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1 Problem1

Given

f e dx = \n

Make a 3D integral and use the transformation from Cartesian to spherical coordinates
to evaluate £ x2e ™ dx.

Solution
3D Spherical coordinates (ISO/Physics convention)
Az

/Polar angle
St P(r,¢,0)

|

|

r |
| oY

x ¢ —m Azimuthal angle

Figure 1: Spherical coordinates

The relation between the Cartesian and spherical coordinates is

x = rsin 0 cos ¢
y=rsinOsing (1)
z=rcos0

The 3D integral in Cartesian coordinates is
X =00 =00 Z=00 3
f f f e‘xz‘yz‘zzdxdydz = (\/E )
x=-00 ¥ y=—00 ¥ z=—00

2

But x2 + 12 + z? = r? in spherical coordinates. The above now simplifies to

X =00 =00 Z=00 ) §
f f f e dxdydz = n2
x=—00 ¥ y=-00 ¥ z=-00

Changing integration from Cartesian to spherical and changing the limits accordingly.
the above becomes

00 T p=21 2 3
f f f e ] drd6dg = n2 2)
r=0 v =0 Y ¢=0
The Jacobian [ is

dr  do do

I
J= dr do d¢ (3)

dz dz dz

dr do  do




The relation between Cartesian and spherical in (1) shows that

E=sint9cosqb
dx 0
_:1/‘

7p = eos cos
dx rsin O si
— = —rsin Osin
I sin O sin ¢
d—Z:sinGSinqb
dy .
%—rcosﬂsmgb
dy 6

— =rsin 6 cos
i si ¢
dz_ 0
dr—cos

dz 00
0 rsin

é

dp

Substituting the above in (3) gives

sinf@cos¢p rcosOcos¢p -—rsinOsing
] =|[sinfOsin¢ rcosOsing rsinbcosq (3)
cos 0 —rsin 0 0

Expanding along the last row to find the determinant (since last row has most number
of zeros in it) gives the determinant as

rcoscos¢ —rsinOsing sinfcos¢ -rsinOsing
J =cosO +rsin 0
rcosOsing rsinOcos@ sin@sin¢ rsinOcos ¢

= Cos 9((r cos 0 cos (p)(r sin 6 cos qb) + (r sin 0 sin (p)(r cos O'sin qb)) + rsin 8((sin 0 cos (p)(r sin 0 cos qb
= cos 0(r? cos O'sin 0 cos? ¢ + 1% sin 0 cos O sin qb) + rsin G(r sin” 0 cos?  + rsin® O'sin’ )

= 12 sin O cos? (9(cos2 ¢ + sin? qb) + 12 sin® Q(COSZ ¢ + sin? qb)

= r2sin 0 cos? 6 + r? sin® 6

= 2 sin G(COS2 0 + sin® 6)

Therefore
J =1*sin0




Substituting the Jacobian in integral (2) gives

00 T Pp=21 2 3
f f f e (r2 sin Q)drdecp = 72
r=0Jo=0 ¢=0
=271 7 00 3
f do sin 640 f redr = m2
6=0 r=0

$=0
7T (o0] 3
21 f sin 8d6O e dr = 12
0

Since r is just an integration variable, changing it to x gives

0 1
f 2 dx = =i
0 4

Which is what we asked to show.



2 Problem 2

Follow the lecture example of deriving the gravitational field of a thin shell and calculate
the gravitational potential of such a shell over all space

Solution

2.1 Field outside the shell

12 = (Rsin)? + (r — Rcosf)?

Thin ring of width Rd#

_

Spherical shell

Figure 2: Problem setup

The gravitational field at point p as shown in the diagram will be determined. The point
p is at distance r from the center of the shell. Due to symmetry any radial direction can
be used as z axis.

A small ring is considered as shown. The field due to this at point p is due to vertical
contribution only, since horizontal contribution cancel out. This means field due to this
ring is given by
dm
dg = Gl_2 cosa (1)
Where dm is the mass of the ring. But dm = 0d A, where d A is the surface area of the ring
between 0 and 0 + d0.



2z axis

dA = (2w R sin 0) Rdf

Figure 3: Surface area of ring

Hence
dA = (2nR sin 6)Rd6

Where 21tR sin 0 is the circumference. Hence (1) becomes

dA
dg = GOZ—2 cos «
0(2mR sin B)Rd6O
=G 7 C

osa (2)

Where o is the surface mass density of the shell. But from the above diagram

r—Rcos0O
l

cosa =

Using this in (2) gives

0(2nR sin )RdO (r — R cos O
dg=G 7 ;

1
= G0(27IR2 sin 6)(r — Rcos 9)1—3616 (3)

| is now found from Pythagoras theorem (another option would have been to use the
cosine angle rule)

