Physics 3041 (Spring 2021) Solutions to Homework Set 1
1. Problem 1.6.1. (20 points)

Let’s first try the most straightforward way:
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Now consider a simpler way starting with
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where we have ignored terms of orders higher than 3.
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2. Consider f(z) = (1 + x)? for (a) p=1/3 and (b) p = —2, respectively.

(1) Find the Taylor series of f(x) around x = 0. (10 points)
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(2) From the form of the general term, find the interval of convergence for the series. (10 points)

For p = 1/3, the general term is
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So the interval of convergence is
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(3) How many terms in the series do you need to estimate f(0.1) to within 1%? Check that the
difference between your estimate and the actual result has approximately the same magnitude
as the next term in the series. (10 points)

For p = 1/3, the second term is 0.1/3 ~ 0.033 and the third term is —0.12/9 ~ —1.1 x 1073,
So within 1% we only need to keep the first two terms: 1.1'/3 = 14-0.1/3 ~ 1.0333. The differ-
ence between the actual result and this estimate is 1.1'/% — 1.0333 ~ 1.0323 — 1.0333 = —103,
which indeed has the same magnitude and sign as the third term.

For p = —2, the third term is 3 x 0.12 = 0.03 and the fourth term is —4 x 0.13 = —4 x 1073,
So within 1% we only need to keep the first three terms: 1.172 ~ 1 —2-0.1 +3-0.12 = 0.83.
The difference between the actual result and this estimate is 1.172 — 0.83 ~ 0.82645 — 0.83 =
—3.55 x 1073, which indeed has the same magnitude and sign as the fourth term.



3. Expand f(z) = tanz? to oder z° using (a) direct Taylor expansion of tanz with a substitu-
tion (20 points), and (b) the Taylor series of sin x and cos z along with appropriate substitutions
(20 points).
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(b) Use Taylor series of siny and cosy
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4. A particle of mass m moves along the +z-axis (i.e., z > 0) with a potential energy
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where a and b are positive parameters.

(a) Find the equilibrium position zq. (3 points)
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(b) Show that the particle executes harmonic oscillations near x = x. (5 points)
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(c) Find the angular frequency of oscillations. (2 points)



