ℎ power of both sides of Euler’s theorem. Find the formula
for cos 4𝜃 and sin 4𝜃 in terms of cos𝜃 and sin𝜃.

(2) Given 𝑒𝑖𝐴𝑒𝑖𝐵 = 𝑒𝑖(𝐴+𝐵) deduce cos(𝐴 + 𝐵) and sin(𝐴 + 𝐵)

solution

6.1 Part 1
Let 𝑛 = 4, therefore, using De Moivre’s theorem gives

(cos𝜃 + 𝑖 sin𝜃)4 = cos 4𝜃 + 𝑖 sin 4𝜃 (1)

We now expand the LHS of the above directly as follows

(cos𝜃 + 𝑖 sin𝜃)4 = (cos𝜃 + 𝑖 sin𝜃)2(cos𝜃 + 𝑖 sin𝜃)2 (2)

But
(cos𝜃 + 𝑖 sin𝜃)2 = cos2 𝜃 − sin2 𝜃 + 2𝑖 cos𝜃 sin𝜃

Substituting the above into (2) gives

(cos𝜃 + 𝑖 sin𝜃)4 = �cos2 𝜃 − sin2 𝜃 + 2𝑖 cos𝜃 sin𝜃��cos2 𝜃 − sin2 𝜃 + 2𝑖 cos𝜃 sin𝜃�

= cos2 𝜃�cos2 𝜃 − sin2 𝜃 + 2𝑖 cos𝜃 sin𝜃�

− sin2 𝜃�cos2 𝜃 − sin2 𝜃 + 2𝑖 cos𝜃 sin𝜃�

+ 2𝑖 cos𝜃 sin𝜃�cos2 𝜃 − sin2 𝜃 + 2𝑖 cos𝜃 sin𝜃�

Expanding the RHS above more, then the above becomes

(cos𝜃 + 𝑖 sin𝜃)4 = �cos4 𝜃 − cos2 𝜃 sin2 𝜃 + 2𝑖 cos3 𝜃 sin𝜃�

− �sin2 𝜃 cos2 𝜃 − sin4 𝜃 + 2𝑖 cos𝜃 sin3 𝜃�

+ �2𝑖 cos3 𝜃 sin𝜃 − 2𝑖 cos𝜃 sin3 𝜃 − 4 cos2 𝜃 sin2 𝜃�

Simplifying gives

(cos𝜃 + 𝑖 sin𝜃)4 = cos4 𝜃 − 6 cos2 𝜃 sin2 𝜃 + 4𝑖 cos3 𝜃 sin𝜃 + sin4 𝜃 − 4𝑖 cos𝜃 sin3 𝜃
= �cos4 𝜃 + sin4 𝜃 − 6 cos2 𝜃 sin2 𝜃� + 𝑖�4 cos3 𝜃 sin𝜃 − 4 cos𝜃 sin3 𝜃�

(3)

Comparing the real and imaginary parts of (3) with the real and imaginary parts of (1)
shows that

cos 4𝜃 = cos4 𝜃 + sin4 𝜃 − 6 cos2 𝜃 sin2 𝜃
sin 4𝜃 = 4 cos3 𝜃 sin𝜃 − 4 cos𝜃 sin3 𝜃

6.2 Part 2
Given

𝑒𝑖𝐴𝑒𝑖𝐵 = 𝑒𝑖(𝐴+𝐵)

Applying Euler’s formula 𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥, on both sides of the above results in

(cos𝐴 + 𝑖 sin𝐴)(cos𝐵 + 𝑖 sin𝐵) = cos(𝐴 + 𝐵) + 𝑖 sin(𝐴 + 𝐵)
cos𝐴 cos𝐵 + 𝑖 cos𝐴 sin𝐵 + 𝑖 sin𝐴 cos𝐵 − sin𝐵 sin𝐴 = cos(𝐴 + 𝐵) + 𝑖 sin(𝐴 + 𝐵)

(cos𝐴 cos𝐵 − sin𝐵 sin𝐴) + 𝑖(cos𝐴 sin𝐵 + sin𝐴 cos𝐵) = cos(𝐴 + 𝐵) + 𝑖 sin(𝐴 + 𝐵)

Comparing the real parts and the imaginary parts in the above shows that

cos𝐴 cos𝐵 − sin𝐵 sin𝐴 = cos(𝐴 + 𝐵)

And
cos𝐴 sin𝐵 + sin𝐴 cos𝐵 = sin(𝐴 + 𝐵)
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7 Problem 2(c)

Find ∫
∞

0
𝑥𝑒−𝑎𝑥 cos(𝑘𝑥)𝑑𝑥 using Euler’s formula.

solution

Let
𝐼 = �

∞

0
𝑥𝑒−𝑎𝑥 cos(𝑘𝑥)𝑑𝑥

Then, we replace cos(𝑘𝑥) by 𝑒𝑖𝑘𝑥, evaluate the integral, and then take the real part of the
result. Therefore

