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1 Problem 3.1

Consider the two-dimensional system in 𝑅2

𝑥̇ = 𝑦 �1 + 𝑥 − 𝑦2�

𝑦̇ = 𝑥 �1 + 𝑦 − 𝑥2�

Determine the critical points and characterize the linearized flow in a neighborhood of these
points.

solution

Let

𝑥̇ = 𝑦 �1 + 𝑥 − 𝑦2� = 𝑓1 �𝑥, 𝑦� (1)

𝑦̇ = 𝑥 �1 + 𝑦 − 𝑥2� = 𝑓2 �𝑥, 𝑦� (2)

The critical points are found by solving 𝑓1 = 0, 𝑓2 = 0. Equation 𝑓1 = 0 gives the following
solutions

𝑦 = 0 (3)

1 + 𝑥 − 𝑦2 = 0 (4)

Starting with (3). Substituting in (2) the solution 𝑦 = 0 gives

𝑥 �1 − 𝑥2� = 0

This gives solutions 𝑥 = 0 or 𝑥 = ±1. The first set of critical points generated from (3) is
(0, 0) , (1, 0) , (−1, 0). Now we do the same starting from (4). Solving (4) for 𝑥 gives

𝑥 = 𝑦2 − 1 (5)

Substituting for 𝑥 from above back into (2) gives

�𝑦2 − 1� �1 + 𝑦 − �𝑦2 − 12�� = 0

This gives solutions 𝑦2 − 1 = 0 or �1 + 𝑦 − �𝑦2 − 12�� = 0. Starting 𝑦2 − 1 = 0. This gives 𝑦 = ±1.
From (5) this gives 𝑥 = 0 for both cases. So now we can add the next set of critical points
found so far (0, 1) , (0, −1).

When �1 + 𝑦 − �𝑦2 − 12�� = 0, or 1 + 𝑦 − 𝑦4 − 1 + 2𝑦2 = 0 or 𝑦4 − 2𝑦2 − 𝑦 = 0 or 𝑦 �𝑦3 − 2𝑦 − 1� = 0.
Hence 𝑦 = 0 which from (5) gives another critical point 𝑥 = −1. Hence (−1, 0). This critical
point is one already found earlier. For 𝑦3 − 2𝑦 − 1 = 0, this gives solutions 𝑦 = −1, 𝑦 =
1
2
�1 − √5� , 𝑦 =

1
2
�1 + √5�. From each one of these solutions, using EQ. (5) gives 𝑥. When

𝑦 = −1, then (5) gives 𝑥 = 0 and when 𝑦 = 1
2
�1 − √5� then (5) gives

𝑥 = �
1
2
�1 − √5��

2

− 1 =
1
2
−
1
2√

5



3

And when 𝑦 = 1
2
�1 + √5� then (5) gives

𝑥 = �
1
2
�1 + √5��

2

− 1 =
1
2√

5 +
1
2

Therefore we have found the following 3 extra critical points

(0, −1) , �
1
2
−
1
2√

5,
1
2
�1 − √5�� , �

1
2√

5 +
1
2
,
1
2
�1 + √5��

In summary, the following are all the critical points found. There are 7 of them

�𝑥, 𝑦�
∗
= (0, 0)

= (1, 0)
= (−1, 0)
= (0, 1)
= (0, −1)

= �
1
2
�1 − √5� ,

1
2
�1 − √5��

= �
1
2
�1 + √5� ,

1
2
�1 + √5��

To characterize the linearized flow in a neighborhood of these points, the Jacobian matrix
is evaluated at each of the critical points and from its eigenvalues, the type of critical point
is determined.

𝐽 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕𝑓1
𝜕𝑥

𝜕𝑓1
𝜕𝑦

𝜕𝑓2
𝜕𝑥

𝜕𝑓2
𝜕𝑦

⎞
⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

𝑦 �1 + 𝑥 − 𝑦2� + 𝑦 �−2𝑦�
�1 + 𝑦 − 𝑥2� + 𝑥 (−2𝑥) 𝑥

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

𝑦 −3𝑦2 + 𝑥 + 1
−3𝑥2 + 𝑦 + 1 𝑥

⎞
⎟⎟⎟⎟⎠

At Point (0, 0) the Jacobian matrix becomes

𝐽 =
⎛
⎜⎜⎜⎜⎝
0 1
1 0

⎞
⎟⎟⎟⎟⎠

Hence |𝐽 − 𝜆𝐼| = 0 gives

�
−𝜆 1
1 −𝜆

� = 0

𝜆2 − 1 = 0
𝜆 = ±1



4

This is saddle point because one eigenvalue is positive (not stable) and one is negative
(stable).

At Point (1, 0) the Jacobian is

𝐽 =
⎛
⎜⎜⎜⎜⎝
0 2
−2 1

⎞
⎟⎟⎟⎟⎠

Hence |𝐽 − 𝜆𝐼| = 0 gives

�
−𝜆 2
−2 1 − 𝜆

� = 0

−𝜆 (1 − 𝜆) + 4 = 0
𝜆2 − 𝜆 + 4 = 0

𝜆 =
1
2
±
1
2
𝑖√15

Since the real part is positive, then this is unstable point. Spiral out. (book calls this focus
with negative attraction).