: afls I = (Rsin®)? + (r — Rcos0)?
A A P
- Q
S
< l
|
~
r
v ]
Rsin 6
) R
\ [

Figure 4: Finding |



12 = (r — Rcos 6)* + (R sin 6)°
=12 + R%cos2 0 — 2rR cos O + R2sin® 6
=72+ R%2-2rRcos 6

Therefore

I =Vr2+ R2—-2rRcos 6

Substituting this in (3) gives

(27ZR2 sin 6)(r —Rcos 0)
a0

(,,2 + R2 - 2rR cos 9)5

dg = Go

The above is the field at point p due to the small ring shown. To find the contribution
from all of the shell, we need to integrate the above, which gives

0=n (271R2 sin 6)(r — Rcos 0)
f Go d0

3

(r2 + R2 - 2rR cos 6)5

_ GG(ZT[RZ) f“ sin 6(r — R cos 0) :
0 (r2 +R? - 2rR cos 8)5

0=0

do (4)

Let u = cos 0, then du = —sin 6d6. When 6 = 0,u =1 and when 6 = 7t,u = —1. Hence
the integral (4) becomes

-1 sin O(r — Ru) du

g= Go(ZnRz) —
! (rz +R? - 21*Ru)g sin 0
= GO(ZTCRZ) 1 r-Ru sdu
- (r2 +R?2 - 21’Ru)E
1 r 1 Ru
= Ga(ZnRz) ~du — ~du
- (r2 +R? - 21/Ru)E - (1’2 +R2 - ZrRu)E
:Ga(ZnRZ) rfl ! ~du - R 1 - ~du
- <r2 +R? - 2rRu)E - (r2 +R? - 21’Ru)E
= Go(2nR?)(rl; - Ry) (5)
Where
1 1
I = f du (6)
2

! (1'2 + R2 - 2rRu)

I = f 1 u du 7)

- (1'2 + R2 - 2rRu)

N W

To evaluate I;. Let

v?2 =12 + R2 - 2rRu
Hence

%(7)2) = %(72 +R% - 2rRu)

2vdv = —2rRdu



Therefore

Whenu = -1,v = Vr2 + R?2 + 2rR and whenu = 1,0 = V2 + R%Z — 2rR . Hence I; becomes
Vr2+R2-21R 1 (—U

11 :f —3 —dU)
JERE R VAR
1 Vr2+R2-2rR 1

- — ~dv
2
'R JVi2irzir 0
Vr2+R2-2rR

-xl7)
"R\ 0 ) Srrean
|\ V2R

mz)@ﬁﬁﬁ
1 1 1

"R\V12 + R2 - 2rR \/r2+R2+2rR)
_ 1 (Vr2+R2+2rR —-Vr2 + R2-2rR
"R\ +r2 + R2 - 2rRVr2 + R2 + 2rR

Since r > R, the above can be written as

1 \/(r +R)* - \/(r ~R)
"Rl 4/R4 —2R212 4 14

1|r+R)-(r-R)

AT

_1( 2R
R\ R)
1 2

= ;—(72 ) (8)

Now that I; is found, similar calculation is made to evaluate I, from (7)

1 u

12 = du

3

o (r2 +R2 - 2rRu)E
Similar to I;, Let
v? =12 + R?2 = 2rRu

Hence
v? — 12— R2

TR



Hence I, becomes

—r2_R2
2 2
r+R —2rR ( R )
s dv
Vi2+R2+2rR R

Vr2+R2-2rR -2 _R2/_p
- f “ian Ur d”)
ViiReaoR  U3(=2rR)

\/r2+R2 2rR — 12 _R2
(2w ) B
—2rR Vi2+R2+2rR v
1 V2+R2-21R 42 _ ;2 _ R2
= | L
2r°R* J V2 RE R v?
1 f\/r2+R2—2r Vr2+R2-2rR 42 4 R2
—dv — f do
2°R2\JyzrEar 02 VERGZR P
1 Vr2+R2-2rR Vr2+R2-2rR 1
= el [ do- (7 +R2) [ —do 9)
2r°R*\ J viziRziaR Vi2+R2+2:R U
The first integral in above is, and since » > R
Vi2+R2-2rR
| do =2+ RZ—2rR — Vi2 + R2 + 2rR
Vr2+R2+2rR
\/ (r - R) \/ (r + R)?
(r=R)-(r+R)
= -2R (10)
The second integral in (9) is
VAZRZ2R q 1 r2+R2-2rR
e
f ZiREi2R O U rreeoR
As was done for I;, the above simplifies to
Vr2+R2-2rR 1 R
f —dv = (11)
VZREG R (r2 - RZ)
Substituting (10,11) back in (9) gives I,
1 2R
— IR — (42 2 —
SR
1 2+ R?
- — | 2R+2R- T
2r2R2 (7‘2 — Rz)
2R r* + R?
= 1+ —-
2r2R? (rz - Rz)
7 —(rz - RZ) + (1,2 + RZ)
~ 2r2R r2 — R2
2 [P+ R2+7r7+R?
~ 2r2R - R?
1 2R
= (12)

