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1 Problem1

Given

f e dx = \n

Make a 3D integral and use the transformation from Cartesian to spherical coordinates
to evaluate fo x2e ™ dx.

Solution
3D Spherical coordinates (ISO/Physics convention)
Az

/Polar angle
s P(r,¢,0)

0 |

|

r |
| oY

x ¢ Azimuthal angle

Figure 1: Spherical coordinates

The relation between the Cartesian and spherical coordinates is

x = rsin 0 cos ¢
y=rsinOsing (1)
z=rcos0

The 3D integral in Cartesian coordinates is
X=00 =00 Z =00 3
[ [ [ e Pavyd= (V)
x=—00 ¥ y=—00 ¥ z=-00

2

But x? + y? + z? = r? in spherical coordinates. The above now simplifies to

X =00 =00 Z=00 > §
f f f e dxdydz = n2
xX=—00 Y y=—00 ¥ z=—00



Changing integration from Cartesian to spherical and changing the limits accordingly.

00 T p=21 5 3
f f f e’ Jdrd0d¢ = m2
=0 =0 v ¢=0

the above becomes

The Jacobian | is
%
dr

dy
I=1a

%
dr

dx
do

dy
do

dz
do

dx
de
dy
dep
E
d¢g

The relation between Cartesian and spherical in (1) shows that

d_x
dr
d_x
do
dx
d¢
dy
dr
dy
do
ay
d¢
%
dr
%
do
dz —0
dp

Substituting the above in (3) gives

sinfcos¢p rcoscos¢p —rsinbOsing

= cos 6

= -rsin@

= sin 0 cos ¢
=rcos 0 cos ¢
= —rsinOsin¢
=sinOsin¢
= rcos 0sin¢

= rsin 6 cos ¢

J =|[sinOsin¢ rcosOsing

cos 6 —rsin 0

rsin 0 cos ¢

0

(2)

(3)

(3)



Expanding along the last row to find the determinant (since last row has most number
of zeros in it) gives the determinant as

rcoscos¢ —rsinOsing sinfcos¢ -rsinOsing
J=cos0O +rsin 6
rcosOsing rsin0Ocos sinfsing rsindcos®

= Cos 9((r cos 0 cos qb)(r sin 0 cos qi)) + (r sin 0 sin qi))(r cos 0'sin qb)) + rsin 6((sin 0 cos qi))(r sin 0 cos qb)
= cos 9(r2 cos 0sin O cos? ¢ + 12 sin O cos O sin? (i)) + rsin 0(r sin® 0 cos? ¢ + rsin® 6 sin? (p)

= 12 sin O cos? (9(cos2 ¢ + sin? qb) + 12 sin® (9(cos2 ¢ + sin? (p)

= 12sin 0 cos? 0 + r?sin’ O

= r?sin Q(COS2 0 + sin? 9)

Therefore

J =1*sin0@

Substituting the Jacobian in integral (2) gives

00 T Pp=21 ) 3
f f f e (rz sin G)drdedqb = n2
=0+ 0=0 v ¢=0

=21 00 3
f do sin 646 f re"dr = n2
$=0 6=0 r=0

7T (o] 3

2nf sin Gdﬁf e dr = n2
6=0 r=0

00 3

~2n[cos 0]] f e dr = n2
r=0

00 3

—27[(-1) - 1]f e dr = w2

r=0

00 3
—27'([—2]f redr = n2
r=0

Since r is just an integration variable, changing it to x gives

o0 1
f 2 dx = —\n
0 4

Which is what we asked to show.



2 Problem 2

Follow the lecture example of deriving the gravitational field of a thin shell and calculate
the gravitational potential of such a shell over all space

Solution

2.1 Field outside the shell

A I = (Rsinf)? + (r — Rcos0)?

Thin ring of width Rd#

Spherical shell

Figure 2: Problem setup

The gravitational field at point p as shown in the diagram will be determined. The point
p is at distance r from the center of the shell. Due to symmetry any radial direction can
be used as z axis.

A small ring is considered as shown. The field due to this at point p is due to vertical
contribution only, since horizontal contribution cancel out. This means field due to this
ring is given by

dm

dg = Gl_2 cosa (1)



Where dm is the mass of the ring. But dm = 0d A, where dA is the surface area of the ring
between 0 and 0 + d0.

2z axis

dA = (2rRsin 0) Rd6

Figure 3: Surface area of ring

Hence
dA = (2nR sin )Rd6

Where 27tR sin 6 is the circumference. Hence (1) becomes

odA
dg = Gl_2 cos
o0(2ntR sin 6)Rd6O
=G B

cos« (2)

Where o is the surface mass density of the shell. But from the above diagram

r—Rcos B
)

cosa =

Using this in (2) gives

dg=G

o(2mR sin G)Rdé(r - Rcos 9)
2 l

1
= Go(ZnR2 sin 9)(7’ — Rcos 9)l—3d9 (3)

[ is now found from Pythagoras theorem (another option would have been to use the
cosine angle rule)



A > = (Rsinf)? + (r — Rcosf)?