At Point (−1, 0) the Jacobian is

𝐽 =
⎛
⎜⎜⎜⎜⎝
0 0
−2 −1

⎞
⎟⎟⎟⎟⎠

Hence |𝐽 − 𝜆𝐼| = 0 gives

�
−𝜆 0
−2 −1 − 𝜆

� = 0

−𝜆 (−1 − 𝜆) = 0
𝜆 (𝜆 + 1) = 0

𝜆 = 0, −1

Since this is nonlinear system, and one eigenvalue is zero, then unable to decide on stability
of this critical point.

Note: In back of text book, it says that this degenerate. But it is not clear why that is. Because
to determine if a critical point is degenerate, the determinant of Hessian det �∇ 2𝐹 �𝑥, 𝑦��
must be zero at that point, where 𝐹 �𝑥, 𝑦� is the first integral (or energy of system). I could

not find 𝐹 �𝑥, 𝑦� for this system, and so I could not check if this was the case. Will follow the
book for now and call this point degenerate, but it will be useful to find out how or why the
book calls this degenerate.

At Point (0, 1) the Jacobian is

𝐽 =
⎛
⎜⎜⎜⎜⎝
1 −2
2 0

⎞
⎟⎟⎟⎟⎠
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Hence |𝐽 − 𝜆𝐼| = 0 gives

�
1 − 𝜆 −2
2 −𝜆

� = 0

−𝜆 (1 − 𝜆) + 4 = 0
𝜆2 − 𝜆 + 4 = 0

𝜆 =
1
2
±
1
2
𝑖√15

This is the same (1, 0). Since the real part is positive, then this is unstable point. Spiral out.
(focus with negative attraction).

At Point (0, −1) the Jacobian is

𝐽 =
⎛
⎜⎜⎜⎜⎝
−1 −2
0 0

⎞
⎟⎟⎟⎟⎠

Hence |𝐽 − 𝜆𝐼| = 0 gives

�
−1 − 𝜆 −2
0 −𝜆

� = 0

−𝜆 (−1 − 𝜆) = 0
𝜆 (1 + 𝜆) = 0

𝜆 = 0, −1

This is the same as point (−1, 0) above. Since this is nonlinear system, and one eigenvalue is
zero, then unable to decide on stability of this critical point. degenerate.

Point �12 �1 − √5� ,
1
2
�1 − √5��

At this point Jacobian becomes

𝐽 =
⎛
⎜⎜⎜⎜⎝

𝑦 −3𝑦2 + 𝑥 + 1
−3𝑥2 + 𝑦 + 1 𝑥

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
�1 − √5� −3 �12 �1 − √5��

2
+ 1

2
�1 − √5� + 1

−3 �12 �1 − √5��
2
+ 1

2
�1 − √5� + 1

1
2
�1 − √5�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
1
2
�1 − √5� √5 − 3
√5 − 3

1
2
�1 − √5�

⎞
⎟⎟⎟⎟⎠
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Hence |𝐽 − 𝜆𝐼| = 0 gives

�
1
2
�1 − √5� − 𝜆 √5 − 3
√5 − 3

1
2
�1 − √5� − 𝜆

� = 0

�
1
2
�1 − √5� − 𝜆� �

1
2
�1 − √5� − 𝜆� − �√5 − 3�

2
= 0

𝜆2 + 𝜆 �√5 − 1� +
11
2 √

5 −
25
2
= 0

𝜆 =
7
2
−
3
2√

5,
1
2√

5 −
5
2

= 0.146, −1.382

This is saddle point because one eigenvalue is positive (not stable) and one is negative
(stable).

Point �12 �1 + √5� ,
1
2
�1 + √5��

At this point Jacobian becomes

𝐽 =
⎛
⎜⎜⎜⎜⎝

𝑦 −3𝑦2 + 𝑥 + 1
−3𝑥2 + 𝑦 + 1 𝑥

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
�1 + √5� −3 �12 �1 + √5��

2
+ 1

2
�1 + √5� + 1

−3 �12 �1 + √5��
2
+ 1

2
�1 + √5� + 1

1
2
�1 + √5�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
1
2
�1 + √5� −√5 − 3
−√5 − 3

1
2
�1 + √5�

⎞
⎟⎟⎟⎟⎠

Hence |𝐽 − 𝜆𝐼| = 0 gives

�
1
2
�1 + √5� − 𝜆 −√5 − 3
−√5 − 3

1
2
�1 + √5�

� = 0

�
1
2
�1 + √5� − 𝜆� �

1
2
�1 + √5� − 𝜆� − �−√5 − 3�

2
= 0

𝜆2 − 𝜆 �√5 + 1� −
11
2 √

5 −
25
2
= 0

𝜆 =
3
2√

5 +
7
2
, −
1
2√

5 −
5
2

= 6.854 , −3.618

This is saddle point because one eigenvalue is positive (not stable) and one is negative
(stable).

The following is summary of result of the above
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critical point stable/unstable 𝜆1, 𝜆2 type

(0, 0) unstable 1, −1 Saddle

(1, 0) unstable 1
2 ±

1
2 𝑖√15 Spiral out (focus, negative attraction)

(−1, 0) unable to decide 0, −1 Degenerate

(0, 1) unstable 1
2 ±

1
2 𝑖√15 Spiral out (focus, negative attraction)

(0, −1) unable to decide 0, −1 Degenerate

�1
2
�1 − √5� ,

1
2
�1 − √5�� unstable 0.146, −1.382 Saddle

�1
2
�1 + √5� ,

1
2
�1 + √5�� unstable 6.854, −3.618 Saddle

The following is phase plot, generated from the nonlinear system numerically using the
computer. Red dots are the unstable points. Blue points are the degenerate points.