22 _R2
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Now that [; and I, are found in (8) and (12), then substituting these in (5) gives
§ = Go(2nR?)(rl; - RI,)

() a2

= Go(ZnRz

N—

= Go(2nR?) € _2 R rl—zrzzi2 ;2]
= Go(2nR?) %)
otz

g (as)

But o(4nR2) = M, which is the mass of the shell. Hence the above becomes

_GM
=5

This is the field strength at distance r from the center of the shell, where » > R. This
shows that the field strength is the same as if the total mass of the shell was concentrated
at a point in its center.

Now we need to obtain the potential energy of a particle of mass m located at distance
r from the center of the shell. Taking potential energy of m to be zero at r = oo, the
potential energy is the work needed to move m from oo to distance r from center of shell.

But work doneis U = — f ’ Fdr” where F is the wight of m which is mg. Hence

us= —f —-mgdr’

The minus sign inside the integral is because the weight acts down, which is in the
negative direction. The minus sign outside the integral is because work is done being
done to increase the U of the mass. The rule is that, if work increases the potential energy
of m, then it is negative. Since U is zero at infinity, then this work is negative. Therefore
the above becomes

Therefore the gravitational potential energy of mass m at distance r from center of shell
is

GMm
r

U =
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2.2 Field inside the shell

dA
<
VA same solid angle

F -

~No———

dA’
Figure 5: Problem setup

Let P be any arbitrary location inside the shell. Then the field at P due to contribution
from dA only is

odA
dg A= Gr—z
And the field at P due to contribution from dA” only is
dA’
dgu = G-

)’
The mass due to dA is pulling P upwards and the mass due to dA’ is pulling P down. If

we can show that these fields are of equal strength, then this shows the net gravitational
tield will be zero at P.

But i—f = () where Q) is the solid angle made by the area dA as shown above. By symme-
try, this is the same solid angle made by dA’. Therefore

dA  dA’

2 ()
Therefore the net gravitational field is zero at P. Since P is arbitrary point. Then any
point inside the shell will have zero net gravitational field.

Potential energy of a particle of mass m inside the shell is the same as the potential
energy at surface of the shell, this is because g = 0 inside the shell.

Using the same derivation of potential energy in part 1 above gives
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3 Problem 3

Follow the lecture example of deriving the gas pressure and calculate the number of gas
particles hitting the container per unit area per unit time. Give your answer in terms of
the net number density and the average speed of these particles.

Solution
AZ
AA T This length is choosen so on
N the particles within this
distance, will reach the
I v, A\t surface in unit time At
T
~—_]| “

Figure 6: Problem setup

In the above diagram v, is the average speed of particles in the z direction within At time
from hitting AA. The number of particles per unit volume with velocity ¥ and ¥ + d is
given by

dn = f(v)dv,dv,dv,

Where v above is the magnitude (speed) of ¥. During interval At, the number of particles
hitting the wall is dN which is therefore given by

dN = dn(AV) (1)

Where dV is the unit volume shown in the diagram. But
aV = (v,At)AA
Therefore (1) becomes

dN = dn(v,At)AA
= f(v)dvdo,do,(v,AH)AA

The above is the number of particles hitting AA of the wall in interval At.
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4 Problem 4

Derive the expressions of the orbital angular momentum operators L,, L,, L, in spherical
coordinates. Show that oL
, 14 ( , 0 ) L-L
V —

=2\ o) e

Solution

L=7xp

Where L is vector whose components are the orbital angular momentum operators
Ly Ly, L. and7is a vector whose components are the position operators and 7 is a vector
whose components are the momentum operators and X is the vector cross product. In
Cartesian coordinates, é,, éy, e, are the orthonormal basis. Hence

e & &
L=|x y =z
Px Py Pz

= éx(ypz - Zpy) - éy(xpz - pr) + éZ(xp}/ B ypx)

Hence the corresponding components of L= {L L LZ} are

X7 yl
Ly =yp. - Zpy
L, =zp, —xp, (1)
Lz = xpy — YPx

But in Quantum mechanics, the operators p,, p,, p, are

{0
py = —ihi I
[0
py = —lh &—y
[0
p, = —ih e

Hence (1) becomes

L, = y|-ih i —z|-ih i))

Jz dy
L, =z|-if 0% — x| -ih %))
L, = x|-if ;y -yl -if %))
Or
L, =-ih y&iz —z%)
L,=-in z% - x%) (1A)
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Hence in Cartesian coordinates

=~
I
&
=
—_
N
NS
=
|
=
¥l
N —

Now the above is converted to spherical coordinates. The relation between the Cartesian
and spherical coordinates is

x = rsin 0 cos ¢

y=rsin@sing (2)

z =rcosf
We also need expression for %, a%, %. But by chain rule
Jd _ddr Jdo I dp
ox  drdx  90dx ' J¢dx
d _ddr Jdo Jdo
dy " drdy " d6dy " Igdy
J _Oddr dd6 0dp
dz drdz d0dz JPdz

To evaluate the above, we need to do the reverse of (2), which is to relate r, 0, ¢ to x, y, z.