~

r — Rcos0

Figure 4: Finding |

I? = (r-Rcos 9)2 + (R sin 6)2
=12 + R%cos2 0 — 2rR cos O + R2sin% 6
=72+ R%2-2rRcos 6

Therefore

I = Vr2 + R2 - 2rR cos O

Substituting this in (3) gives

(2nR2 sin 6)(r — Rcos 6)

dg = Go

3

(r2 + R? — 2rR cos 9)5

The above is the field at point p due to the small ring shown. To find the contribution
from all of the shell, we need to integrate the above, which gives

O=n (an2 sin 6)(r — Rcos 0)
g = GU 3 d@
0=0 (r2 + R2 - 2rR cos 6)2

_ GG(ZT(RZ) 7 sin O(r — R cos 0)

5d0 (4)

0 (,,2 + R2 — 2R cos 6)5



Let u = cos 0, then du = —sin 6d6. When 6 = 0,u =1 and when 6 = 7t, u = —1. Hence the

integral (4) becomes

-1 sin O(r — Ru) du

g= GG(ZTCRZ) —
(rz + R? - 21’Ru)g sin ¢
- GG(ZTCRZ) 1 r—Ru ~du
- (72 + R2 - 21’Ru)E
1 r 1 Ru
= Ga(2nR2) f sdu — du
= (rz + R? - 21’Ru>E - (rz + R? - 2rRu)E
1 1 1
= Go(2nR?) rf ~du - R ~du
- (,,2 +R2 - 21’Ru)E - (rz +R? - 21'Ru)E

= Go(27R?)(rl; - RIp)

Where

1 1
Ilzf 3d1/l

(2 + R2 - 2rRu)?

1
Izzf “ 3d1/l

(2 + R2 - 2rRu)?

To evaluate I;. Let

v?> = + R?> - 2rRu

Hence
d d
%(Uz) = E(rz +R? - 2rRu)
2vdv = —2rRdu
Therefore
20
du = d
"= R

(5)

(6)

(7)



Whenu = -1,v = V12 + R2 + 2rR and when u =1,v = Vr2 + RZ — 2rR . Hence I; becomes

Vr2+R2-2rR 1 /—v
b= (=)

3
Vr2+R24+2rR U
1 Vr2+R2-2rR |
= —— —dv
2
'R JVi2ireior v
Vr2+R2-2rR

)
rR\ v r2+R%2+2rR
1\ VERE2R

o
"R\Y) 2wk

1 1 1 )
"RA\Vi2 + R2-2rR V72 + R2 + 2rR

1 (V2 +R2+2rR - Vr2 + R2 - 2rR
"R\ V12 + R2 - 2rRVr2 + R2 + 2R

Since r > R, the above can be written as

1 \/(r+R)2—\/(r—R)2
"Rl R4 -2R22 + 74

1{(r+R)-(r-R)

i
1 2R J
~rR (2 - R?)
12

Now that I; is found, similar calculation is made to evaluate I, from (7)

1
Izzf " du

- (r2 + R2 - 2rRu)

N W

Similar to I, Let

v?> =12 + R> - 2rRu
Hence
0 — 12 _ R2

u=
-2rR

(8)



Hence I, becomes

e ()

Vr2+R2-2/R

O [ 2§R (=)

ViZ+R2+2rR 'R

Vr2+R2-2rR —2_R2/,_p

= J e PR (R d”)
VizirzaRr  0(=2rR)

)( ) Vr2+R2 2rR 1’2 _ R2

( —2rR Vi2+R2+2rR v3
1 er2+R2—27 02— 12 R2d
= —dv

2r2R? J 2 Rev 2R v?
1 [ f\/r2+R2—2rR 2 f\/r2+R2—2rR 2 1 R2
- dv

vdv

= —— —dv
2r2R?\ J yi2irevaR 02 VERGZR P

1 Vr2+R2-2rR Vr2+R2-2rR 1
= YTy f do — (1’2 + R2 f —sz
2R\ )k VIR ©

The first integral in above is, and since r > R

f\/rz+R2—27R
Vr2+R2+2rR

dv=Vr2 + R2—2rR — V12 + R2 + /R

= \/(r R - \/(r +R)?