-2 -1 0 1 2

-2

-1

0

1

2

Figure 1: Phase plot of the nonlinear system
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f1 = y 1 + x - y^2;

f2 = x 1 + y - x^2;

p1 = {Red, PointSize[0.03], Point[{0, 0}]};

p2 = {Red, PointSize[0.03], Point[{1, 0}]};

p3 = {Blue, PointSize[0.03], Point[{-1, 0}]};

p4 = {Red, PointSize[0.03], Point[{0, 1}]};

p5 = {Blue, PointSize[0.03], Point[{0, -1}]};

p6 = Red, PointSize[0.03], Point1  2 1 - Sqrt[5], 1  2 1 - Sqrt[5];

p7 = Red, PointSize[0.03], Point1  2 1 + Sqrt[5], 1  2 1 + Sqrt[5];

p = StreamPlot[{f1, f2}, {x, -1.8, 1.9}, {y, -1.9, 1.9}, Epilog → {p1, p2, p3, p4, p5, p6, p7}];

Figure 2: Code used for the above plot
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2 Problem 3.3

Consider the system

𝑥̇ = 16𝑥2 + 9𝑦2 − 25
𝑦̇ = 16𝑥2 − 16𝑦2

(a) Determine the critical points and characterize them by linearization. (b) Sketch the
phase-flow.

solution

2.1 Part a

Let

𝑥̇ = 16𝑥2 + 9𝑦2 − 25 = 𝑓1 �𝑥, 𝑦� (1)

𝑦̇ = 16𝑥2 − 16𝑦2 = 𝑓2 �𝑥, 𝑦� (2)

The critical points are found by solving 𝑓1 = 0, 𝑓2 = 0. The equation 𝑓2 = 0 gives solutions

16𝑥2 − 16𝑦2 = 0
𝑦 = ±𝑥 (3)

When 𝑦 = 𝑥, substitution into 𝑓1 = 0 gives

16𝑥2 + 9𝑥2 − 25 = 0
𝑥 = ±1

Hence the first set of critical points is (1, 1) , (−1, −1). When 𝑦 = −𝑥 then 𝑥 = ±1 also. Therefore
the next set of critical points is (1, −1) , (−1, 1)

In summary, the following are the critical points found. There are 4 of them

�𝑥, 𝑦�
∗
= (1, 1)

= (−1, −1)
= (1, −1)
= (−1, 1)

To characterize the linearized system at these points, the Jacobian matrix is evaluated at
each of point and from the nature of eigenvalues, the type of critical point is determined.
Since 𝑓1 = 16𝑥2 + 9𝑦2 − 25, 𝑓2 = 16𝑥2 − 16𝑦2 then the Jacobian matrix is

𝐽 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕𝑓1
𝜕𝑥

𝜕𝑓1
𝜕𝑦

𝜕𝑓2
𝜕𝑥

𝜕𝑓2
𝜕𝑦

⎞
⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
32𝑥 18𝑦
32𝑥 −32𝑦

⎞
⎟⎟⎟⎟⎠



10

At Point (1, 1) the Jacobian is

𝐽 =
⎛
⎜⎜⎜⎜⎝
32 18
32 −32

⎞
⎟⎟⎟⎟⎠

Hence |𝐽 − 𝜆𝐼| = 0 gives

�
32 − 𝜆 18
32 −32 − 𝜆

� = 0

(32 − 𝜆) (−32 − 𝜆) − (18) (32) = 0
𝜆2 − 1600 = 0

𝜆 = ±√1600
= ±40

This is saddle point because one eigenvalue is positive (not stable) and one is negative
(stable). Since the problem asks also to sketch the phase plot, then the eigenvectors are now
found as well. For 𝜆 = 40 ⎛

⎜⎜⎜⎜⎝
32 − 40 18
32 −32 − 40

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Hence −8𝑣1 + 18𝑣2 = 0. Let 𝑣1 = 1 then 𝑣2 =
4
9 and 𝑣⃗1 =

⎛
⎜⎜⎜⎜⎝
1
4
9

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
9
4

⎞
⎟⎟⎟⎟⎠.

For 𝜆 = −40 ⎛
⎜⎜⎜⎜⎝
32 + 40 18
32 −32 + 40

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Hence 72𝑣1 + 18𝑣2 = 0 or 4𝑣1 + 𝑣2 = 0. Let 𝑣1 = 1 then 𝑣2 = −4 and 𝑣⃗2 =
⎛
⎜⎜⎜⎜⎝
1
−4

⎞
⎟⎟⎟⎟⎠.

Summary for point (1, 1) (Saddle)

𝜆𝑖 𝑣⃗𝑖 direction

40
⎛
⎜⎜⎜⎜⎝
9
4

⎞
⎟⎟⎟⎟⎠ not stable (move away from (1, 1))

−40
⎛
⎜⎜⎜⎜⎝
1
−4

⎞
⎟⎟⎟⎟⎠ stable (move towards from (1, 1))

Now that we know the eigenvectors, we can sketch them at (1, 1) as follows
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0.5 1.0 1.5 2.0 2.5 3.0

-3

-2

-1

1

2

3

(1,1)

V1

V2

Figure 3: Eigenvectors around (1, 1)

But we still do not know the directions along the eigenvectors. But we know that for negative
eigenvalue, the solution is stable and for positive eigenvalue the solution is not stable. Hence
along 𝑣⃗1 the solution must move away from (1, 1) since 𝑣⃗1 is associated with an unstable 𝜆.