From the geometry we see that
r=q/x2+y?+22 (3)

cos O = S (4)

Ny
tan¢ = % (5)

Therefore, from (3)
2x

1
2\x2 +y? + 22
But x = rsin 0 cos ¢ and r = y/x? + y? + z2 . The above becomes

dr _ rsinfcos¢
dx r
= sin 0 cos ¢ (6)

dr = dx

And from (4)

d( 9) = d z
d6 " dx VX% 4+ y? + 22
1 2
—sin 0d0 = —= “(2x) 5 dx

X2 42 4 22)?
( )

But x2 + y2 + z2 = r> and z = r cos 6 and x = rsin 6 cos ¢. The above becomes

1 r cos 0(2r sin 6 cos
—sin0d0 = —= ( 3 CP) dx

T

—1? cos O sin 6 cos ¢ p
X

r3
—cos Bsin 6 cos
qbdx

r
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Hence
96 = Cosecoscpdx
r
do 1
ol ;cos@cosg{) (7)

And from (5)

o) =)

But y = rsin 0sin ¢ and x = rsin 0 cos ¢. Therefore

12 d = —r.si?GSirup i
cos? ¢ 12 sin” 6 cos? ¢
dp —rsinfsin¢ cos? ¢
dx — 12sin® 0 cos? ¢
—sin¢
= 8
rsin 6 ®)

d
The above completes all the terms needed to find ai =2 o9, 0%

X drdx | J0dx | dpdx Hence, using

(6,7,8) above gives

sing d
rsin@% (9)

J : J 1 J
S, = sin0cos @+ - cos 0 cos P~ —

Now the same thing is repeated to find a% in spherical coordinates. From (3)

2y

1
4 4
2 \x% + 2 + 22 Y

Buty = rsin0sin¢ and r = \/x2 + y? + z2. The above becomes

dr =

dr 3 rsin @ sin ¢

dy r
= sin Osin ¢ (10)
And from (4)

0 d z
— 050 = ————
do Ay \[x2 + 2 + 22

1 z|2

—-sin 0d0 = —= ( y) > dy

(x2 + Y% + zz)E
But x> + y? + z2 = ¥? and z = r cos 6 and y = rsin 6 sin ¢ . The above becomes

1 r cos O(2r sin O sin
—-sin 040 = ~5 ( 3 (P) dy

()
—12 cos O sin 6 sin ¢
3 d
"
—cos@sin@sinqbd
r
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0 si
cos smcpdy
— = - cos 0sin (11)
= i
v cos O'sin ¢

And from (5)

But x = rsin 0 cos ¢. Therefore

! dp = ! d
cos? ¢ = rsin 0 cos ¢ 4
do _ cos? ¢
dy ~ rsin6cos¢
1cos¢
=- 12
r sin O (12)

d
The above completes all the terms needed to find ai = 2D, 040, 0 W

S = aay T aedy T 90 dy.Hence,using
(10,11,12) above gives

J . . J 1 . d  lcos¢ J
a—y-sm@sm(par+rcos@sm¢36+rsmea¢ (13)
Now the same thing is repeated to find % in spherical coordinates. From (3)
1 2z
r = - —————dz
2\x% +y2 + 22
But z = rcos 0 and r = y/x? + y? + z? . The above becomes
dr _rcos@
dz  r
= cos O (14)
And from (4)
d 0 d z
— 080 = ——oo——
ao dz \[x2 + 2 + 22
1 1 -3
—sin0d0 = | ——— + z(——(x2 +y? + zz) 2(22)))012
Vx2 +y2 + 22 2
1 72

= - dz

21124 2 3
VX2 + 1Y% +z
Y (x2+y2+zz)2

2 0.2 0 .2)_ 2
:(x+y+z) Zdz

3
(x2 +y? + 22)2

But % + y? + z2 = r? and z = r cos 6. The above becomes

2 .2 2p
R

1-cos?0
= —dz
p
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Hence
g 1 — cos? 0
dz ~ rsin®
3 sin® 0
" rsin@
= —% sin 0 (15)

And from (5)
d

lang) = 2(Y)

Hence, since RHS does not depend on z then

do

-0

dz
The above completes all the terms needed to find % =
(14,15,16) above gives

(16)

ddr 9do  Jdp

Fr rnil et . Hence, using

a d 1 . a
5, = Cos O-- — —sin 9£ (17)

The above completes all derivations needed to find L,, L y, Lz in Spherical coordinates.
Egs (9,13,17). Here they are in one place.