=(r-R)-(r+R)
= 2R

The second integral in (9) is

Vr2+R2+2rR 02

0

f\/rZ_,_RZ_zr 1 [1 ] Vr2+R2-2rR
Vr2+R242rR

As was done for I;, the above simplifies to

fm 1 R
—dv =~
VZREG R (r2 - RZ)

10

(9)

(11)



Substituting (10,11) back in (9) gives I,

11

1 2R

— _ _ (2 2\l _ _
Ip = 55| 2R (+R )( R RZ)D

S PP L
~ 2r2R? (r2 _ RZ)
_ 2R 2 +R?
~ 2r2R? (r2 _ RZ)

2 (~(?-R?)+(+R?)
~ 212R r2 — R2
2 (- +R2+7r7+R?
- 2R r2 — R2

1 2R

T 22 _R2 %)

Now that I; and I, are found in (8) and (12), then substituting these in (5) gives

§ = Go(2nR?)(rI; - RL)

1 2
)
2

= GG(ZT(RZ

SN—

]—R<

1 2R?

1 2R
7272 _R2

= GG(ZHRZ)

= Go(2nR?) %)
ele)ate-)
sty (21

(rZ—RZ) 22 _R2

|

But a(4nR2) = M, which is the mass of the shell. Hence the above becomes

_GM
=

This is the field strength at distance r from the center of the shell, where r > R. This shows
that the field strength is the same as if the total mass of the shell was concentrated at a

point in its center.
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Now we need to obtain the potential energy of a particle of mass m located at distance r
from the center of the shell. Taking potential energy of m to be zero at r = oo, the potential
energy is the work needed to move m from oo to distance r from center of shell. But work

doneis U = - f " Fdr’ where F is the wight of m which is mg. Hence

s
us= —f -mgdr’

The minus sign inside the integral is because the weight acts down, which is in the neg-
ative direction. The minus sign outside the integral is because work is done being done
to increase the U of the mass. The rule is that, if work increases the potential energy of
m, then it is negative. Since U is zero at infinity, then this work is negative. Therefore the
above becomes

Therefore the gravitational potential energy of mass m at distance r from center of shell is

GMm
r

U=
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2.2 Field inside the shell

dA
—_——
VA same solid angle

r -

dA’

Figure 5: Problem setup

Let P be any arbitrary location inside the shell. Then the field at P due to contribution
from dA only is

odA
dg A= GT‘_Z
And the field at P due to contribution from dA” only is
odA’
dgA’ =G N2
(')

The mass due to dA is pulling P upwards and the mass due to dA’ is pulling P down. If
we can show that these fields are of equal strength, then this shows the net gravitational
tield will be zero at P.

But dr—? = Q) where Q) is the solid angle made by the area dA as shown above. By symmetry,
this is the same solid angle made by dA’. Therefore

dA _ dA’

2 ()

Therefore the net gravitational field is zero at P. Since P is arbitrary point. Then any point
inside the shell will have zero net gravitational field.

Potential energy of a particle of mass m inside the shell is the same as the potential energy
at surface of the shell, this is because g = 0 inside the shell.




Using the same derivation of potential energy in part 1 above gives

U= mgdr

14
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3 Problem 3

Follow the lecture example of deriving the gas pressure and calculate the number of gas
particles hitting the container per unit area per unit time. Give your answer in terms of
the net number density and the average speed of these particles.

Solution

AZ
AA T This length is choosen so on
N the particles within this
distance, will reach the
I v, A\t surface in unit time At
N
~_ |

Figure 6: Problem setup

In the above diagram v, is the average speed of particles in the z direction within At time
from hitting AA. The number of particles per unit volume with velocity 7 and 7 + dd is
given by

dn = f(v)dv,dv,dv,

Where v above is the magnitude (speed) of 7. During interval At, the number of particles
hitting the wall is N which is therefore given by

AN = dn(AV) (1)

Where dV is the unit volume shown in the diagram. But
aVv = (v,At)AA
Therefore (1) becomes

dN = dn(v,At)AA
= f(v)dvdo,do,(v,AH)AA

The above is the number of particles hitting AA of the wall in interval At.
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4 Problem 4

Derive the expressions of the orbital angular momentum operators Ly, L,, L, in spherical
coordinates. Show that

, 19(,9\ L-L
= ——|rf— | - ——
r2or\ dr| H%r?