For 𝑣⃗2 the solution must be stable, therefore on 𝑣⃗2 the solution must move towards (1, 1). Now
that we know the directions, we can update the above plot sketch by addition directions.

0.5 1.0 1.5 2.0 2.5 3.0

-3

-2

-1

1

2

3

(1,1)

V1

V2

Figure 4: Eigenvectors around (1, 1) with directions

Now the sketch is finished by adding stream lines that follow along the directions of the
eigenvector due to continuity and because solution lines can not cross each others (due to
uniqueness). This gives the phase plot around (1, 1) found by linearization as follows
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0.90 0.95 1.00 1.05 1.10

0.90

0.95

1.00

1.05

1.10

Figure 5: Adding more stream lines around (1, 1)

The same steps above are now repeated for the next critical point (−1, −1)

At Point (−1, −1) the Jacobian is

𝐽 =
⎛
⎜⎜⎜⎜⎝
32𝑥 18𝑦
32𝑥 −32𝑦

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
−32 −18
−32 32

⎞
⎟⎟⎟⎟⎠

Hence |𝐽 − 𝜆𝐼| = 0 gives

�
−32 − 𝜆 −18
−32 32 − 𝜆

� = 0

(−32 − 𝜆) (32 − 𝜆) − (18) (32) = 0
𝜆2 − 1600 = 0

𝜆 = ±√1600
= ±40

This is the same result as the earlier point. This is a saddle point because one eigenvalue
is positive (not stable) and one is negative (stable). Now the eigenvectors are found. For
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𝜆 = 40
⎛
⎜⎜⎜⎜⎝
−32 − 𝜆 −18
−32 32 − 𝜆

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−32 − 40 −18
−32 32 − 40

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−72 −18
−32 −8

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Hence −72𝑣1 − 18𝑣2 = 0 or −4𝑣1 − 𝑣2 = 0 Let 𝑣1 = 1 then 𝑣2 = −4. The eigenvector is 𝑣⃗1 =
⎛
⎜⎜⎜⎜⎝
1
−4

⎞
⎟⎟⎟⎟⎠.

For 𝜆 = −40
⎛
⎜⎜⎜⎜⎝
−32 − 𝜆 −18
−32 32 − 𝜆

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−32 + 40 −18
−32 32 + 40

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
8 −18
−32 72

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Hence 8𝑣1 − 18𝑣2 = 0. Let 𝑣1 = 1 then 𝑣2 =
4
9 . The eigenvector is 𝑣⃗2 =

⎛
⎜⎜⎜⎜⎝
1
4
9

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
9
4

⎞
⎟⎟⎟⎟⎠.

Summary for point (−1, −1) (Saddle, not stable).

𝜆𝑖 𝑣⃗𝑖 direction

40
⎛
⎜⎜⎜⎜⎝
1
−4

⎞
⎟⎟⎟⎟⎠ Not stable. Move away from (−1, −1)

−40
⎛
⎜⎜⎜⎜⎝
9
4

⎞
⎟⎟⎟⎟⎠ Stable. Move towards (−1, −1)

Now that we know the eigenvectors, we sketch them at (−1, −1) as follows
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-2.0 -1.5 -1.0 -0.5 0.5 1.0

-2.0

-1.5

-1.0

-0.5

0.5

1.0

(-1,-1)V1

V2

Figure 6: Eigenvectors around (−1, −1)

But we still do not know the directions along the eigenvectors. As was mentioned above,
for negative eigenvalue, the solution is stable and for positive eigenvalue the solution is not
stable. This means on 𝑣⃗1 the solution moves away from (−1, −1) since 𝑣⃗1 is associated with
unstable 𝜆. For 𝑣⃗2, since the solution is stable then on 𝑣⃗2 the solution moves towards (−1, −1).
Now that the directions are known, the above sketch is updated giving

-2.0 -1.5 -1.0 -0.5 0.5 1.0

-2.0

-1.5

-1.0

-0.5

0.5

1.0

(-1,-1)V1

V2

Figure 7: Eigenvectors around (−1, −1) with directions

The sketch is finished by adding stream lines that follow along the directions of the eigen-
vector by continuity. This gives the phase plot around (−1, −1) found by linearization as
follows
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-1.10 -1.05 -1.00 -0.95 -0.90

-1.10

-1.05

-1.00

-0.95

-0.90

Figure 8: Adding more stream lines around (−1, −1)

The same steps are now repeated for the next critical point (1, −1)

At Point (1, −1) the Jacobian is

𝐽 =
⎛
⎜⎜⎜⎜⎝
32𝑥 18𝑦
32𝑥 −32𝑦

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
32 −18
32 32

⎞
⎟⎟⎟⎟⎠

Hence |𝐽 − 𝜆𝐼| = 0 gives

�
32 − 𝜆 −18
32 32 − 𝜆

� = 0

(32 − 𝜆)2 + (18) (32) = 0
𝜆2 − 64𝜆 + 1600 = 0

𝜆 = 32 ± 24𝑖

This is unstable critical point, since since real part of the complex number is positive. This is
spiral out point. Also called focus, with negative attraction. For 𝜆 = 32 + 24𝑖 the eigenvector
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is
⎛
⎜⎜⎜⎜⎝
32 − 𝜆 −18
32 32 − 𝜆

