- imples. Therefore,  $X(j\omega) = 0$  for  $|\omega| > 5000\pi$ . 7.2. From the Nyquist theorem, we know that the sampling frequency in this case must be at least  $\omega_s=2000\pi$ . In other words, the sampling period should be at most  $T=2\pi/(\omega_s)=$  $1 \times 10^{-3}$ . Clearly, only (a) and (c) satisfy this condition.

Consider the signal  $w(t)=x_1(t)x_2(t)$ . The Fourier transform  $W(j\omega)$  of w(t) is given by

$$W(j\omega) = \frac{1}{2\pi} [X_1(j\omega) * X_2(j\omega)].$$

Since  $X_1(j\omega)=0$  for  $|\omega|\geq \omega_1$  and  $X_2(j\omega)=0$  for  $|\omega|\geq \omega_2$ , we may conclude that  $W(j\omega)=0$  for  $|\omega|\geq \omega_1+\omega_2$ . Consequently, the Nyquist rate for w(t) is  $\omega_s=2(\omega_1+\omega_2)$ . Therefore, the maximum sampling period which would still allow w(t) to be recovered is  $T = 2\pi/(\omega_z) = \pi/(\omega_1 + \omega_2).$ 

261

Therefore, the given statement is

.11. We know from Section 7.4 that

$$X_{\rm d}(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{\rm c}(j(\omega-2\pi k)/T). \label{eq:Xd}$$

- (a) Since  $X_d(e^{j\omega})$  is just formed by shifting and summing replicas of  $X(j\omega)$ , we may as that if  $X_d(e^{j\omega})$  is real, then  $X(j\omega)$  must also be real.
- (b)  $X_d(e^{j\omega})$  consists of replicas of  $X(j\omega)$  which are scaled by 1/T. Therefore, if  $X_d(e^{j\omega})$ has a maximum of 1, then  $X(j\omega)$  will have a maximum of  $T = 0.5 \times 10^{-3}$ .
- (c) The region  $3\pi/4 \le |\omega| \le \pi$  in the discrete-time domain corresponds to the re- $3\pi/(4T) \le |\omega| \le \pi/T$  in the continuous-time domain. Therefore, if  $X_d(e^{j\omega}) = 0$  $3\pi/4 \le |\omega| \le \pi$ , then  $X(j\omega) = 0$  for  $1500\pi \le |\omega| \le 2000\pi$ . But since we already  $X(j\omega) = 0$  for  $|\omega| \ge 2000\pi$ , we have  $X(j\omega) = 0$  for  $|\omega| \ge 1500\pi$ .
- ) In this case, since π in discrete-time frequency domain corresponds to 2000π in the continuous-time frequency domain, this condition translates to  $X(j\omega) = (j(\omega - 2000\pi))$ .

estimates time frequencies  $\Omega$  and  $\omega$  are

7.15. In this problem we are interested in the lowest rate which x[n] may be sampled without the possibility of aliasing. We use the approach used in Example 7.4 to solve this problem. To find the lowest rate at which x[n] may be sampled while avoiding the possibility of aliasing, we must find an N such that

$$\frac{2\pi}{N} \geq 2\left(\frac{3\pi}{7}\right) \Rightarrow N \leq \frac{7}{3}.$$

Therefore, N can at most be 2.

 $|\pi_n| = 2\sin(\pi n/2)/(\pi n)$  satisfies the first two conditions, it does

to an ideal lowpass filter with cutoff frequency  $\pi$ / and a passband game factor of 2. Therefore, in this pro-

7.19. The Fourier transform of x[n] is given by

$$X(e^{j\omega}) = \begin{cases} 1, & |\omega| \le \omega_1 \\ 0, & \text{otherwise} \end{cases}$$