Solution

S
L=7xp
R
Where L is vector whose components are the orbital angular momentum operatorsL,, L, L,
and 7 is a vector whose components are the position operators and p is a vector whose

components are the momentum operators and X is the vector cross product. In Cartesian

coordinates, é,, éy, e, are the orthonormal basis. Hence

e & &
L=|x vy z
Px P y Pz

= e(yp: —2py) =&y (p: — 20) + &0y~ ypy)

Hence the corresponding components of L= {Lx, L, LZ} are

Ly =yp. —zpy
Ly = ZPx — XP; (1)
L,= XPy — YPx
But in Quantum mechanics, the operators p,, p,, p, are
9
py = —ih >
9
py = —ih &—y
2
p, = —ih >
Hence (1) becomes
N 9
L, =y|-ih 52 —ih &—y))
0 2
L, =z|-ih )] —if 0.)—2))
d d
[P I A | D P
, = x| —ih E» y|-ih o"x))
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Or
L,=-ih y% - %)
L, =-in z(% - x%) (1A)
L, =-ih xo% - y%)

Hence in Cartesian coordinates
—lh( % %)
-—iﬁ(xa% - y%)d

Now the above is converted to spherical coordinates. The relation between the Cartesian
and spherical coordinates is

=l
Il

x = rsin 0 cos ¢

y=rsinOsing (2)
z=rcosHO

We al d ion for =, < 2 But by chain rul

e also need expression for 3 3y 3 ut by chain rule

J d dr d d@ d d¢
ox  drdx  90dx a"qb dx
J d dr d d@ d d¢
&y Ir dy 20 dy 8¢ dy
J d dr d d@ d d¢
9z ordz ' 90dz 8(1) dz

To evaluate the above, we need to do the reverse of (2), which is to relate r, 0, ¢ to x, y, z.

From the geometry we see that
r= X2+ Y2+ 22 (3)

080 = —t (4)

VX2 + 2+ 22

tang = % (5)
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Therefore, from (3)
1 2x

2 \x2 +y2 + 22
But x = rsin 0 cos ¢ and r = y/x2 + y? + z2 . The above becomes

dr _ rsinfcos¢

dr dx

dx r
= sin 0 cos ¢ (6)
And from (4)
d d z
%(cos 0) = Em
—sin 0d0 = L “(2x) 5 dx

(x2 +y? + 22)2
But % + y? + z2 = 2 and z = r cos 6 and x = rsin 6 cos ¢. The above becomes

1 rcos O(2r sin O cos
—sin 0d6 = ~5 ( 3 (P)dx

()
—12 cos 6sin O
14 cos s;n cos ¢ I
r
—cos 0sin 0
cos 0'sin 0 cos ¢ i

r

Hence
46 = cos@coscpdx
o 1
-z 7
I rcos@cosqf) (7)

And from (5)
d _d(y
7o) = 2(3)
1 -1
cos? ¢d¢ - y(;)dx

But y = rsin 0sin ¢ and x = rsin 0 cos ¢. Therefore

1 —rsin Osin ¢
;A = 2
cos? ¢ r?sin” 6 cos? ¢
dp —rsinOsin¢ cos? ¢
dx — 12sin? O cos? ¢
—sin
- e ®

rsin 0
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ddr  9do | 3 dp

L9
The above completes all the terms needed to find - = ——- + —=—— + — 5 . Hence, using

(6,7,8) above gives

) 9 1 d sing d
%_51nt9cosqb(9r+rcos@cosqﬁ()l9 rsin6 99 ©)

Now the same thing is repeated to find (9% in spherical coordinates. From (3)

1 2y p
2\/x2+y2 + 22 y
Buty = rsin0sin¢ and r = \/x2 + y? + z2. The above becomes

dr _ rsin @sin ¢

dr =

dy r
=sinOsin ¢ (10)
And from (4)
z
79 <08 0= @m
—sin 640 = L Z(Zy) dy

3
(x2 +y2 + 22)2
But x> + y? + z2 = ¥? and z = r cos 6 and y = rsin 6 sin ¢ . The above becomes

1 rcos 0(2r sin O sin
—-sin 040 = ~5 ( 3 (P) dy

()
—12 cos O sin 6 sin ¢
3 d
"
—cos@sin@sinqbd
r

Hence

40 = cos@sin(pd

o 1

@ :;cosﬁsin(p (11)
And from (5)

d y

dqb (tamp) (—)




But x = rsin 0 cos ¢. Therefore

20

1 1
= d
cos? ¢ rsin O cos ¢ 4
dp  cos?¢
dy ~ rsin6cos¢
1
Lo 1
r sin O
The above completes all the terms needed to find &% = %Z—; + a%i—j %Z—j. Hence, using
(10,11,12) above gives
d . . a 1 . d lcosd o
&—y:sm95mq§;+;cosesmq§%+;smeﬁ (13)
Now the same thing is repeated to find a% in spherical coordinates. From (3)
1 2
dr = z—o g
2\x2 +y2 + 22
But z = rcos 6 and r = /x? + y? + z2 . The above becomes
dr _rcos@
dz  r
= cos 6 (14)
And from (4)
d d z
—cosl = ——————
do dZ,[x2+y2+Zz
1 1 -3
~-sin0d0 = | ———— + z(——(x2 +y? + zz) 2(22))}12
Jerpez 2