_ cing J 1 0 Jd 1lsing d 9)
5y = sin cosqbé)r cos coscp a0 0.)(]5
d & lcos¢ d
G . v - . e - 1
E» Sln981n¢8r+rCOSQSlH¢86+r51n6(9¢ (13)
d p J 1 A d 17
9z VT r sin 20 (17)
Given Eq(1A) found earlier (repeated below)
L 9 d
L, =—ih U _ZB_y)
9 d
L, =-in 25~ xz) (1A)
9 d
L, =—ih xa_)—y - yx)
And given (9,13,17), then (1A) becomes
, Jd 1 d . R | _ Jd 1 lcos¢ %
L, = —ifi|y|cos 65 — —sin 986) —Z(sm@smqbg + ;cos@sm(p% S0 qu))

L - n6 8+1 0 J sing d 90" 1 98
y = —ifi|z| sin cosqbar ~ CoS coscpa(9 rsin 090 x| cos - sm 30

, ) o d 1 ] d lcos¢p d
L, = —ifi|x sm65m¢5+ ;cos@smqb% +;sm6 29

_ . Jd 1 Jd sing J
+zhysm6cos¢$ —cos@cosqi)&g rsin@%

But x =rsinOcos ¢,y = rsin0sin @, z = r cos 0. The above becomes

L = —itlrsinosi 6&1 93 olsin 0 si 9+1 B 8+1cosqb&
« = —ifi| 7 sin 6 sin ¢ cos sin 5g )~ TcosO[sin 81n(p8r - cos smcpae

ar r 7 sin 8 &gb
y = cos O] sin cosqf> Ep + . Ccos COS¢ P e 3 sin cos<1) Ccos Ep sm 8

J 1 J 1 d
L, = —ih(rsin@cos qb)(sin@sinqba + ;cos Qsin¢)(9—(9 + ;Z?ri;b%)

sing d
rsin @ d¢

J 1 d
+ ih(rsin@singb)(sin@cos (pg - cos@cosqi)o.)(9
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Simplifying gives

L —_']171 1"' 6 ei_ 26 i —|r 6 6 i+ 26, i+ QCOS(Pi
v = —1 sin 0 sin ¢ cos Ep sin” 0 sin ¢ a cos 0sin 0 sin ¢ P cos” Osin ¢ 30 cos Sin0 30
sing d )

sin0 do

d
L,= —zh(rcos 0 sin 0 cos qb— + cos? 6 cos qb— —cos 0
. J 1 d
+ 1h(rs1n6cosqbcos 65 — Jrsin 0 cos qb%)

L, = —il|rsin® 0 ingZ +sin0 Osing-2 + cos? -2
z = s cos¢s %r sin 6 cos ¢ cos O's qb(;@ cos (P‘M)
+ ifi| r sin® O sin i+sin9 in ¢ cos 0 co 2 in? 2

s s qi)cosqbar sin ¢ qu&@ s qi)a(p
Or

cosp J°
sin@ d¢,

d d dJ
L, = —ifi|rsin O sin ¢ cos 6= — sin? Qsmqba— —rcos@sm@smqb; — cos? Qqub&6 —cos 6

ar
sin¢g d
sin 6 &(p

J ., d
—rsin 0 cos ¢ cos O r+sm Qcoscpa—é

L, =—ih 0sin O I 1 cos?0 i 6
y = —ifi|r cos O'sin cosqbar Ccos coscpa(9 cos 3

L, = —ifi| - sin® O cos ¢ sin cpi + cos? gbi — rsin? O'sin ¢ cos qbi + sin? qZ)i
: ar o) ar o)

Or

« = —ihi|—sin smqi)a_)(9 Ccos smqi)a_)(9 cos Sin0 99
d d
y = —ifi cos? 0 cos p—— — cos Qsm¢

L 30 sm@ 70 + sin QCOS¢89)

d d
L, = —ifi{ sin O cos ¢ cos O sin qf)ﬁ + cos? qb% —sin @ sin ¢ cos 0 cos qb% + sin? qb%)

