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Notes by Nasser M Abbasi

� Linear system ⎛
⎜⎜⎜⎜⎝
𝑥̇1
𝑥̇2

⎞
⎟⎟⎟⎟⎠ = [𝐴]𝑛×𝑛

⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠

For nonlinear, ⎛
⎜⎜⎜⎜⎝
𝑥̇1
𝑥̇2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝑓1 (𝑥1, 𝑥2)
𝑓2 (𝑥1, 𝑥2)

⎞
⎟⎟⎟⎟⎠

To find First integral 𝐹 (𝑥1, 𝑥2), (also the orbit equation in phase plane) solve 𝑑𝑥2
𝑑𝑥1

= 𝑓2
𝑓1
. This

gives an ODE to solve. For example, if

𝑥′′ + 𝑥 −
1
2
𝑥2 = 0

Then 𝑥1 = 𝑥, 𝑥2 = 𝑥′ and 𝑥̇1 = 𝑥2, 𝑥̇2 = −𝑥1 +
1
2𝑥

2
1. Hence

⎛
⎜⎜⎜⎜⎝
𝑥̇1
𝑥̇2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝑓1
𝑓2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

𝑥2
−𝑥1 +

1
2𝑥

2
1

⎞
⎟⎟⎟⎟⎠

And 𝑑𝑥2
𝑑𝑥1

= 𝑓2
𝑓1

gives 𝑑𝑥2
𝑑𝑥1

=
−𝑥1+

1
2𝑥

2
1

𝑥2
or 𝑥2𝑑𝑥2 = �−𝑥1 +

1
2𝑥

2
1� 𝑑𝑥1. Integrating

1
2𝑥2 = −1

2𝑥
2
1 +

1
6𝑥

3
1 + 𝐸

or 1
2𝑥2 +

1
2𝑥

2
1 −

1
6𝑥

3
1 = 𝐸. Hence

𝐹 (𝑥1, 𝑥2) =
1
2
𝑥2 +

1
2
𝑥21 −

1
6
𝑥31

Is the first integral.

� Hamiltonian 𝐻 (𝑥1, 𝑥2) is first integral. It is the energy of the system. For second order
ODE, the equation of motion using 𝐻 becomes

𝑞̇ =
𝜕𝐻
𝜕𝑝

𝑝̇ = −
𝜕𝐻
𝜕𝑞

But 𝑝 = 𝑥̇ or in state space notation
𝑝 = 𝑥̇1 = 𝑥2

And 𝑞 = 𝑥 or in state space notation
𝑞 = 𝑥1

Hence the above becomes, in state space as
⎛
⎜⎜⎜⎜⎝
𝑞̇
𝑝̇

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝑥̇1
𝑥̇2

⎞
⎟⎟⎟⎟⎠



3

Therefore, state space can be written as (for second order ODE)

⎛
⎜⎜⎜⎜⎝
𝑥̇1
𝑥̇2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝑞̇
𝑝̇

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕𝐻
𝜕𝑥2
− 𝜕𝐻
𝜕𝑥1

⎞
⎟⎟⎟⎟⎟⎟⎠

For example, in the last example, we had 𝐹 (𝑥1, 𝑥2) =
1
2𝑥2 +

1
2𝑥

2
1 −

1
6𝑥

3
1 which is also 𝐻. Hence

applying the above gives

⎛
⎜⎜⎜⎜⎝
𝑞̇
𝑝̇

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

𝑥2
− �𝑥1 −

1
2𝑥

2
1�

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

𝑥2
−𝑥1 +

1
2𝑥

2
1

⎞
⎟⎟⎟⎟⎠

Which is the original system equation of motion. Hence, if we know 𝐻 or 𝐹, we can find the
equation of motion. (For constant 𝐻) which is the normal case.