𝐼 = Re��
∞

0
𝑥𝑒−𝑎𝑥𝑒𝑖𝑘𝑥𝑑𝑥�

= Re��
∞

0
𝑥𝑒𝑥(−𝑎+𝑖𝑘)𝑑𝑥�

Integration by parts. Let 𝑢 = 𝑥, 𝑑𝑢 = 𝑑𝑥 and 𝑑𝑣 = 𝑒𝑥(−𝑎+𝑖𝑘), 𝑣 = 𝑒𝑥(−𝑎+𝑖𝑘)

−𝑎+𝑖𝑘 . The above now
becomes

𝐼 = Re�𝑢𝑣|∞0 −�
∞

0
𝑣𝑑𝑢�

= Re�
1

−𝑎 + 𝑖𝑘
𝑥𝑒𝑥(−𝑎+𝑖𝑘)�∞

0
−�

∞

0

𝑒𝑥(−𝑎+𝑖𝑘)

−𝑎 + 𝑖𝑘
𝑑𝑥� (1)

But
𝑥𝑒𝑥(−𝑎+𝑖𝑘)�∞

0
= 0

With the assumption thatRe(𝑎) > 0. To see thismore clearly, let uswrite 𝑒𝑥(−𝑎+𝑖𝑘) = 𝑒−𝑎𝑥𝑒𝑖𝑘𝑥.
𝑒𝑖𝑘𝑥 is bounded since it is a complex exponential. So the contribution comes from 𝑒−𝑎𝑥.
Hence when 𝑎 > 0, and 𝑥 → ∞ then the exponential will go to zero, and the whole term
𝑥𝑒𝑥(−𝑎+𝑖𝑘) → 0, even though 𝑥 → ∞, since exponential subdues any polynomial order.
When 𝑥 = 0, it is clear that 𝑥𝑒𝑥(−𝑎+𝑖𝑘) = 0. Therefore (1) now simplifies to

𝐼 = Re�−�
∞

0

𝑒𝑥(−𝑎+𝑖𝑘)

−𝑎 + 𝑖𝑘
𝑑𝑥�

= Re�−
1

−𝑎 + 𝑖𝑘 �
∞

0
𝑒𝑥(−𝑎+𝑖𝑘)𝑑𝑥�

= Re
⎛
⎜⎜⎜⎜⎝−

1
−𝑎 + 𝑖𝑘

𝑒𝑥(−𝑎+𝑖𝑘)

−𝑎 + 𝑖𝑘 �
∞

0

⎞
⎟⎟⎟⎟⎠

= Re�−
1

(−𝑎 + 𝑖𝑘)2
𝑒𝑥(−𝑎+𝑖𝑘)�∞

0 �
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But 𝑒𝑥(−𝑎+𝑖𝑘)�∞
0
= 0 − 1 = −1. The above becomes

𝐼 = Re�
1

(−𝑎 + 𝑖𝑘)2
�

= Re�
1

𝑎2 − 𝑘2 − 2𝑎𝑖𝑘�

= Re
⎛
⎜⎜⎜⎜⎝

�𝑎2 − 𝑘2 + 2𝑎𝑖𝑘�

�𝑎2 − 𝑘2 − 2𝑎𝑖𝑘��𝑎2 − 𝑘2 + 2𝑎𝑖𝑘�

⎞
⎟⎟⎟⎟⎠

= Re

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑎2 − 𝑘2 + 2𝑎𝑖𝑘

�𝑎2 − 𝑘2�
2
+ 4𝑎2𝑘2

⎞
⎟⎟⎟⎟⎟⎟⎠

= Re

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑎2 − 𝑘2

�𝑎2 − 𝑘2�
2
+ 4𝑎2𝑘2

+ 𝑖
2𝑎𝑘

�𝑎2 − 𝑘2�
2
+ 4𝑎2𝑘2

⎞
⎟⎟⎟⎟⎟⎟⎠

=
𝑎2 − 𝑘2

�𝑎2 − 𝑘2�
2
+ 4𝑎2𝑘2

Hence

�
∞

0
𝑥𝑒−𝑎𝑥 cos(𝑘𝑥)𝑑𝑥 =

𝑎2 − 𝑘2

�𝑎2 − 𝑘2�
2
+ 4𝑎2𝑘2

=
𝑎2 − 𝑘2

𝑎4 + 𝑘4 − 2𝑎2𝑘2 + 4𝑎2𝑘2

=
𝑎2 − 𝑘2

𝑎4 + 𝑘4 + 2𝑎2𝑘2

=
𝑎2 − 𝑘2

�𝑎2 + 𝑘2�
2 𝑎 > 0
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8 Problem 3
Given the intensity pattern for the𝑁-slit interferencewith separation 𝑑 between adjacent
slits, show that the pattern becomes that for the single-slit diffraction with slit width 𝑎
when 𝑑 goes to zero but with a fixed value of 𝑁𝑑 = 𝑎. (10 points)

Solution

Short version: In this version, The result for 𝑁 slit ̄𝐼𝑁(𝜃)will be used as given in lecture
notes without deriving it again, and will also use the single slit ̄𝐼1(𝜃) from the lecture
notes, then show that ̄𝐼𝑁(𝜃) becomes ̄𝐼1(𝜃) as 𝑑 → 0 but with 𝑁𝑑 = 𝑎.