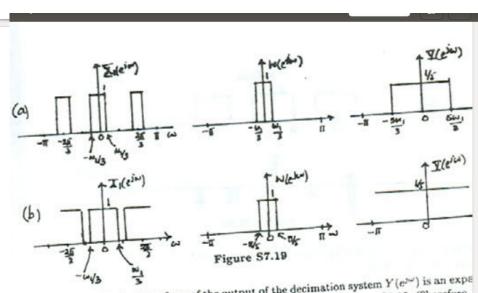
(a) When  $\omega_1 \leq 3\pi/5$ , the Fourier transform  $X_1(e^{j\omega})$  of the output of the zero-insertion This is as shown in Figure S7.19. system is as shown in Figure S7.19. The output  $W(e^{j\omega})$  of the lowpass filter is as shown in Figure S7.19. The Fourier transform of the output of the decimation system  $Y(e^{j\omega})$  is an expanded or stretched out version of  $W(e^{j\omega})$ . This is as shown in Figure \$7.19.

Therefore,

$$y[n] = \frac{1}{5} \frac{\sin(5\omega_1 n/3)}{\pi n}$$

(b) When  $\omega_1>3\pi/5$ , the Fourier transform  $X_1(e^{j\omega})$  of the output of the zero-insertion system is as shown in Figure S7.19. The output  $W(e^{j\omega})$  of the lowpass filter is as shown in Figure S7.19.

267



The Fourier transform of the output of the decimation system  $Y(e^{j\omega})$  is an exps or stretched out version of  $W(e^{j\omega})$ . This is as shown in Figure S7.19. Therefore,

$$y[n] = \frac{1}{5}\delta[n].$$

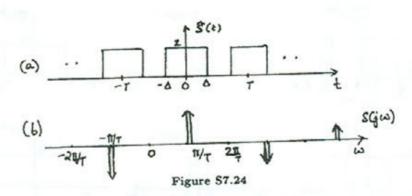
7.24. We may express s(t) as  $s(t) = \hat{s}(t) - 1$ , where  $\hat{s}(t)$  is as shown in Figure S7.24. We may easily show that

$$\hat{S}(j\omega) = \sum_{k=-\infty}^{\infty} \frac{4\sin(2\pi k\Delta/T)}{k} \delta(\omega - k2\pi/T).$$

From this, we obtain

$$S(j\omega) = \hat{S}(j\omega) - 2\pi\delta(\omega) = \sum_{k=-\infty}^{\infty} \frac{4\sin(2\pi k\Delta/T)}{k} \delta(\omega - k2\pi/T) - 2\pi\delta(\omega).$$

269



Clearly,  $S(j\omega)$  consists of impulses spaced every  $2\pi/T$ .

(a) If  $\Delta = T/3$ , then

$$S(j\omega) = \sum_{k=-\infty}^{\infty} \frac{4\sin(2\pi k/3)}{k} \delta(\omega - k2\pi/T) - 2\pi\delta(\omega).$$

Now, since w(t) = s(t)x(t),

$$W(j\omega) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \frac{4\sin(2\pi k/3)}{k} X(j(\omega - k2\pi/T)) - 2\pi X(j\omega).$$

Therefore,  $W(j\omega)$  consists of replicas of  $X(j\omega)$  which are spaced  $2\pi/T$  apart. In order to avoid aliasing,  $\omega_M$  should be less that  $\pi/T$ . Therefore,  $T_{max} = \pi/\omega_M$ .

(b) If  $\Delta = T/3$ , then

$$S(j\omega) = \sum_{k=-\infty}^{\infty} \frac{4\sin(2\pi k/4)}{k} \delta(\omega - k2\pi/T) - 2\pi\delta(\omega).$$

We note that  $S(j\omega)=0$  for  $k=0,\pm 2,\pm 4,\cdots$ . This is as sketched in Figure S7.24 Therefore, the replicas of  $X(j\omega)$  in  $W(j\omega)$  are now spaced  $4\pi/T$  apart. In order to avoid aliasing,  $\omega_M$  should be less that  $2\pi/T$ . Therefore,  $T_{max}=2\pi/\omega_M$ .