� Hessian. Given 𝐹 (𝑥1, 𝑥2), as first integral, then ∇𝐹 is the gradient, written as

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕𝐹
𝜕𝑥1
𝜕𝐹
𝜕𝑥2

⎞
⎟⎟⎟⎟⎟⎟⎠. ∇ is

called del operator. and the Hessian is ∇ 2𝐹 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕2𝐹
𝜕𝑥1𝜕𝑥1

𝜕2𝐹
𝜕𝑥1𝜕𝑥2

𝜕2𝐹
𝜕𝑥2𝜕𝑥1

𝜕2𝐹
𝜕𝑥2𝜕𝑥2

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕2𝐹
𝜕2𝑥1

𝜕2𝐹
𝜕𝑥1𝜕𝑥2

𝜕2𝐹
𝜕𝑥2𝜕𝑥1

𝜕2𝐹
𝜕2𝑥2

⎞
⎟⎟⎟⎟⎟⎟⎠. A critical

point is called non-degnerate if det∇ 2𝐹 evaluates at the critical point is non-zero. This means
the linearization is non-degenerate around that critical point.

� For scalar function, say 𝑓 �𝑥, 𝑦� its gradient is ∇𝐹 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕𝑓
𝜕𝑥
𝜕𝑓
𝜕𝑦

⎞
⎟⎟⎟⎟⎟⎟⎠ which represent the tangent vector

when evaluated at some point 𝑝 = �𝑥0, 𝑦0�. This can also be written as ∇𝐹 = 𝜕𝑓
𝜕𝑥 𝒊 +

𝜕𝑓
𝜕𝑦 𝒋 in

vector notation.

For a vector of functions, say 𝐹⃗ =
⎛
⎜⎜⎜⎜⎝
𝑓 �𝑥, 𝑦�
𝑔 �𝑥, 𝑦�

⎞
⎟⎟⎟⎟⎠ then its gradient is matrix given by ∇𝐹⃗ =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕𝑓
𝜕𝑥

𝜕𝑓
𝜕𝑦

𝜕𝑔
𝜕𝑥

𝜕𝑔
𝜕𝑦

⎞
⎟⎟⎟⎟⎟⎟⎠.

This is called the Jacobian also. Normally this is evaluated at point (equilibrium point) and
its eigenvalues indicate if the linearized system is stable or not.

� Directional derivative at a point is given by 𝑛̂ ⋅ ∇𝑓 �𝑥, 𝑦� where ∇𝑓 �𝑥, 𝑦� is the gradient (a
vector field), and the result is evalulated at some specific point. For example, if 𝑓 = �𝑥2 + 𝑦2
and we want the directional derivative in direction defined by vector 2 ̂𝚤 + 2 ̂𝚥 + 𝑘̂, then 𝑛̂ =
1
3
�2 ̂𝚤 + 2 ̂𝚥 + 𝑘̂� and ∇𝑓 �𝑥, 𝑦� = 1

�𝑥2+𝑦2
�𝑥 ̂𝚤 + 𝑦 ̂𝚥�. Hence 1

3
�2 ̂𝚤 + 2 ̂𝚥 + 𝑘̂� ⋅ 1

�𝑥2+𝑦2
�𝑥 ̂𝚤 + 𝑦 ̂𝚥� = 2

3
� 𝑥+𝑦

�𝑥2+𝑦2
�.

At the point (0, −2, 1) this gives −2
3 .

This all can also be written using vector notation. if 𝑓 = �𝑥2 + 𝑦2 and we want the directional

derivative in direction defined by vector 2 ̂𝚤+2 ̂𝚥+𝑘̂, then 𝑛̂ = 1
3
�2 ̂𝚤 + 2 ̂𝚥 + 𝑘̂� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
3
2
3
1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and ∇𝑓 �𝑥, 𝑦� =
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1

�𝑥2+𝑦2
�𝑥 ̂𝚤 + 𝑦 ̂𝚥� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥

�𝑥2+𝑦2𝑦

�𝑥2+𝑦2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. Hence

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
3
2
3
1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥

�𝑥2+𝑦2𝑦

�𝑥2+𝑦2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

2
3

𝑥

�𝑥2 + 𝑦2
+
2
3

𝑦

�𝑥2 + 𝑦2

=
2
3

⎛
⎜⎜⎜⎝

𝑦

�𝑥2 + 𝑦2

⎞
⎟⎟⎟⎠

At the point (0, −2, 1) this gives −2
3 .