Here ̄𝐼𝑁(𝜃) is the average intensity for 𝑁 slits at location on the screen at angle 𝜃 and
similarly ̄𝐼1(𝜃) is the average intensity for one slit at same location on the screen at angle
𝜃. From lecture notes (lecture 3, pages 6,7) we have the expressions for ̄𝐼𝑁(𝜃), ̄𝐼1(𝜃) given
as

̄𝐼𝑁(𝜃) = ̄𝐼(0)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin�𝑁𝜋𝑑 sin𝜃
𝜆

�

𝑁 sin�𝜋𝑑 sin𝜃𝜆
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

(1)

̄𝐼1(𝜃) = ̄𝐼(0)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin�𝜋𝑎 sin𝜃𝜆
�

𝜋𝑎 sin𝜃
𝜆

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

(2)

Now we need to show that (1) gives same result as (2) when 𝑑 goes to zero in the limit,
but with a fixed value of 𝑁𝑑 = 𝑎. Replacing 𝑁𝑑 = 𝑎 in the numerator of (1) and taking
the limit gives

lim
𝑑→0

̄𝐼𝑁(𝜃) = ̄𝐼(0)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
lim
𝑑→0

sin�𝜋𝑎 sin(𝜃)𝜆
�

𝑁 sin�𝜋𝑑 sin(𝜃)𝜆
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

= ̄𝐼(0)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin�𝜋𝑎 sin(𝜃)𝜆
�

𝑁 lim𝑑→0 sin�
𝜋𝑑 sin(𝜃)

𝜆
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

(3)

But

lim
𝑑→0

sin�
𝜋𝑑 sin(𝜃)

𝜆 � ≈
𝜋𝑑 sin(𝜃)

𝜆
+⋯ (4)

In the above we used that lim𝑑→0 sin�
𝜋𝑑 sin(𝜃)

𝜆
� ≈ 𝜋𝑑 sin(𝜃)

𝜆 . This comes from Taylor series
expansion of sin function, for small angle approximation by keeping only the linear
term in the Taylor series expansion since sin(𝑥) = 𝑥 − 𝑥3

3! +
𝑥5

5! −⋯.

Substituting (4) back into (3) gives

lim
𝑑→0

̄𝐼𝑁(𝜃) = ̄𝐼(0)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin�𝜋𝑎 sin(𝜃)𝜆
�

𝑁𝜋𝑑 sin(𝜃)
𝜆

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

But 𝑁𝑑 = 𝑎. The above simplifies to

lim
𝑑→0

̄𝐼𝑁(𝜃) = ̄𝐼(0)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin�𝜋𝑎 sin(𝜃)𝜆
�

𝜋𝑎 sin(𝜃)
𝜆

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

(5)

Comparing (5) with (2) shows that are the same. Hence

lim
𝑑→0

̄𝐼𝑁(𝜃) = ̄𝐼1(𝜃)

Which is what we are asked to show.
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8.1 Appendix
Here, the derivation of

̄𝐼𝑁(𝜃) = ̄𝐼(0)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin�𝑁𝜋𝑑 sin𝜃
𝜆

�

𝑁 sin�𝜋𝑑 sin𝜃𝜆
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

(1)

is given. First, let us consider a slit located at 𝑦𝑛 relative to the origin as show in the
diagram below

x0

yn

rn

θ

θ

(L, y)

yn sin θ

L

y axis

axis

r =
√ L

2 + y
2

y = r sin θ

yn � r

y − yn

yn

Figure 1: Geometry for slit at location 𝑦𝑛

Therefore

𝑟𝑛 = �
𝐿2 + �𝑦 − 𝑦𝑛�

2

= �𝐿
2 + �𝑦2 + 𝑦2𝑛 − 2𝑦𝑦𝑛�

= �𝐿
2 + 𝑦2 + 𝑦2𝑛 − 2𝑦𝑦𝑛

=
�
⃓
⃓
⎷
�𝐿2 + 𝑦2�

⎛
⎜⎜⎜⎜⎝1 +

𝑦2𝑛 − 2𝑦𝑦𝑛
�𝐿2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

= ��𝐿
2 + 𝑦2�

�
1 +

𝑦2𝑛 − 2𝑦𝑦𝑛
�𝐿2 + 𝑦2�

= ��𝐿
2 + 𝑦2�

�
1 −

2𝑦𝑦𝑛
�𝐿2 + 𝑦2�

+
𝑦2𝑛

�𝐿2 + 𝑦2�

Since 𝑦𝑛 is very small compared to �𝐿2 + 𝑦2� and it is also of order 2, then we can ignore