1 72

2 2 2 3
VX2 + 12 + 2
Y (x2+y2+22)2

2.2, .2\_.2
=(x+y+z) Zdz

3
(x2 + Y2 + 22)2

But x? +y? + z2 = r? and z = r cos 0. The above becomes

2 .2 2p
R

1-cos?0
S

dz



Hence
do 3 1-cos?0
dz rsin @
3 sin’ 0
"~ rsin®
=——sinf
r

And from (5) ; ;
y
% aotan©) = dz(})

Hence, since RHS does not depend on z then

do
-0
dz
The above completes all the terms needed to find % = %g + ;9 fg

(14,15,16) above gives

J J 1 J
o —COSQE—;Slneﬁ

21

(16)

2 do

36 &2 . Hence, using

(17)

The above completes all derivations needed to find Ly, L,, L, in Spherical coordinates. Eqs

(9,13,17). Here they are in one place.

o 9 N 0 d 1lsing o

. = sin COS(P&}’ rCOS COS‘P&@ rsin® 3¢
| 01 ' lcos¢p o

é’_y = Sln681n¢8r + rCOSQSIn(P&Q " rsin@ d¢

J 6(9 1 5 J

5, = cosO- sm 30

Given Eq(1A) found earlier (repeated below)

L, =—ih yi— i)

Jdz dy
| 0 d
Ly = —if 25 — 5)

L, = -itfx2 — g2
== Ty T ox

9)
(13)

(17)

(1A)
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And given (9,13,17), then (1A) becomes

A @&1 6& o 3+1 O &+1coscp&
x = ~ifi|y|cos O sin 55/ ~Zsin smqbo.)r . COS qubag rsin@ d¢

L - i 0 8+1 0 J sing d 98 1 68
y = —ifi| z| sin cosqb&r rCOS Cosgi)88 rsin 6 90 x| cos 3 sm 30

lcos¢ o
rsin 0 d¢
, _ J 1 Jd sing J

+zhys1n6cosq55+;cos(9coscp&—9—rsmeﬁ

But x = rsin 0 cos ¢,y = rsin Osin ¢, z = r cos 0. The above becomes

J 1 J
L, = —ifi|x sin@sinqb; + ;cos@sinqb% +

L. = i o 68 1 90" olsinos o"+1 Osi 8+1cosqbo"
= —ifi|rsin O sin | cos sm 55/~ "cosfsin qubgr ~ cos smqbge

ar rsin@ d¢
L - i olsin o d N 1 p Jd sing J o 5 J 1 p d
y = —ifi| 1 cos O] sin COS¢&r ~ C0S coscp(m rsin0 90 rsin 6 cos ¢| cos Ep sm 30
o . ., d 1 ., d lcos¢p d
L,= —zh(r sin 6 cos qb)(sm@sm qbz + S €os O sin qb% + Pl 0.)¢)

s ' _ J 1 Jd sing J
+ z’r’z(rsm@smqj) sm@cosqbz + ;cos@cosqb% - rsin@%

Simplifying gives

y . . d ., . .0 , ., d o 0 cosd d
= —zh((rsmesmgbcos 65 - sin GSm(pO_)—) - (rcos@sm@smqb; + cos QSII‘IQﬁ% + cos 0 —))

sin 9 d¢
sing d
sinf do

d
L,= —zh(rcos@sm@cos qb— + cos? O cos (Z)— —cos 0
+ ifi{rsin 6 02 Lisin0 ?
ifil r sin O cos ¢ cos 5, ~ rsin COS¢&9
L, = —ifi| r sin? 6 cos ¢ sin i+sir16cos cos Osin i+Cos2 i

d d d
, 2o . . )
+1h(rsm Qsmcpcosqb—ar +s1n9s1n¢cos@cos¢—& — sin qb& )

Or

=— in @ sin — —sin inp— — ingsinp— — mao-— -
. sin 0 sin ¢ cos 5, 7S s (P&@ cosOsinO's (P&r cos“U's (P&@ OSUne Er

. ) 0 5 J sin¢g d
L, =-in rcos@sm@cow)g + cos” 0 cos p—— —cos 0

d d
30 sm@&qf) — rsin 0 cos ¢ cos O— + sin? 6C08¢86]

ar

d
= —ihl —r sin? ind— + cos?2 d— — rsin? O si — +sin?h—
LZ_ ifi| —r sin GCOS(PSIH(Par COS Qf)a.) rsim QSIH¢COS¢87 sim (Z)o.) )



9 P cos¢p d
P . s 2 . __ R
L, = —ih| - sin (9sm(P(9(9 cos Gsmcpae cos@sme &qj)

= —ifi| cos? 6 cos (Z)i — cos Qsmqb i +sin® Qcosqb
4 20 s1n6 AP 0

23

d d
L, = —ifi| sin O cos ¢ cos O sin qb% + cos? ¢% —sin @ sin ¢ cos 0 cos ¢% + sin? qb%)