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
32 − (32 + 24𝑖) −18

32 32 − (32 + 24𝑖)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−24𝑖 −18
32 −24𝑖

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Hence −24𝑖𝑣1 − 18𝑣2 = 0. Let 𝑣1 = 1 then 𝑣2 = −
24
18 𝑖 and 𝑣⃗1 =

⎛
⎜⎜⎜⎜⎝
1
−4
3 𝑖

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
3
−4𝑖

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
3𝑖
4

⎞
⎟⎟⎟⎟⎠

For 𝜆 = 32 − 24𝑖
⎛
⎜⎜⎜⎜⎝
32 − 𝜆 −18
32 32 − 𝜆

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
32 − (32 − 24𝑖) −18

32 32 − (32 − 24𝑖)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
24𝑖 −18
32 24𝑖

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Hence 24𝑖𝑣1 − 18𝑣2 = 0. Let 𝑣1 = 1 then 𝑣2 =
24
18 𝑖 and 𝑣⃗1 =

⎛
⎜⎜⎜⎜⎝
1
4
3 𝑖

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
3
4𝑖

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
3𝑖
−4

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−3𝑖
4

⎞
⎟⎟⎟⎟⎠. What is

left to find out is to determine if the spiral is clockwise or anti-clockwise. One way to find
this is to select a point �𝑥, 𝑦� to the right of the critical point and then find if 𝑥 is increasing
or decreasing there and find out also if 𝑦 is increasing or decreasing there. This gives the
slop. Since the critical point is (1, −1), let us pick point (2, −1) to its right. From

𝑥̇ = 16𝑥2 + 9𝑦2 − 25
𝑦̇ = 16𝑥2 − 16𝑦2

Then at (2, −1) the above gives

𝑥̇ = 64 + 9 − 25 = 48
𝑦̇ = 64 − 16 = 48

Hence 𝑥̇ > 0, then 𝑥 is increasing and 𝑦̇ > 0, then 𝑦 also increasing. This means the solution
curve is moving in the NE direction (↗). Hence the spiral is anti-clockwise direction around
(1, −1) .

Summary for (1, −1) (not stable, spiral out)
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𝜆𝑖 𝑣⃗𝑖 direction

32 + 24𝑖
⎛
⎜⎜⎜⎜⎝
3𝑖
4

⎞
⎟⎟⎟⎟⎠ Not stable. focus, negative attraction. Anti-clockwise direction

32 − 24𝑖
⎛
⎜⎜⎜⎜⎝
−3𝑖
4

⎞
⎟⎟⎟⎟⎠ Not stable. focus, negative attraction. Anti-clockwise direction

Now that we know the eigenvectors, we can sketch them at (1, −1) as follows

-1.0 -0.5 0.5 1.0 1.5 2.0

-3

-2

-1

1

(1,-1)

V1

V2

Figure 9: Eigenvectors around (1, −1)

Since both eigenvector are not stable, direction of solution near (1, −1) is moving away from
(1, −1). Now that we know the directions, we can update the above plot sketch.

-1.0 -0.5 0.5 1.0 1.5 2.0

-3

-2

-1

1

(-1,-1)

V1

V2

Figure 10: Eigenvectors around (1, −1) with directions

Now the sketch is finished by adding the spiral out stream lines. This gives the phase plot
around (1, −1) found by linearization as follows



18

0.6 0.8 1.0 1.2 1.4
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-1.0
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0.0

Figure 11: Adding more stream lines around (1, −1)

The same steps are now repeated for final critical point (−1, 1)

At Point (−1, 1) the Jacobian is

𝐽 =
⎛
⎜⎜⎜⎜⎝
32𝑥 18𝑦
32𝑥 −32𝑦

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
−32 18
−32 −32

⎞
⎟⎟⎟⎟⎠

Hence |𝐽 − 𝜆𝐼| = 0 gives

�
−32 − 𝜆 18
−32 −32 − 𝜆

� = 0

(−32 − 𝜆)2 + (18) (32) = 0
𝜆2 + 64𝜆 + 1600 = 0

𝜆 = −32 ± 24𝑖

This is stable point, both eigenvalues has negative real part. The type is spiral in (focus,
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with positive attraction). For 𝜆1 = −32 + 24𝑖 the eigenvector is
⎛
⎜⎜⎜⎜⎝
−32 − 𝜆 18
−32 −32 − 𝜆

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−32 − (−32 + 24𝑖) 18

−32 −32 − (−32 + 24𝑖)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−24𝑖 18
−32 −24𝑖

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Hence −24𝑖𝑣1 + 18𝑣2 = 0. Let 𝑣1 = 1 then 𝑣2 =
24
18 𝑖 and the eigenvector becomes 𝑣⃗1 =

⎛
⎜⎜⎜⎜⎝
1
4
3 𝑖

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
3
4𝑖

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
3𝑖
−4

⎞
⎟⎟⎟⎟⎠

For 𝜆2 = −32 − 24𝑖 the eigenvector is
⎛
⎜⎜⎜⎜⎝
−32 − 𝜆 18
−32 −32 − 𝜆

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−32 − (−32 − 24𝑖) 18

−32 −32 − (−32 − 24𝑖)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
24𝑖 18
−32 24𝑖