the term 𝑦2𝑛
�𝐿2+𝑦2�

above, giving

𝑟𝑛 ≈ ��𝐿
2 + 𝑦2�

�
1 −

2𝑦𝑦𝑛
�𝐿2 + 𝑦2�

= ��𝐿
2 + 𝑦2�

⎛
⎜⎜⎜⎜⎝1 −

2𝑦𝑦𝑛
�𝐿2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

1
2

But since 𝑦𝑛 is very small compared to �𝐿2 + 𝑦2�, then the term 2𝑦𝑦𝑛
�𝐿2+𝑦2�

is very small. So
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we can use (1 + 𝑥)𝑝 = 1 + 𝑝𝑥 and ignore higher order terms. Hence the above becomes

𝑟𝑛 ≈ ��𝐿
2 + 𝑦2�

⎛
⎜⎜⎜⎜⎝1 +

1
2

⎛
⎜⎜⎜⎜⎝
−2𝑦𝑦𝑛
�𝐿2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

= ��𝐿
2 + 𝑦2� −

𝑦𝑦𝑛

��𝐿
2 + 𝑦2�

= 𝑟 − 𝑦𝑛
𝑦
𝑟

But 𝑦
𝑟 = sin𝜃, therefore

𝑟𝑛 = 𝑟 − 𝑦𝑛 sin𝜃 (2)

The electric field 𝐸𝑛 measured at point �𝐿, 𝑦� due to slit at 𝑦𝑛 is

𝐸𝑛 = 𝐸0 sin(𝑘𝑟𝑛 − 𝜔𝑡)

Where 𝑘 is the wave number 𝑘 = 2𝜋
𝜆 . Therefore for 𝑁 slits, the total 𝐸 is

𝐸 =
𝑁
�
𝑛=1
𝐸𝑛

=
𝑁
�
𝑛=1
𝐸0 sin(𝑘𝑟𝑛 − 𝜔𝑡)

= 𝐸0�Im
𝑁
�
𝑛=1
𝑒𝑖(𝑘𝑟𝑛−𝜔𝑡)�

= 𝐸0�Im
𝑁
�
𝑛=1
𝑒𝑖(𝑘𝑟𝑁−𝜔𝑡)𝑒𝑖𝑘(𝑟𝑛−𝑟𝑁)�

= 𝐸0�Im�𝑒𝑖(𝑘𝑟𝑁−𝜔𝑡)
𝑁
�
𝑛=1
𝑒𝑖𝑘(𝑟𝑛−𝑟𝑁)�� (3)

But

𝑟𝑛 − 𝑟𝑁 = �𝑟 − 𝑦𝑛 sin𝜃� − �𝑟 − 𝑦𝑁 sin𝜃�
= 𝑟 − 𝑦𝑛 sin𝜃 − 𝑟 + 𝑦𝑁 sin𝜃
= �𝑦𝑁 − 𝑦𝑛� sin𝜃
= (𝑁𝑑 − 𝑛𝑑) sin𝜃
= (𝑁 − 𝑛)𝑑 sin𝜃 (4)

Substituting (4) in (3) gives

𝐸 = 𝐸0�Im�𝑒𝑖(𝑘𝑟𝑁−𝜔𝑡)
𝑁
�
𝑛=1
𝑒𝑖𝑘(𝑁−𝑛)𝑑 sin𝜃��

Let 𝑚 = 𝑁 − 𝑛. When 𝑛 = 1 then 𝑚 = 𝑁 − 1. When 𝑛 = 𝑁 then 𝑚 = 0. The above now
becomes

𝐸 = 𝐸0�Im�𝑒𝑖(𝑘𝑟𝑁−𝜔𝑡)
0
�

𝑚=𝑁−1
𝑒𝑖𝑘𝑚𝑑 sin𝜃��

= 𝐸0�Im�𝑒𝑖(𝑘𝑟𝑁−𝜔𝑡)
𝑁−1
�
𝑚=0

𝑒𝑖𝑘𝑚𝑑 sin𝜃��

= 𝐸0�Im�𝑒𝑖(𝑘𝑟𝑁−𝜔𝑡)
𝑁−1
�
𝑛=0
𝑒𝑖𝑘𝑛𝑑 sin𝜃��

Let 𝜙 = 𝑘𝑑 sin𝜃. The above becomes

𝐸 = 𝐸0�Im�𝑒𝑖(𝑘𝑟𝑁−𝜔𝑡)
𝑁−1
�
𝑛=0
𝑒𝑖𝑛𝜙�� (5)
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But
𝑁−1
�
𝑛=0
𝑒𝑖𝑛𝜙 =