Or
. Jd cosB d
L, =—ih (sm 0 + cos? 9)smqb&6 sin@cosqjﬂ)
. d sin¢g d
L, =-in (cos 0 + sin’ 6>COS¢__COSGSII’198¢)
— _; 2,9 20 9
L, = —ifi| cos gb&¢+sm ¢&¢)
Or
L= —itl—si i_cos@ d
v = T —sing g sinGCOS¢8¢)
. d cos@ . J
L, =-ih coscpae s " <pa¢) (18)
L, = —ih i)
I¢
The above are L, L,, L, in spherical coordinates. Therefore
L-L=I?
= L5+ L5+ 12
But
Jd cosO d Jd cosO
2 = 12— ain -2 — —~ N =sind—
L= ( sin¢5g ﬂn@cowﬁ&ﬁx SING55 ~ Sing ©° ¢8¢D
_ 2 sin2 &—2+ i d (cosO d +c056 Jd o . +C0526 5 8_2
= TSI 0556 S0 55 Gine 96 ) T sing “ 35" %30 T snZe < ?525
92 sm¢)cosqb d cos0 Jd  cos?0
— _3:2[ in2 7 2
= —h*|sin (P&z@ 2 0 9(]5 Sm@coscpcos¢)0.)(9 i Qcos gb&qu)
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And
d cosO . d d cosO d
Lﬁ = —1? (cos qb— ~sno smqb%)(cos cf)% ~no smcp%))
_ i cos O d cos O cos?6 5 92
= —h*| cos (P&ZG cos qb&@(sm@ n¢a¢) smesm(p(?(z)(cosqb&@) “in Qsm ¢32¢
92 cos6 J\ cos6 cos? 6 92
— 2 . . s 7 COs"Y .2 O
cos (P&z@ coscpsm(pge(smg 8¢) pm smq,‘)( sm(P&@) + 20 sin (p&qu)
02 , 1 2 cosf  , 9 cos’O ,  J?
= —12| cos? qbo"TQ +cos¢sm¢(sm26%) + o S qu_)—Q i sin qb%)
Y B cosgsing J cos@ ., J cos?0 &_2
= —h“|cos ¢826+ o0 &(p+—sin98m ¢89+sin288m qb(92¢
And 2 W
2= 5
Hence
9%  singcos¢ 9 L cosO Jd  cos?0
L2 :_hZ .2 o 2.4 7
(sm (P&ZG sec? 6 &cp sin 6 COS(PCOS(P&G T sinto < qbc?qu)
J cos@ J cosZQ 92
—12[cos? cos ¢ sin¢ o L 07
(COS qbé’z@ sec? 0 8(]5 sin0 o P90 T sinZo (P&z(p
02
— K2 —
()
Or
92 9% (cos? O cos?6 5
= —hz(&ZQ(sm ¢ + cos qi)) 82q5(s1n cos? ¢ + —y sin® ¢ +1))
el _sin¢g cos ¢ N cos ¢ sin ¢
8qb sec? 0 sec? 0
_hzi cos 0 L o8O . o
30 sinecosqbcoscp s s [0
Which simplifies to
9%  cos?6 9? . 9 9% cosBO 9
[? = -1 329 + sinzthqu(coszqi)+sm gb) + % sm@&Q(COS ¢ + sin? qb))
o 9% cos?0 9? %> cosO 9
=M\t 5t 5 T g 90
020  sin 63qi) 8¢ sin@ d0
_ 2 8_2+ . cos? 0\ 92 +cos@i
B 920 sin?6 ) d2p = sin0 JO
_ 2 92 . sin® 0 + cos? 0 92 +cos€i
B 920 sin? O J2p  sin6 IO
92 1 92 d
= -2 + + Cf)se—
920 sin>6d%*p  sin6 IO
Hence
L-L 1 92 1 92 +cos@i
m2r2 22\ 826 sm2682gb sin6 JO
192 1 1 9* 1cosB d (20)
12920 12s5in?69%¢p 12sin6 JO
Therefore

1a( a) LL 1(2ri+r8—2)+1 92 1 1 92 1cos€i
12 Jr or T o2) T 2920 T 2 gin 982¢ r2sin 6 J0
ror Jr? r2 720  sin0dO) r?sin®6 %P
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But the term in the RHS above is indeed the Laplacian in spherical coordinates. Therefore
in spherical coordinates

r2 or ar h2r2

v2 ol (9(r23) LL

Which is what we are asked to show.
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5 Problem 5
Consider (x, t) for 0 < x < L. Given 1(0,¢) = ¢(L,t) = 0 and
A sin(z%x) 0<x< %
P(x,0) =
0 ESxSL

Find ¢ (x, t) that satisfies the following partial differential equation

d 7% 92
i _IP = ___I?/j (1)
ot 2u ot?
Where A, L, #, i are positive constants.
Solution

Using separation of variables, assuming the solution is

Plx, t) = X()T (1)

Where X(x) is function that depends on space only and T(t) is function that depends on
t only. Substituting the above into the PDE (1) gives