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Hence 24𝑖𝑣1 + 18𝑣2 = 0. Let 𝑣1 = 1 then 𝑣2 = −24
18 𝑖 and the second eigenvector becomes

𝑣⃗2 =
⎛
⎜⎜⎜⎜⎝
1
−4
3 𝑖

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
3
−4𝑖

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
3𝑖
4

⎞
⎟⎟⎟⎟⎠

The only thing left is to determine if the spiral is clockwise or anti-clockwise. One way to
find out is to pick a point �𝑥, 𝑦� to the right of the critical point and find if 𝑥 is increasing
or decreasing there and also find out if 𝑦 is increasing or decreasing there. This gives the
slope. Since the critical point is (−1, 1), let us pick point (0, 1) to its right. From

𝑥̇ = 16𝑥2 + 9𝑦2 − 25
𝑦̇ = 16𝑥2 − 16𝑦2

Then at (0, 1) the above gives

𝑥̇ = 9 − 25 = −16
𝑦̇ = −16 = −16

Hence 𝑥̇ < 0, then 𝑥 is decreasing and 𝑦̇ < 0, then 𝑦 also decreasing. This means the solution
curve is moving in the SW direction (↙). Hence the spiral is in the clockwise direction
around (−1, 1) .

Summary for (−1, 1) (Stable)
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𝜆𝑖 𝑣⃗𝑖 direction

−32 + 24𝑖
⎛
⎜⎜⎜⎜⎝
3𝑖
−4

⎞
⎟⎟⎟⎟⎠ Stable. Focus, positive attraction. Clockwise direction

−32 − 24𝑖
⎛
⎜⎜⎜⎜⎝
3𝑖
4

⎞
⎟⎟⎟⎟⎠ Stable. Focus, positive attraction. Clockwise direction

Now that we know the eigenvectors, we can sketch them at (−1, 1) as follows

-2.0 -1.5 -1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

1.5

2.0

(-1,1)

V1

V2

Figure 12: Eigenvectors around (−1, 1)

Since both eigenvectors are stable, the direction along each is towards (−1, 1). Now that we
know the directions, we can update the above plot sketch.

-2.0 -1.5 -1.0 -0.5 0.5 1.0
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(-1,1)
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V2

Figure 13: Eigenvectors around (−1, 1) with directions

The sketch is finished by adding the spiral stream lines. This gives the phase plot around
(−1, 1) found by linearization as follows
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-1.4 -1.2 -1.0 -0.8 -0.6
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0.8

1.0

1.2
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Figure 14: Adding more stream lines around (−1, 1)

putting all the above result together gives the final sketch of phase plot as

-4 -2 0 2 4

-4

-2

0

2

4

Figure 15: Final phase plot
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The following is summary of result

critical point stable/unstable 𝜆1, 𝜆2 type

(1, 1) unstable 40, −40 Saddle node

(−1, −1) unstable 40, −40 Saddle node

(1, −1) unstable 32 ± 24𝑖 Spiral out (focus, negative attraction)

(−1, 1) Stable −32 ± 24𝑖 Spiral in (focus, positive attraction)
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3 Problem 3.5

In certain applications one studies the equation

𝑥̈ + 𝑐𝑥̇ − 𝑥 (1 − 𝑥) = 0

with a special interest in solutions with the properties:

lim
𝑡→−∞

𝑥 (𝑡) = 0, lim
𝑡→∞

𝑥 (𝑡) = 1, 𝑥̇ (𝑡) > 0 for −∞ < 𝑡 < ∞

Derive a necessary condition for the parameter 𝑐 for such solutions to exist

solution

Using 𝑥1 = 𝑥, 𝑥2 = 𝑥̇, the first step is to determine the critical points. Hence 𝑥̇1 = 𝑥2, 𝑥̇2 = 𝑥̈ =
−𝑐𝑥̇ + 𝑥 (1 − 𝑥) = −𝑐𝑥2 + 𝑥1 (1 − 𝑥1). In state space the system becomes

⎛
⎜⎜⎜⎜⎝
𝑥̇1
𝑥̇2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

𝑥2
−𝑐𝑥2 + 𝑥1 (1 − 𝑥1)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝑓1
𝑓2

⎞
⎟⎟⎟⎟⎠

The first equation gives solution 𝑥2 = 0. When 𝑥2 = 0 the second equation gives 𝑥1 (1 − 𝑥1) = 0
or 𝑥1 = 0, 𝑥1 = 1. Hence the critical points are (0, 0) , (1, 0).