2

Or
Ly = —in _(Sinz O + cos? 9) sin qbgi@ B z:g COs(Pa
L, = -ih (cos2 0 + sin? 9) cos qb&ie - cos GZEZ) %)
L, = —ifi| cos? gb% + sin? qb%)
Or
L, = -if —sin(p% - :jg cos qb%)
L, = —if| cos ¢>% - :;g sin(p%)
ool

The above are Ly, L,, L, in spherical coordinates. Therefore

=L+ L5+ 12

But

L2 = —h? (— sin (j)% - :ﬁg cos (i)%)(— sin ¢i - Z?jg Cos qb%))
— —#2| sin2 ¢sz6 + sinqb&ie(:ﬁg q)&qj) cos & cos¢8¢(5m
R I

o35)*

(18)




cos O

sin 6

d
(coscﬁ)&9

cos 0

= —h?| cos? ¢a—2 — cos cpi
d20 20 s'n@

, Y. cosO J
= —#2| cos? (PQTQ_COSQDSIHQD&G sin 6 acp

., d d
sin cp%)(cos <¢>% -

sin ¢i) -
Ip

24

cosO J

sin 0 sm(p%))

cos@ . 0 d cosZQ . 9?
ey sm¢>£(cos ql)a—e) + i 9 ¢0.,2¢)

2
cos“0  ,

2o o ‘P%)

_ cos 6

——sin qb(— smgbgg)

sin 8

92 . 1 9 cos@ , d cos?O
= —h?| cos? <p% + Cosqbsmqb(sinz 6%) + s S 955 + s smch%)
Jd cosB Jd  cos?0 92
_ 2 cos @ sin¢ _ K L, 9%
€08 (P&Z@ se20  d¢ T5ing " P90 T snZe S ¢82¢
And 2
2= (3)
Hence
9%  singcos¢p 9 L cosO cos? 0
12 = —#2| gin2 2 40
(sm (P&ZG sec? 6 &cp sin 6 COS(PCOS(P&G sinZ0 qbc?qu)
d% cospsing , cosO Jd  cos?0
— 12 cog? 2.7 . 2
(COS qbo”-@ sec? 0 8(]5 sin@ o qb&@ Tsnto o (P&qu)
02
2
(7]
Or
92 9% (cos? 0 cos 5
= —hZ(&ZQ(sm ¢ + cos qi)) 82(]5(51112 5 cos? ¢ + 2 sin® ¢ + 1))
smqbcosqb cos ¢ sin ¢
L
8qb sec? 0 sec? 0

_ 52

sm (p)

cos
COS @ cOs P +

i cos 0
d0\sin o
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Which simplifies to
%> cos?0 9? 9> cosO J
2 _ _p2 2 2 2 )
L =-h 325 + 20 %% (cos ¢ + sin qb) + % + s %(cos ¢ + sin (p))
o 9% cos?0 9? 9> cosO d
=—h + + + ——=
920 sin?0 d%p  J%¢p sin0 IO
o 9* cos?0\ d*> cosO J
=-h|l—+|(1 + ——
220 sin?0 ) d%¢  sin6 d6
_ 2 9? . sin? 0 + cos? 6\ 9?2 N cosf d
- 920 sin? O J2p  sin6 IO
N 1 d% cos6 d
220  sin?00d%p sin6 d6
Hence
Z-i_ 1 2 d? . 1 92 +cost9§
2p2  p2p2 920 ' sin?0 9% sin6 J0
192 1 1 9* 1cosB 0 (20)
12920 12sin?69%¢p 12sin6 JO
Therefore

19(,0\ L-L 1( d ,3\ 1 1 1 9 1cos6
Ss—|rPr=|-55=52r—+"*=5|+55=+5 + 5
r2or\ dr) hx&2  2\T dr  9r?) 12020  r?sin?09%¢p r?sinf JO
29  9? 1(&2 cosea) 1 1 0

+—+ ===+ — |+ 5——=—
rdr  Jdr2  r2\d%0  sin0d6) 1?sin®6 %P

But the term in the RHS above is indeed the Laplacian in spherical coordinates. Therefore
in spherical coordinates

r2 ; or h2r2

vzl a(rz&) L.L

Which is what we are asked to show.
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5 Problem 5
Consider ¢(x, t) for 0 < x < L. Given 1(0,¢) = ¢(L,t) = 0 and
A sin(z%) 0<x< %
P(x,0) =
0 Z<x<L

Find ¢(x, t) that satisfies the following partial differential equation

d 72 92
§20 O 0
Jt 2u Jt?
Where A, L, i, i are positive constants.
Solution

Using separation of variables, assuming the solution is

P, t) = X(@)T(t)