� For vector function, say 𝐹 �𝑥, 𝑦� =
⎛
⎜⎜⎜⎜⎝
𝑓 �𝑥, 𝑦�
𝑔 �𝑥, 𝑦�

⎞
⎟⎟⎟⎟⎠ its divergence is scalar, given by

∇ ⋅ 𝐹⃗ = div (𝐹)

=
𝜕𝑓
𝜕𝑥

+
𝜕𝑔
𝜕𝑦

� If in the above, 𝐹 (𝑥1, 𝑥2) was the state space vector in 𝑥̇ = 𝐹 (𝑥1, 𝑥2) =
⎛
⎜⎜⎜⎜⎝
𝑓1 (𝑥1, 𝑥2)
𝑓2 (𝑥1, 𝑥2)

⎞
⎟⎟⎟⎟⎠, then

there is a theory which says if ∇ ⋅ 𝐹⃗ do not change sign over the whole domain 𝐷, then the
system can only have periodic solutions. This assumes 𝐷 is simply connected (i.e. no holes
in it) and that 𝑓1 (𝑥1, 𝑥2) , 𝑓2 (𝑥1, 𝑥2) are smooth functions.

� Morse function. If 𝐹 (𝑥1, 𝑥2) is non-degenerate around critical point 𝑥 = 𝑎, then 𝐹 (𝑥1, 𝑥2) is
called Morse function around 𝑥 = 𝑎. To find Morse function, expand 𝐹 (𝑥) in Taylor series
around the critical point.

𝐹 (𝑥1, 𝑥2) = 𝐹̄ (𝑎) + (𝑥 − 𝑎) ∇𝐹 (𝑎) +
1
2
(𝑥 − 𝑎) ∇ 2𝐹 (𝑎) (𝑥 − 𝑎)𝑇

But ∇𝐹 (𝑎) = 0 since critical point, hence

𝐹 (𝑥1, 𝑥2) = 𝐹̄ (𝑎) +
1
2
(𝑥 − 𝑎) ∇ 2𝐹 (𝑎) (𝑥 − 𝑎)𝑇

The above should come out as quadratic in 𝑥1, 𝑥2 if 𝐹 is non-degenerate.

� Jordan form

Given linearized system 𝑥̇ = 𝐴𝑥, find 𝑇 such that 𝑧 = 𝑇−1𝑥 which makes system 𝑧̇ = 𝐵𝑧 where
it is now decoupled. 𝐵 is the Jordan form of 𝐴. For case of non-zero eigenvalue of 𝐴 at each
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critical point, 𝐵 =
⎛
⎜⎜⎜⎜⎝
𝜆1 0
0 𝜆2

⎞
⎟⎟⎟⎟⎠ or 𝐵 =

⎛
⎜⎜⎜⎜⎝
𝜆1 1
0 𝜆1

⎞
⎟⎟⎟⎟⎠ depending if eigenvalues of 𝐴 are distinct or

repeated. Now solve 𝑧̇ = 𝐵𝑧 since decoupled and then convert back to 𝑥 space when done
using 𝑥 = 𝑇𝑧. The matrix 𝑇 is the matrix of the eigenvectors of 𝐴. Each eigenvector is column
of 𝑇. Note that 𝐴 is constant, since it is evaluated at critical point.

� Eigenvalues of 𝐴 can also be found using 𝜆 = 1
2
�trace (𝐴)2 − 4det (𝐴)�

� From the book "a critical point which, after linearisation, corresponds with a positive
attractor, turns out to be asymptotically stable". This means if all eigenvalues (of the Jacobian
at that point) are negative, then asymptotically stable. But if one eigenvalue is zero, we can
not say that. Normally we just say unable to decide (if the system is non-linear).