1 − 𝑒𝑖𝑁𝜙

1 − 𝑒𝑖𝜙

=
𝑒𝑖

𝑁
2 𝜙�𝑒−𝑖

𝑁
2 𝜙 − 𝑒𝑖

𝑁
2 𝜙�

𝑒𝑖
𝜙
2 �𝑒−𝑖

𝜙
2 − 𝑒𝑖

𝜙
2 �

=
𝑒𝑖

𝑁
2 𝜙

𝑒𝑖
𝜙
2

�𝑒−𝑖
𝑁
2 𝜙 − 𝑒𝑖

𝑁
2 𝜙�

�𝑒−𝑖
𝜙
2 − 𝑒𝑖

𝜙
2 �

=
−𝑒𝑖

𝑁
2 𝜙

−𝑒𝑖
𝜙
2

�𝑒𝑖
𝑁
2 𝜙 − 𝑒−𝑖

𝑁
2 𝜙�

�𝑒𝑖
𝜙
2 − 𝑒−𝑖

𝜙
2 �

=
𝑒𝑖

𝑁
2 𝜙

𝑒𝑖
𝜙
2

sin�𝑁2 𝜙�

sin�𝜙2 �

= 𝑒𝑖
(𝑁−1)𝜙

2
sin�𝑁2 𝜙�

sin�𝜙2 �
(6)

Substituting (6) in (5) gives

𝐸 = 𝐸0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
Im

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑒𝑖(𝑘𝑟𝑁−𝜔𝑡)𝑒𝑖

(𝑁−1)𝜙
2

sin�𝑁2 𝜙�

sin�𝜙2 �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝐸0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
Im

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑒
𝑖�𝑘𝑟𝑁−𝜔𝑡+

(𝑁−1)𝜙
2 � sin�

𝑁
2 𝜙�

sin�𝜙2 �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

Let
𝑡0 = 𝑘𝑟𝑁 +

(𝑁 − 1)𝜙
2

Substituting this in (7) gives

𝐸 = 𝐸0�Im�𝑒𝑖𝜔(𝑡0−𝑡)��

= 𝐸0
sin�𝑁2 𝜙�

sin�𝜙2 �
�Im 𝑒𝑖𝜔(𝑡0−𝑡)�

= 𝐸0
sin�𝑁2 𝜙�

sin�𝜙2 �
sin(𝜔(𝑡0 − 𝑡)) (8)

The electric field intensity is

𝐼 = 𝑐𝜀0𝐸2

= 𝑐𝜀0𝐸20
sin2�𝑁2 𝜙�

sin2�𝜙2 �
sin2(𝜔(𝑡0 − 𝑡))
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The time (period) averaged intensity is therefore

𝐼𝑎𝑣 =
1
𝑇 �

𝑇

0
𝐼𝑑𝑡

=
1
𝑇
𝑐𝜀0𝐸20

sin2�𝑁2 𝜙�

sin2�𝜙2 �
�

𝑇

0
sin2(𝜔(𝑡0 − 𝑡))𝑑𝑡

=
1
2
𝑐𝜀0𝐸20

sin2�𝑁2 𝜙�

sin2�𝜙2 �

But 𝜙 = 𝑘𝑑 sin𝜃 and 𝑘 = 2𝜋
𝜆 , then the above becomes

𝐼(𝜃)𝑎𝑣 =
1
2
𝑐𝜀0𝐸20

sin2�𝑁𝜋𝑑 sin𝜃
𝜆

�

sin2�𝜋𝑑 sin𝜃𝜆
�

=
1
2
𝑐𝜀0𝐸20

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin�𝑁𝜋𝑑 sin𝜃
𝜆

�

sin�𝜋𝑑 sin𝜃𝜆
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

At 𝜃 = 0, we have

𝐼(0)𝑎𝑣 = lim
𝜃→0

1
2
𝑐𝜀0𝐸20

sin2�𝑁𝜋𝑑 sin𝜃
𝜆

�

sin2�𝜋𝑑 sin𝜃𝜆
�

= 𝑁2 1
2
𝑐𝜀0𝐸20

Hence

𝐼(𝜃)𝑎𝑣
𝐼(0)𝑎𝑣

=

1
2𝑐𝜀0𝐸

2
0

⎛
⎜⎜⎜⎜⎝
sin�𝑁𝜋𝑑 sin𝜃

𝜆 �

sin�𝜋𝑑 sin𝜃𝜆 �

⎞
⎟⎟⎟⎟⎠

2

𝑁2 1
2𝑐𝜀0𝐸

2
0

=
1
𝑁2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin�𝑁𝜋𝑑 sin𝜃
𝜆

�

sin�𝜋𝑑 sin𝜃𝜆
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin�𝑁𝜋𝑑 sin𝜃
𝜆

�

𝑁 sin�𝜋𝑑 sin𝜃𝜆
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

Therefore

𝐼(𝜃)𝑎𝑣 = 𝐼(0)𝑎𝑣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin�𝑁𝜋𝑑 sin𝜃
𝜆

