9.3. Using an analysis similar to that used in Example 9.3, we know that the given signal has a Laplace transform of the form

$$X(s) = \frac{1}{s+5} + \frac{1}{s+\beta}.$$

The corresponding ROC is $\Re\{s\} > \max(-5, \Re\{\beta\})$. Since we are given that the ROC is $\Re\{s\} > -3$, we know that $\Re\{\beta\} = 3$. There are no constraints on the imaginary part of β .

9.9. Using partial fraction expansion

$$X(s) = \frac{4}{s+4} - \frac{2}{s+3}.$$

Taking the inverse Laplace transform,

$$x(t) = 4e^{-4t}u(t) - 2e^{-3t}u(t).$$

9.15. Taking the Laplace transforms of both sides of the two differential equations, we have

$$sX(s) = -2Y(s) + 1$$
 and $sY(s) = 2X(s)$.

Solving for X(s) and Y(s), we obtain

$$X(s) = \frac{s}{s^2 + 4}$$
 and $Y(s) = 2s^2 + 4$.

The region of convergence for both X(s) and Y(s) is $Re\{s\} > 0$ because both are right-sided signals.

- 9.28. (a) The possible ROCs are
 - (i) Re{s} < −2.
 - (ii) $-2 < \Re e\{s\} < -1$.
 - (iii) $-1 < Re\{s\} < 1$.
 - (iv) Re{s} > 1.
 - (b) (i) Unstable and anticausal.
 - (ii) Unstable and non causal.
 - (iii) Stable and non causal.
 - (iv) Unstable and causal.

 Taking the unilateral Laplace transform of both sides of the given differential equation, we get

$$s^{3}\mathcal{Y}(s) - s^{2}y(0^{-}) - sy'(0^{-}) - y''(0^{-}) + 6s^{2}\mathcal{Y}(s) - 6sy(0^{-}) - 6y(0^{-}) + 11s\mathcal{Y}(s) - 11y(0^{-}) + 6\mathcal{Y}(s) = \mathcal{X}(s).$$
 (S9.40-1)

(a) For the zero state response, assume that all the initial conditions are zero. Furthermore, from the given x(t) we may determine

$$\mathcal{X}(s) = \frac{1}{s+4}, \quad \mathcal{R}e\{s\} > -4.$$

From eq. (S9.40-1), we get

$$\mathcal{Y}(s)[s^3 + 6s^2 + 11s + 6] = \frac{1}{s+4}$$

Therefore,

$$\mathcal{Y}(s) = \frac{1}{(s+4)(s^3+6s^2+11s+6)}$$

Taking the inverse unilateral Laplace transform of the partial fraction expansion of the above equation, we get

$$y(t) = \frac{1}{6}e^{-t}u(t) - \frac{1}{6}e^{-4t}u(t) + \frac{1}{2}e^{-2t}u(t) - \frac{1}{2}e^{-3t}u(t).$$

(b) For the zero-input response, we assume that $\mathcal{X}(s) = 0$. Assuming that the initial conditions are as given, we obtain from (S9.40-1)

$$\mathcal{Y}(s) = \frac{s^2 + 5s + 6}{s^3 + 6s^2 + 11s + 6} = \frac{1}{s+1}.$$

Taking the inverse unilateral Laplace transform of the above equation, we get

$$u(t) = e^{-t}u(t).$$

(c) The total response is the sum of the zero-state and zero-input responses.

$$y(t) = \frac{7}{6}e^{-t}u(t) - \frac{1}{6}e^{-4t}u(t) + \frac{1}{2}e^{-2t}u(t) - \frac{1}{2}e^{-3t}u(t).$$