From the properties of the solutions, it shows that solutions that start with 𝑥1 = 0 eventually
go to 𝑥1 = 1. Also, since 𝑥̇ (𝑡) > 0 for −∞ < 𝑡 < ∞ then this means 𝑥2 > 0 for all time. Hence
solution curves are in upper half of phase plane. Here is sketch of what phase plane should
look like (I am taking 𝑥1 = 0 as initial condition, at 𝑡 = −∞.)

x1

x2

(0, 0) (1, 0)

Figure 16: possible solution curves in phase plane

The Jacobian of the linearlized system is

𝐽 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

⎞
⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

0 1
1 − 2𝑥1 −𝑐

⎞
⎟⎟⎟⎟⎠
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At (0, 0) the above becomes

𝐽 =
⎛
⎜⎜⎜⎜⎝
0 1
1 −𝑐

⎞
⎟⎟⎟⎟⎠

Hence |𝐽 − 𝜆𝐼| = 0 gives

�
−𝜆 1
1 −𝑐 − 𝜆

� = 0

(−𝜆) (−𝑐 − 𝜆) − 1 = 0
𝜆2 + 𝑐𝜆 − 1 = 0

𝜆 = −
1
2
𝑐 ±

1
2
√𝑐2 + 4 (1)

At (1, 0) the Jacobian becomes

𝐽 =
⎛
⎜⎜⎜⎜⎝

0 1
1 − 2𝑥1 −𝑐

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
0 1
−1 −𝑐

⎞
⎟⎟⎟⎟⎠

Hence |𝐽 − 𝜆𝐼| = 0 gives

�
−𝜆 1
−1 −𝑐 − 𝜆

� = 0

(−𝜆) (−𝑐 − 𝜆) + 1 = 0
𝜆2 + 𝑐𝜆 + 1 = 0

𝜆 = −
1
2
𝑐 ±

1
2
√𝑐2 − 4 (2)

We know that (2) must give stable solution, because we want the solution to eventually
move to that critical point (1, 0). Also, since we do not want to move into negative half plane
because 𝑥2 > 0 for all time, then this mean that we can not have spiral solution around (1, 0).

Therefore √𝑐2 − 4 must be positive to avoid complex eigenvalue which gives spiral solutions.
This means 𝑐2 ≥ 4 or

𝑐 ≥ 2

Here is the phase plot for 𝑐 = 2.5
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Figure 17: Phase plot for 𝑐 = 2.5

We can now check that for such 𝑐 value, periodic solutions do not exist. The gradient of the

vector

⎛
⎜⎜⎜⎜⎝
𝑓1
𝑓2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

𝑥2
−𝑐𝑥2 + 𝑥1 (1 − 𝑥1)

⎞
⎟⎟⎟⎟⎠ is

∇ ⋅
⎛
⎜⎜⎜⎜⎝
𝑓1
𝑓2

⎞
⎟⎟⎟⎟⎠ =

𝜕𝑓1
𝜕𝑥1

+
𝜕𝑓2
𝜕𝑥2

= 0 + −𝑐
= −𝑐

And since we determined that 𝑐 must be positive, then ∇ ⋅
⎛
⎜⎜⎜⎜⎝
𝑓1
𝑓2

⎞
⎟⎟⎟⎟⎠ = −𝑐 do not change sign

and remain negative. Hence by Bendixson’s criterion (4.1 in book) no periodic solution is
possible.
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4 Problem 3.7

Determine the critical points of the system

𝑥̇ = 𝑥 �1 − 𝑥2 − 6𝑦2�

𝑦̇ = 𝑦 �1 − 3𝑥2 − 3𝑦2�

And characterize them by linear analysis.

solution

Let

𝑥̇ = 𝑥 �1 − 𝑥2 − 6𝑦2� = 𝑓1 �𝑥, 𝑦� (1)

𝑦̇ = 𝑦 �1 − 3𝑥2 − 3𝑦2� = 𝑓2 �𝑥, 𝑦� (2)

The critical points are found by solving 𝑓1 = 0, 𝑓2 = 0. Solving for 𝑥 from 𝑓1 = 0 gives

𝑥 = 0 (3)

1 − 6𝑦2 = 𝑥2 (4)

From each solution above, we go to EQ (2) and solve for 𝑦. When 𝑥 = 0 then (2) gives

𝑦 �1 − 3𝑦2� = 0

Hence 𝑦 = 0, 𝑦 = ±�
1
3 . Therefore the first set of critical points is (0, 0) , �0,�

1
3
� , �0, −�

1
3
�.

Now, when 1 − 6𝑦2 = 𝑥2 then (2) gives

𝑦 �1 − 3 �1 − 6𝑦2� − 3𝑦2� = 0

𝑦 �15𝑦2 − 2� = 0

Hence 𝑦 = 0, 𝑦 = ±�
2
15 . When 𝑦 = 0 then 1 − 6𝑦2 = 𝑥2 gives 𝑥 = ±1 and when 𝑦 = �

2
15

then 1 − 6𝑦2 = 𝑥2 gives 1 − 6 � 2
15
� = 𝑥2, or 𝑥 = ±1

5√5 = ± 1

√5
and when 𝑦 = −�

2
15 then

1 − 6𝑦2 = 𝑥2 gives same solution 𝑥 = ± 1

√5
. Therefore the second set of critical points is

(±1, 0) , �± 1

√5
,�

2
15
� , �± 1

√5
, −�

2
15
�. In summary, these are the critical points (9 in total)

(0, 0) ,
⎛
⎜⎜⎜⎜⎝0, ±�

1
3

⎞
⎟⎟⎟⎟⎠ , (±1, 0) ,

⎛
⎜⎜⎜⎜⎝±

1

√5
,
�
2
15

⎞
⎟⎟⎟⎟⎠ ,
⎛
⎜⎜⎜⎜⎝±

1

√5
, −
�
2
15

⎞
⎟⎟⎟⎟⎠

Now that critical points are found, they are classified by linearizing the system and finding
the eigenvalues of the Jacobian matrix which acts as the 𝐴 matrix in 𝑢̇ = 𝐴𝑢 of the linearized
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system. The Jacobian of the linearlized system is