�

𝑁 sin�𝜋𝑑 sin𝜃𝜆
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

Which is the formula used in the earlier derivation.
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9 Problem 4

(1) Find the roots 𝑧𝑛(𝑛 = 1, 2,⋯ ,𝑁) of the complex equation 𝑧𝑁 = 1. (2) Find 𝑆𝑁 =
∑𝑁

𝑛=1 𝑧𝑛 andgive a geometric interpretation of the result. (3)Note that 1−𝑧𝑁 = (1 − 𝑧)�1 + 𝑧 + 𝑧2 +⋯+ 𝑧𝑁−1�.
Relate this result and the roots 𝑧𝑛 to the conditions for destructive interference among
𝑁 slits.

solution

9.1 Part 1

𝑍𝑁 = 1

𝑍 = 1
1
𝑁

But 1 = 𝑒𝑖(2𝜋) and the above becomes

𝑍 = �𝑒𝑖(2𝜋)�
1
𝑁

𝑍𝑛 = (cos(2𝜋 + (2𝜋)𝑛) + 𝑖 sin(2𝜋 + (2𝜋)𝑛))
1
𝑁 𝑛 = 0, 1, 2,⋯ ,𝑁 − 1

Since cos and sin are periodic with period 2𝜋. Using De Moivre’s theorem the above
becomes

𝑍𝑛 = �cos�
2𝜋
𝑁
+
𝑛
𝑁
(2𝜋)� + 𝑖 sin�

2𝜋
𝑁
+
𝑛
𝑁
(2𝜋)��

= 𝑒
𝑖� 2𝜋𝑁 + 𝑛

𝑁 (2𝜋)�

= 𝑒
𝑖� 2𝜋(𝑛+1)𝑁 �

𝑛 = 0, 1, 2,⋯ ,𝑁 − 1

Which is the same as

𝑍𝑛 = 𝑒
𝑖� 2𝜋𝑛𝑁 �

𝑛 = 1, 2,⋯ ,𝑁

For an example, let 𝑁 = 3. Therefore we have 3 roots, given by 𝑛 = 1, 2, 3. They are

𝑍1 = 𝑒
𝑖� 2𝜋3 �

= 𝑒𝑖(1200)

𝑍2 = 𝑒
𝑖� 2𝜋(2)3 �

= 𝑒
𝑖� 4𝜋3 �

= 𝑒𝑖�240
0�

𝑍3 = 𝑒
𝑖� 2𝜋(3)3 �

= 𝑒𝑖(2𝜋) = 𝑒𝑖3600

The roots are 1200 degrees apart on the unit circle. First root has phase 00 (or 3600),
second at 1200 and the third at 2400. There are only 3 unique roots, since after that, they
repeat. Here is a diagram showing the roots for 𝑁 = 3 for illustration. The root with
phase 00 is the real root 1 since 𝑒𝑖00 = 1, the other two roots are complex valued, and
complex conjugate of each others.
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1200

1200

1200

z1

z2

z3

unit circle

<(z)

=(z)

Figure 2: Roots of 𝑧𝑁 for case of 𝑁 = 3

There are only 3 unique roots, since after moving around the unit circle once, the roots
repeat.

9.2 Part 2

𝑆𝑁 =
𝑁
�
𝑛=1

𝑧𝑛 (1)

It is assumed that 𝑧𝑛 above are all the roots of 𝑍𝑁 from part(a), even though the problem
did not say that. Hence all roots have same modulus. But differ by the phase as found
in part 1.

Let 𝑧 = 𝑥 + 𝑖𝑦 = 𝑒𝑖𝜃 where 𝑟 = �𝑥2 + 𝑦2 and 𝜃 = arctan�𝑦𝑥�. The above becomes

𝑆𝑁 = 𝑧1 + 𝑧2 +⋯+ 𝑧𝑁
= 𝑟𝑒𝑖𝜃1 + 𝑟𝑒𝑖𝜃2 +⋯+ 𝑟𝑒𝑖𝜃𝑁

= 𝑟�𝑒𝑖𝜃1 + 𝑒𝑖𝜃2 +⋯+ 𝑒𝑖𝜃𝑁�

But 𝑟 = 1, hence
𝑆𝑁 = 𝑒𝑖𝜃1 + 𝑒𝑖𝜃2 +⋯+ 𝑒𝑖𝜃𝑁

From part 1, we found that

𝜃𝑛 =
2𝜋𝑛
𝑁

𝑛 = 1, 2, 3,⋯ ,𝑁 (2)