ﬁz
ihXT = —2—X”T

u
Diving both sides by XT # 0 gives
T’ hZ X
th— = ———
T 2u X
2uiT X"
hT X

Since both sides are equal, and left side depends on t only and right side depends on
x only, then both must be equal to a constant. Let this constant be —A. This gives the
following two ODE’s to solve

2T

T @
XY =-A (3)

Starting with the spatial ODE in order to determine the eigenvalues A
X"(x)+AX(x) =0 (4)
With the boundary conditions transferred from the PDE as

X(0)
X(L)

0
0

There are three cases to consider. A <0,A =0,A > 0.
case A <0

Let A = —u? for some real p. Then the ODE (4) becomes X" (x) — u?X(x) = 0. The roots
of the characteristic equation are +u. Hence the solution is

X(x) = Aet* + Be H*
=A cosh(px) +B sinh(yx)

At x = 0, the above becomes
0=A
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Hence the solution now reduces to
X(x)=B sinh(yx)
At x = L, this becomes
0 = Bsinh(uL)

But uL # 0 since L > 0 and u # 0. Therefore the only option is that B = 0. But this gives
trivial solution X(x) = 0. Therefore A < 0 is not possible.

case A =0

The ODE (4) now becomes
X"(x)=0

This has solution X = Ax + B. At x = 0 this gives 0 = B. Therefore the solution now
reduces to X(x) = Ax. Atx = L this gives 0 = AL, which implies A = 0. But this gives
trivial solution X(x) = 0. Therefore A = 0 is not possible.

case A >0

In this case, the roots of the characteristic equation of ODE (4) are +iy/A . Hence the
solution can written as (by using Euler relation to convert complex exponentials to
trigonometric functions) as

X(x)=A cos(\/x x) + B sin(\/Xx)

At x = 0 the above gives
0=A

Hence the solution now reduces to
X(x)=B sin(\ﬁx)

Atx=1L

0=B sin(\/z L)

For non-trivial solution this requires that sin(\/x L) =0or \/K L=nnforn=1,2,---.
Therefore the eigenvalues are

2
nrt
M=) w12

This completes the solution to the spatial part. The eigenfunctions are therefore
X, (x) = B, sin(nfnx) n=1,2,-- (5)

Now the time domain part ODE is solved. This is ODE (2) above. Now that the eigen-
values are known, ODE (2) becomes

hoT,
1, =0l
n—z_‘ui n
- AT, =0
n Z[Ji ntn

-Anh
This is linear first order ODE. The integrating factoris I = e 2 . The above now becomes

d —)L,,'h
E(Tne 23 t) =0




23

Integrating gives

Ayl
T,e? =C,
Ah
T,(t) =C,e?
_iAufty
=C,e 2 *

2
But A, are the eigenvalues, given by A, = (%n) for n = 1,2,---. Rewriting the above
gives

i 22

22!
T,(t)=Cpe ° H (6)
But since the solution was assumed to be {(x, t) = X(x)T(t), then

Y (x, 1) = X, () T,,(2)

But the general solution is a linear combination of all the solutions ¢,,(x, t). Therefore

Z a(x, 1)
Z n(0)T(t)

And using (5,6) in the above, gives

i hnln?

s t
Y(x, t) = Z B, sin(nfnx)cn 2 2
n=1

But the two constants B,,C,, can be merged into one, say D,,. Therefore the above becomes

_i in?n?

t

— nr
(x,t) = Y. D, sin[ —x|e ? #? 7
P(x ;::1 sm( T x)e (7)

The above is the general solution. What is left is to determine D,,. This is done from
initial conditions. At t = 0 the above becomes

A sm(an)

g = 2 D sin(n—nx)
= B T

o
IA
=
IA
N |~
8

0

N |
IA
=
IA
h

=
I
—_

The above says that D,, are the Fourier sine series coefficients of the initial conditions.

To determine D,,, orthogonality of eigenfunctions sin(%x) is used.

Multiplying both sides of the above by sin(%x) and integration both sides from x = 0
tox =L gives

27x mmn L
L Asm(L )sm(Lx)dx OSxSZ L - T
f :f sin| —x ZD sin| —ux |dx
0 L 0 L L
0 ESXSL
L
2

2= 51, [ ()i

Casem =1
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The sum above now collapses to one term only when m = n =1, since the sin functions
are orthogonal to each others, which gives

L

2 L
fz Asin(ﬂ) sin(zx)dx =D, f sinz(zx)dx
0 L L 0 L
L
2 2 L
j(;z Asin(%x) sin(%x)dx = DlE

2n

X

L
2 (2 2
D1 = E \[(;2 ASin(—Zx) sin(%x)dx

L
The integral L 2A sin(T) sin(%x)dx, is evaluated using the relation

1
sin AsinB = E(cos(A — B) — cos(A + B))

the integral becomes

2
A sin(%x) sin(

L

foz

Hence Eq. (8) becomes

Casem =2

Tt

L

X

N N> N

SIES

N> N> N>

51
2

=A —
)dx foz

7T 2
LA(4
=EE(§)
_L2A
T3
Z(LZA)
Dy =—-|——
L\n 3
_4A
T 3n
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The sum above now collapses to one term only, since the sin functions are orthogonal
to each others, so only for n = 2 the sum gives a result. Hence