Where X(x) is function that depends on space only and T(t) is function that depends on ¢
only. Substituting the above into the PDE (1) gives

hz
inXT = —Z—X”T

u
Diving both sides by XT # 0 gives
T’ h2 X
h— =-———
T 2u X
2uiT X"
hT X

Since both sides are equal, and left side depends on t only and right side depends on
x only, then both must be equal to a constant. Let this constant be —A. This gives the
following two ODE’s to solve

2uiT’
—_—_ = — 2
E =2 2)
X//
x = G)

Starting with the spatial ODE in order to determine the eigenvalues A

X"(x)+AX(x) =0 (4)
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With the boundary conditions transferred from the PDE as

<
—~~
=
A

Il

0
0

There are three cases to consider. A <0,A =0,A > 0.

case A <0

Let A = —u? for some real u. Then the ODE (4) becomes X"’ (x) — u?X(x) = 0. The roots of
the characteristic equation are +u. Hence the solution is

X(x) = Aet** + Be™#¥
=A cosh(px) +B sinh(yx)
At x = 0, the above becomes
0=A
Hence the solution now reduces to
X(x) =B sinh(yx)
At x = L, this becomes
0 = Bsinh(uL)

But uL # 0 since L > 0 and u # 0. Therefore the only option is that B = 0. But this gives
trivial solution X(x) = 0. Therefore A < 0 is not possible.

case A =0

The ODE (4) now becomes
X"(x)=0

This has solution X = Ax + B. At x = 0 this gives 0 = B. Therefore the solution now
reduces to X(x) = Ax. At x = L this gives 0 = AL, which implies A = 0. But this gives
trivial solution X(x) = 0. Therefore A = 0 is not possible.

case A >0

In this case, the roots of the characteristic equation of ODE (4) are +iy/A . Hence the solu-
tion can written as (by using Euler relation to convert complex exponentials to trigono-

metric functions) as
Xx)=A cos(\/z x) + B sin(\/Kx)

At x = 0 the above gives
0=A

Hence the solution now reduces to

X(x)=B sin(\/xx)
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Atx =L

0= Bsin(\/i L)

For non-trivial solution this requires that sin(\/z L) =0or VAL = nnforn = 1,2,
Therefore the eigenvalues are

n\2
/\n:(L) n=1,2,

This completes the solution to the spatial part. The eigenfunctions are therefore

nr
X,(x) =B, sin(—x) n=12,--

- (5)

Now the time domain part ODE is solved. This is ODE (2) above. Now that the eigenval-
ues are known, ODE (2) becomes

2uiTy
_SEn_
hT, "
T,h
Ty = 2". n
i
h
T, - —AT,=0
2ui

Ay
Sy
This is linear first order ODE. The integrating factor is I = e #* . The above now becomes

g b
E(Tne 2 t) =0

Ayh

ui T —
T,e? =C,

Integrating gives

Apht

T,(t) = Cpe 2"
=C,e 2 #

2
But A, are the eigenvalues, given by A,, = (n%) forn =1,2,---. Rewriting the above gives

i n?n?

T, () =C,e 2 H?

(6)

But since the solution was assumed to be ¢(x, t) = X(x)T(t), then

P, 1) = X ()T, ()
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But the general solution is a linear combination of all the solutions ¢,,(x, t). Therefore

n(x, 1)

V=2
Z (V) T(t)

And using (5,6) in the above, gives

i n?n?

> -1 t
Y(x,t) = ), B, sin(nfnx)cne 2 w2
n=1

But the two constants B,,C,, can be merged into one, say D,,. Therefore the above becomes

i n?n?

R nm o\ -3
(x,t) = Y. D, sin[ —x|e ? #? 7
P(x ;::1 sm( T x)e (7)

The above is the general solution. What is left is to determine D,,. This is done from initial
conditions. At t = 0 the above becomes

2mx L
Asm(L) OSxSE 00 nm
ZZD”SIH(TX)
0 %SXSL n=1

The above says that D, are the Fourier sine series coefficients of the initial conditions. To
determine D,,, orthogonality of eigenfunctions sin(%x) is used.

Muliiplying both sides of the above by sin(%x) and integration both sides from x = 0 to
x =L gives

L Asm(zL )sm(m:x)dx 0<x< % L 0
f :f sm( T )ZD sm( T x)dx
0 0 % <x<L 0 n=1
L
2

fo Asin(zzx)ﬂn(—x)dx— ED f sm(an )sin(nfnx)dx

Casem =1

The sum above now collapses to one term only when m = n =1, since the sin functions



are orthogonal to each others, which gives

L

2 L
fz Asin(ﬂ) sin(zx)dx =D, f sinz(zx)dx
0 L L 0 L
C(2nx) (T L
f Asin| — sm(—x)dx =D;=
0 L L 2

L
2 2 2
D, = I j: Asin(%x) sin(%x)dx

L
The integral £ 2A sin(z%x) sin(%x)dx, is evaluated using the relation

N~

1
sin AsinB = E(cos(A — B) — cos(A + B))