Using (2) in (1), now the sum can be written as

𝑆𝑁 =
𝑁
�
𝑛=1

𝑒𝑖
2𝜋𝑛
𝑁 (3)

If 𝑁 = 1, then the sum is just 𝑒𝑖2𝜋 = 1. But if 𝑁 > 1 then to find the partial sum, let

𝑆𝑁 = 𝑒
𝑖 2𝜋𝑁 + 𝑒

𝑖� 4𝜋𝑁 �
+ 𝑒𝑖

6𝜋
𝑁 +⋯+ 𝑒𝑖

𝑁(2𝜋)
𝑁 (4)

𝑒𝑖
2𝜋
𝑁 𝑆𝑁 = 𝑒

𝑖 4𝜋𝑁 + 𝑒𝑖
6𝜋
𝑁 +⋯+ 𝑒𝑖

𝑁(2𝜋)+2𝜋
𝑁 (5)
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(4-5) gives

𝑆𝑁 − 𝑒
𝑖 2𝜋𝑁 𝑆𝑁 = 𝑒

𝑖 2𝜋𝑁 − 𝑒𝑖
𝑁(2𝜋)+2𝜋

𝑁

𝑆𝑁�1 − 𝑒
𝑖 2𝜋𝑁 � = 𝑒𝑖

2𝜋
𝑁 − 𝑒𝑖

𝑁(2𝜋)+2𝜋
𝑁

𝑆𝑁 =
𝑒𝑖

2𝜋
𝑁 − 𝑒𝑖

𝑁(2𝜋)+2𝜋
𝑁

1 − 𝑒𝑖
2𝜋
𝑁

But 𝑒𝑖
(𝑁+1)(2𝜋)

𝑁 = 𝑒𝑖
𝑁(2𝜋)+2𝜋

𝑁 = 𝑒𝑖2𝜋𝑒𝑖
2𝜋
𝑁 = 𝑒𝑖

2𝜋
𝑁 . The above becomes

𝑆𝑁 =
𝑒𝑖

2𝜋
𝑁 − 𝑒𝑖

2𝜋
𝑁

1 − 𝑒𝑖
2𝜋
𝑁

= 0

Therefore, the final result is

𝑆𝑁 =

⎧⎪⎪⎨
⎪⎪⎩
1 𝑁 = 1
0 𝑁 > 1

For geometric interpretation. Each root 𝑧𝑛 is a unit vector, where the angle between each

root is the same. it is 2𝜋
𝑁 . Looking at each root as a vector in the complex plane, these

vectors originate from the origin and end up at the unit circle, each with phase which is
2𝜋
𝑁 more than the vector just to the right of it as we go anticlockwise around the circle.
The first vector starts with phase 0.

The sum ∑𝑁
𝑛=1 𝑧𝑛 is therefore the a vector sum of these 𝑁 root. The easiest way to see

that this sum is zero geometrically, is to add these vectors, by putting each vector tail, at
the tip of the previous vector. To illustrate this, we will look at the case of 𝑁 = 3 where
the angle between each vector is 1200. This is because 2𝜋

3 = 1200. Using this method to
add the roots gives this

1200

1200

1200

z1

z2

z3
unit circle

<(z)

=(z)

z1

z2z3

<(z)

=(z)

1200

1200

Vector addition using tail to tip
method. It shows the vectors
add to zero

~z1 + ~z2 + ~z3 = ~0
Adding the roots as vectors

The sum is always zero

Figure 3: Geometric interpretation of adding the roots. Example for 𝑁 = 3

The above generalizes for any 𝑁. If the vector sum using the tail to tip method gives a
closed shape which in this case ends up back at the origin, then the vector sum is zero.

9.3 Part 3
Looking at the Electric field 𝐸 at an observation point at angle 𝜃we obtain the following
diagram
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E2
= e

ik(
d si

n θ
)

θd

d E3
=
e
ik
(2
d s

in
θ)

E at observation point is sum of all En from each slit.

Etotal = E1 + E2 + E3 + · · ·+ EN

= 1 + eikd sin θ + eik2d sin θ + · · ·+ eik(N−1)d sin θ

E1 =
1 (norm

alized
)

slit 1

slit 2

slit 3

slit N

EN
=
e
ik
((
N
−
1)
d
si
n
θ)

...

Figure 4: Contribution of 𝐸 from each slit

In the above, the 𝐸 contribution from slit 1was normalized to be 𝐸1 = 1. Therefore, the
contribution of 𝐸2 from the second slit will have a phase shift relative to the first slit.
This is given by 𝑑 sin𝜃 as seen in the diagram. For each addition slit, the phase will
increase by 𝑑 sin𝜃. Hence the 𝐸3 will have phase of 2𝑑 sin𝜃 and so on until the last slit
𝑁which will have phase shift of (𝑁 − 1)𝑑 sin𝜃.