L

2 2 L 2

2 Asinz(ﬂ)dx = sz sinz(—nx)dx
0 L 0 L

L L
A—ZDZ—
4 2
D —1A
279

casem >3

The sum now collapses to case when m = n, since the sin functions are orthogonal to

each others. Hence
2
Asin( Zx) sm(—x)dx =D, f sin ( )

J

N~

h

= D3
)

Therefore (now calling m = n since a dummy index

L
2 2 2
D, = I foz Asin(—zx) sin(nfnx)dx 9)

L
The integral I = l; A sm( 2 3 ) sm( 0 )dx is evaluated using the relation

1
sin AsinB = E(cos(A — B) — cos(A + B))
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2mx nmn

The integral I becomes, where here A = < B = X
I A fé 2MX  NTX 2mx N nmx P
= — _— ] - _— _— X
2 J, cos T T cos T 7

L

= ? j: cos(—(2 —Ln)nx)dx - foz cos(—(2 +Ln)nx)dx)

L

sin( (2—”)7795) 2 l [ (2+n)mx ﬂ 2
L . L.
= —||—5—=—=| —|[sin

N | s

2-n)n (2+n)7

L L

0 0

A L [ 2-n)nx % L 2+ n)nx %
2 (2—n)n[sm( L )l _(2+n)n[sm( L )l

0 0

L L
2-n)ns 2+
Lsin(( Z)HZ) Lsin((Jrz)nz)

Q-n)mn +nm

_(@-mn3 _[@mng
LA Sin I Sin I

ol 2-n)  (2+n)

N~

(@ (@)
LA (2 + n)sin T —(2-n)sin T

2n 2-n)(2+n)

LA ' (2—n)n% ‘ (2+Tl)71§
= O -M2+ n)[(Z +n) sm[—L ] -(2-n) sm[—L

LA ' 271% - nng ' 271% + nng
= W (2+mn) sm[f) -2-n) sm{f))
Hence
I= 271(21? nz) ((2 + n) sin(n - gn) -2-n) sin(n + gn))
= ﬁiﬂ)(z sin(n - gn) + nsin(n - gn) - ZSin(n + gn) +n sin(n + gn))
= ﬁixnz)(Z[Sm(n - gn) - sin(n + gn)] + n[sin(n - gn) + sin(n + gn)])
= ﬁi‘nz)(—Z[Sm(n + gn) - sin(n - gn)] + n[sin(n + gn) + sin(n - gn)])

Using sin(x + y) - sin(x - y) = 2cosxsiny and sin(x + y) + sin(x - y) = 2sinxcosy on
the above gives (where x = 7,y = grc in this case)

LA . n . n
I= —(—2[2 COS Tt Sin —7'(] + n|2sin 7t cos —n])
27'((4 — nz) 2 2

= —271(511 nz) (—2[—2 sin gn])
= n(iL—iz)(sm En)
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Hence (9) becomes

2

"L

2LA n
nd)
4A n
= m sin o7
—4A o (n
= m sm(zn)
Now all coefficients of the Fourier sine series are found. Therefore the solution (7)

becomes

i in?n?

Y060 = Y1) + Yalo ) + 3, D, sin( D)o 7
n=3

T —é@t 27 —é%t | nm nm —ifngzt
=D, sin(—x)e W+ Dysinl —x e “H + Z —sin(—) sin(—x)e 2
L L o n(nz - 4) 2 L
4A —ihlt 1 _£h4n 00 —4A _iﬁnznz
= —sm(zx)e 2w 4 — Asin[ =—x|e % #* + Z sm(n—n) sin(—x)e 2 w?
3n 2 i\ n(n2 - 4) 2
Therefore the final solution is
L. 2 . 2 . nmn i Hinlml
4A  (mo\ e 1 (om \ AET 44 & osin(T) g i
’t:_. s Z‘HL2+_A. = ZluLZ o 2 (_) ZPLZ
Y(x, 1) ™ sm(Lx)e > sm( T x)e — ,;_o, (nz _4) sin| —=x e
Whenn =4,6,8, - then sin(%n) = (. Therefore only odd terms survive
) . 2 . nm i tin2m2
4A My A (2w | -AMEr 44 & sin(- _ifnn?,
Y(x, t) = — sin(zx)e 2u® 4 sin(—nx)e S C— Z ( 2 ) sin(n—nx)e 2 2
371 L 2 L T =357, (le - 4) L
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