30



the integral becomes

L

foz

Hence Eq. (8) becomes

Casem =2

Asi 21X (
sin T sin

zx)dx =
L

L (3 2
allsn(Z)[o(F)
21 T G

|
=
—
»
=
=}
—_—
|
alls
N —
o N~
|
[68)
S| =
| p—|
»
=
=}
—_—
W
~| 3
=
N —
]
N =
~———

NI NI N
Jl= A= 3=
®
=]

—_—
N
N—
|
W
D)=
®
=}
——
N W
3
N —
N —

=~ 3
> N

S
Pty Ny
—_

- 2(£24)
L\ 3
_4A
T 3n
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The sum above now collapses to one term only, since the sin functions are orthogonal to
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each others, so only for n = 2 the sum gives a result. Hence

L L

A= =D,=
4 2
D, =ta
279

casem >3

The sum now collapses to case when m = 1, since the sin functions are orthogonal to each

others. Hence
L
2 27X
f Asin( T )sm(—x)dx—D f sm( )
0

E

Therefore (now calling m = n since a dummy index)

L
2 2 2
D, = I j(;z Asin(—zx) sin(n%x)dx (9)

L
The integral I = £ 2 A sm( ZL ) sm( T x)dx is evaluated using the relation

1
sin AsinB = E(cos(A — B) — cos(A + B))



The integral I becomes, where here A = 2%, B = X
I A f% 2TX  NTX 27X N nmx P
= — cos| — — — | —cos| — + — |dx
2 J, L L L L

R e R e

A si ((2_”)7”) 2 +n)mx \12
_ L : L
) (2-mmn - lSIn[ (2+n)m ﬂ
L 0 L 0
_A L 2 -n)nx\ |2 L (2 +n)mx\ |2
“2l@-or"\ T T )| T @ean L],
(2—n)n% (2+n)n%
A Lsm( T ) L si ( 3
"2l e-mr Q+nn
(2—n)n§ (2+n)n5
O e B e
2l @2-n) (2 +n)
(-3 _(@nns
1A (2+n)sm( )—(Z—n)sm( 3
T 2n 2-n)2+n)

LA (@-mm; (@+mn;
= O -m2 T n)[(Z +n) sm[—L ] -(2-n) sm[—L

27'(E —nn£ 27'(£ +n7tE
Il 2 a2
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Hence
I= 271(21:1 - )((2 1) sin(n _ gn) —@2-n) sin(n ; gn))
- ﬁ/_‘nz)(z sin( = 27) + nsin( - 2) - 2sin(w + 2] + nsin(r + 2
gl 1wl ol e )
ool )l ) ) 2]

Using sin(x + y) - sin(x - y) = 2cosxsinyand sin(x + y) + sin(x - y) = 2sinx cosy on the
above gives (where x = 71,y = gn in this case)

I= L(—Z[Z COS Tt sin E7'(] + n[Z sin 7t cos En])

27'((4 - n2) 2 2
_ ()

27'((4 - n2) 2

2LA n
= m(sm ET()
Hence (9) becomes
D, =224 (s zn)]
L n(4 - nz) 2
4A n
= m Sin ET(

—4A ) (n )
= ———sin| =7
n(nz — 4) 2
Now all coefficients of the Fourier sine series are found. Therefore the solution (7) be-

comes

i in?n?

U(x, t) = Uy (x, 1) + Yo (x, t) + i D, sin(nTnx)e_2 uL?
n=3

—4A (nrc) . (nn )—gh’i’ft
—SIn| — ) |sin| —Xx)e #
n(nz - 4) 2 L

)
1nnt

—4A o (nm\| . (nm \ 5=
_ sm(—) sm(—x)e HL
n(nz - 4) 2 L

i fim i hdn? o0

TT —-—5t 27 —5 5t
= D;sin|—x)e ?#* + Dysin|==x|e *#? + )]
L L =

) ; 2

4A _ihlt 1 2 _iM_nt ©0

=3 sin(%x)e 22 4 EA sin(fnx)e 2u? g Z
Tt

n=3
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Therefore the final solution is

i ; 2 . nrt i 22
= 5= - 5 - -— in{ —
P(x, i sin Lx e > sin I Xle I

4A _i'@t A 271 —i%t 4A ) Sll’l(%) - —éhnzgzt
Y(x, t) = 37 sin(fx)e 2pl? 4 > sin(fx)e 22 _ Z sin( )e KL
T



	Problem 1
	Problem 2
	Field outside the shell
	Field inside the shell

	Problem 3
	Problem 4
	Problem 5