Therefore we see that electric field at the observation point is the sum of all 𝐸𝑛 from
each slit, and given by

𝐸 = 𝐸1 + 𝐸2 +⋯+ 𝐸𝑁
= 1 + 𝑒𝑖𝑘𝑑 sin𝜃 + 𝑒𝑖𝑘(2𝑑 sin𝜃) + 𝑒𝑖𝑘(3𝑑 sin𝜃) +⋯+ 𝑒𝑖𝑘((𝑁−1)𝑑 sin𝜃) (1)

Now, from lecture notes, we are given the conditions for minima (i.e. destructive inter-
ference) as

𝑑 sin𝜃 =
𝑘
𝑁
𝜆 𝑘 = ±1, ±2,⋯ (2)

Substituting (2) into (1) gives

𝐸 = 1 + 𝑒
𝑖𝑘� 𝑘

𝑁𝜆�
+ 𝑒

𝑖𝑘(2� 𝑘
𝑁𝜆�)

+ 𝑒
𝑖𝑘(3� 𝑘

𝑁𝜆�)
+⋯+ 𝑒

𝑖𝑘((𝑁−1)� 𝑘
𝑁𝜆�)

Replacing the first 𝑘 in each term by 2𝜋
𝜆 since 𝑘 is wave number, then the above becomes

𝐸 = 1 + 𝑒
𝑖� 2𝜋𝜆 �� 𝑘

𝑁𝜆�
+ 𝑒

𝑖� 2𝜋𝜆 �(2� 𝑘
𝑁𝜆�)

+ 𝑒
𝑖� 2𝜋𝜆 �(3� 𝑘

𝑁𝜆�)
+⋯+ 𝑒

𝑖� 2𝜋𝜆 �((𝑁−1)� 𝑘
𝑁𝜆�)

= 1 + 𝑒𝑖
2𝜋𝑘
𝑁 + 𝑒

𝑖2� 2𝜋𝑘𝑁 �
+ 𝑒

𝑖3� 2𝜋𝑘𝑁 �
+⋯+ 𝑒

𝑖(𝑁−1)� 2𝜋𝑘𝑁 �

Let 𝜙 = 2𝜋
𝑁 . The above becomes

𝐸 = 1 + 𝑒𝑖𝑘𝜙 + 𝑒𝑖2𝑘𝜙 + 𝑒𝑖3𝑘𝜙 +⋯+ 𝑒𝑖𝑘(𝑁−1)𝜙 (3)

Comparing the above to the result obtain in part 1 we found that the sum of the roots
for 𝑍𝑛 = 1 to be

𝑆𝑁 = 𝑧0 + 𝑧1 +⋯+ 𝑧𝑁−1

= 𝑒𝑖𝜃0 + 𝑒𝑖𝜃1 +⋯+ 𝑒𝑖𝜃𝑁−1 (4)

Where

𝜃𝑛 =
2𝜋𝑛
𝑁

𝑛 = 0, 1, 2,⋯ ,𝑁 − 1 (5)
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Hence (4) becomes

𝑆𝑁 = 1 + 𝑒
𝑖 2𝜋𝑁 + 𝑒𝑖2

2𝜋
𝑁 +⋯+ 𝑒𝑖(𝑁−1) 2𝜋𝑁 (6)

Therefore, for each different 𝑘 Eq(3) is the same as (6). So (3) can be written as

𝐸 = 1 + 𝑧 + 𝑧2 +⋯+ 𝑧𝑁−1 (7)

Where now 𝑧 = 𝑒𝑖𝑘𝜙 with 𝜙 = 2𝜋
𝑁 . But we know that

�1 − 𝑧𝑁� = (1 − 𝑧)�1 + 𝑧 + 𝑧2 +⋯+ 𝑧𝑁−1� (8)

But �1 − 𝑧𝑁� = 0 since 1 is root of 𝑧𝑁. Hence the above becomes

0 = (1 − 𝑧)�1 + 𝑧 + 𝑧2 +⋯+ 𝑧𝑁−1�

Since 𝑧 ≠ 1 (unless 2𝜋
𝑁 𝑘 happened to be exact multiple of 2𝜋), then we conclude that

1 + 𝑧 + 𝑧2 +⋯+ 𝑧𝑁−1 must be zero. This implies that

𝐸 = 1 + 𝑒𝑖𝑘𝜙 + 𝑒𝑖2𝑘𝜙 + 𝑒𝑖3𝑘𝜙 +⋯+ 𝑒𝑖𝑘(𝑁−1)𝜙

= 0

Under the condition of destructive interference. This says the total Electric field from
the 𝑁 slits will vanish at the observation point when destructive interference condition
is applied. Which is what we are asked to show.
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