𝐽 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕𝑓1
𝜕𝑥

𝜕𝑓1
𝜕𝑦

𝜕𝑓2
𝜕𝑥

𝜕𝑓2
𝜕𝑦

⎞
⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
�1 − 𝑥2 − 6𝑦2� − 2𝑥2 −12𝑥𝑦

−6𝑥𝑦 �1 − 3𝑥2 − 3𝑦2� − 𝑦 �6𝑦�

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
1 − 3𝑥2 − 6𝑦2 −12𝑥𝑦

−6𝑥𝑦 1 − 3𝑥2 − 9𝑦2

⎞
⎟⎟⎟⎟⎠

At point (0, 0)

𝐽 =
⎛
⎜⎜⎜⎜⎝
1 0
0 1

⎞
⎟⎟⎟⎟⎠

Hence |𝐽 − 𝜆𝐼| = 0 gives

�
1 − 𝜆 0
0 1 − 𝜆

� = 0

(1 − 𝜆)2 = 0
𝜆 = 1, 1

A repeated root. Since 𝜆 > 1 then this is unstable point. Negative attractor node. It is not
spiral since pure real eigenvalues.

At point �0,�
1
3
�

𝐽 =
⎛
⎜⎜⎜⎜⎝
1 − 3𝑥2 − 6𝑦2 −12𝑥𝑦

−6𝑥𝑦 1 − 3𝑥2 − 9𝑦2

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 − 6 �13� 0

0 1 − 9 �13�

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
−1 0
0 −2

⎞
⎟⎟⎟⎟⎠

Hence |𝐽 − 𝜆𝐼| = 0 gives

�
−1 − 𝜆 0
0 −2 − 𝜆

� = 0

(−1 − 𝜆) (−2 − 𝜆) = 0
(1 + 𝜆) (2 + 𝜆) = 0

𝜆 = −2, −1
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Since both eigenvalues are negative then this is table point. Positive attractor node. Not a
spiral node since pure real eigenvalues.

point �0, −�
1
3
�

This gives same result as above. Positive attractor node.

point (1, 0)

𝐽 =
⎛
⎜⎜⎜⎜⎝
1 − 3𝑥2 − 6𝑦2 −12𝑥𝑦

−6𝑥𝑦 1 − 3𝑥2 − 9𝑦2

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
1 − 3 0
0 1 − 3

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
−2 0
0 −2

⎞
⎟⎟⎟⎟⎠

Hence |𝐽 − 𝜆𝐼| = 0 gives

�
−2 − 𝜆 0
0 −2 − 𝜆

� = 0

(−2 − 𝜆)2 = 0
𝜆 = −2, −2

Repeated root. Since eigenvalue is negative then this is table point. Positive attractor node.
Not a spiral node since pure real eigenvalues.

point (−1, 0)

This gives same result as above. Positive attractor node.

point � 1

√5
,�

2
15
�

𝐽 =
⎛
⎜⎜⎜⎜⎝
1 − 3𝑥2 − 6𝑦2 −12𝑥𝑦

−6𝑥𝑦 1 − 3𝑥2 − 9𝑦2

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 3 � 1

√5
�
2
− 6 ��

2
15
�
2

−12 � 1

√5
� ��

2
15
�

−6 � 1

√5
� ��

2
15
� 1 − 3 � 1

√5
�
2
− 9 ��

2
15
�
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

−2
5 −4

5√2√3
−2
5√2√3 −4

5

⎞
⎟⎟⎟⎟⎠
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Hence |𝐽 − 𝜆𝐼| = 0 gives

�
−2
5 − 𝜆 −4

5√2√3
−2
5√2√3 −4

5 − 𝜆
� = 0

�−
2
5
− 𝜆� �−

4
5
− 𝜆� − �−

4
5√

2√3� �−
2
5√

2√3� = 0

𝜆2 +
6
5
𝜆 −

8
5
= 0

𝜆 =
4
5
, −2

Since one eigenvalue is negative (stable) but the other is positive (unstable), then this is
saddle node. (considered unstable node).

point �−1
5√5,�

2
15
�

Same as above.

point �15√5,�
2
15
�

Same as above.

point �−1
5√5, −�

2
15
�

Same as above.

4.1 Summary of results

critical point stable/unstable 𝜆1, 𝜆2 type

1 (0, 0) unstable 1, 1 node, negative attractor

2 (1, 0) Stable −2, −2 node, positive attractor

3 (−1, 0) Stable −2, −2 node, positive attractor

4 �0, 1

√3
� Stable −2, −1 node, positive attractor

5 �0, −1
√3
� Stable −2, −1 node, positive attractor

6 � 1

√5
,�

2
15
� Unstable −2, 45 Saddle

7 �− 1

√5
,�

2
15
� Unstable −2, 45 Saddle

8 � 1

√5
,�

2
15
� Unstable −2, 45 Saddle

9 �− 1

√5
, −�

2
15
� Unstable −2, 45 Saddle

The following is phase plot, generated numerically directly from the non-linear system. A
red dot indicates an unstable node and blue colored node is a stable node.
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Figure 18: Phase plot
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