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1 Problem 5.3, Chapter 5

Determine the Fourier transform for - < w < 7 in the case of each of the following periodic
. . TC 7T 7T 7T
signals (a) sin (gn + Z) (b) 2 + cos (gn + g)

solution
11 Parta
Since the signal is periodic, then the Fourier transform is given by
X(Q) =21 Y, amd(Q-kQyp) (1)
k=—co

Where g; are the Fourier series coefficients of x [n]. To determine a; we can expression x [n]

using Euler relation. To find the period, gN = m2m. Hence I% = %. Hence

N=6
Therefore Q) = %ﬂ = g Now, using Euler relation
N s
sin (—n + —) = ,
4 2j
1 :m .7l 1 T T

= 1 (ggn) _ -fz( 15") 9
2j 2" "\ )

Comparing (2) to Fourier series expansion of periodic signal given by

N-1
x[n] = E 1, e/Fon
k=0
5
= Z gkgijO”
k=0

3 .
= E ake]kQO”
k=-2

Since Qg = g then the above becomes
3 o
x[n] = E ae 3"
k=-2

Comparing the above with (2) shows that a; = zl]e& and a_; = —zlje_j% and all other 4, = 0
for k =-2,0,2,3. Hence (1) becomes

X(Q) =27 (61_16 (Q + QO) + ﬂl(s (Q - Qo))
D M, 1igs(g-T
—27'(( 7 6(Q+3)+2je’ 5((2 ))

3
- (sfor3)-isfo-)



1.2 Partb

Since the signal 2 + cos (%n + g) is periodic, then the Fourier transform is given by

X(Q) = 2n i 0,6 (Q - kQp) 1)

k=—0c0

Where g are the Fourier series coefficients of x [n]. To determine a; we can expression x [n]

using Euler relation. To find the period, EN = m2m. Hence % = % Hence
N =12

Therefore Q) = % = %. Now, using Euler relation

T TC e(gn+g)j —+ e_(%n+g)j

2+cos(—n+—) =2+
6 8 2
=2+ lelg (e’g”) + le_jg (e_]%”) (2)
2 2

Comparing (2) to Fourier series expansion of periodic signal given by
N-1
x[n] = E e/ on
k=0
1
= E gke]kQO”
k=0
6 .
= 2 gkg]kQO”
k=-5

Since Qg = % then the above becomes
6 T
x[n] = E 1l 6"
k=-5

Comparing the above with (2) shows that gy = 2,a; = %ef 8 and a_ = %e_j 8 and all other
a; = 0. Hence (1) becomes

X(Q) =27 (ﬂoé (Q) + El_l(s (Q + Qo) + ﬂlé (Q - Qo))

6 6
iz Tt iz Iy
=415 (Q) + e ]8(5(Q+ g)+ne78(5(Q—g)

. (25 Q) + %e‘fga(g + E) + %ej%é (Q - E))



2 Problem 5.5, Chapter 5

Use the Fourier transform synthesis equation (5.8)

1

x[nl=— | X(Q)edQ (5.8)
27 27
X(Q) =), x[n]ed (5.9)
To determine the inverse Fourier transform of X(Q) = |X(Q)|¢/2¢H ) where |X(Q)| =

1 0<lQ<> 30 :
n 4 and argH (QQ) = —. Use your answer to determine the values of n for
0 S=<IQ<m 2

which x[n] = 0.

solution
1 iQ
x[n]:—f X (Q) ddQ
27 27

-1 [ x@yemeradamio
21 27

— i fz ol aTg H(Q) pjQn 10y
21 0

I .=-3Q
_ f R e,
21 _g

21 -z
_1 1 ejg(-;m)}%

2n]~(—73 N n) i E
11 _ejg(’;m) e—j§(§+n)]

271].(—?3 + n) :

1 1 e]g(fﬂl) ]Z(%Sﬂl)
T n (73 N n) 2]

1

3
2
Now the above is zero when sin (% (n - g)) =0 or Z(n— g) = mm for integer m. Hence



3 3 - . .
n—>=4m. Orn=4m+ 3. Since m is integer, and since n must be an integer as well, then

there is no finite n where sin (E (n - §)) = 0. The other option is to look at denominator of

4 2
sin(%(n—g))
——=— and ask where is that co. This happens when 7 — +co and only then x[n] = 0.

n=3



3 Problem 5.9, Chapter 5

The following four facts are given about a real signal x [n] with Fourier transform X (Q)
1. x[n]=0forn>0
2. x[0] >0
3. Im (X (Q)) = sin Q - sin (2QY)
4 5 [[IX(@PdQ =3
Determine x[n]

From tables we know that the odd part of x[n] has Fourier transform which is jIm (X (Q)).

Hence using (3) above, this means that odd part of x [#] has Fourier transform of j (sin Q - sin (2Q))
) ( Qi ejZQ_e—jZQ)
or j

1.9 i , > .
T or ; (eJQ — e o2 4 ]29). From tables, we know find the inverse

Fourier transform of this. Hence odd part of x [1] is % On+1]-06[n-1]1-0[n+2]+06[n-2]).
So now we know what the odd part of x[n] is.

But since x [1] = 0 for n > 0 then the odd part of x[n] reduces to % On+1]-0[n+2)]).

But we also know that any function can be expressed as the sum of its odd part and its even
part. But since x[n] = 0 for n > 0 then this means x[n] =2 (% On+1]-6[n+ 2])) for n < 0.

Hence
x[n]=0[n+1]-06[n+2] n<0

Finally, using (4) above,

L " x@Pda=3= 3 ki = 3 winl?
2nJ_, T B

n=-—o00 n=-—o00

Hence

3 = |5 [-1]1F + 16 [-2]/* + [x [0])*

:1+1+x[n]2
x[n]2:3—2
=1

Therefore x[n] =1 or x[n] = 1. But from (2) x[0] > 0. Hence x[0]. Therefore

x[nl=06[n+1]-06[n+2]+06[n] n<0



4 Problem 5.13, Chapter 5

1 n

An LTT system with impulse response hy [n] = (5) u [n] is connected in parallel with another

causal LTT system with impulse response h;, [n]. The resulting parallel
interconnection has the frequency response

—12 + 5712
12 — 7779 4 7720

H(Q) =

Determine h, [n].
solution

Since the connection is parallel, then i [n] = hy [n]+h, [n]. Or H(Q) = H; (QQ) + H;, (Q). Hence
H, (©) = H(€)) - H; (Q) (1)

But

o

Hy(Q) = Y, Iy [n]e

S (L e
5

Therefore from (1) _
~12 + 5¢7¢ 3
127672 4 7202 3 — 7

Hy (Q) =



Let 79 = x to simplify notation. The above becomes

12 + 5x 3

H,(Q) = -

2(Q) 12-7x+x2 3-x
~12 + 5x 3

TG -4 x-3)

12+ 5x+3(x—4)

T (x=3)(x-4)

12 +5x +3x -12
(x-3)(x—4)
8x—24

(x=3)(x—4)

. 8(x-3)

C (x=3)(x—4)

8

C (x-4)

- 1
1—Zx

Hy(Q) =-2 [;]
e

from tables, a"u [n] = 1;_]9 for |a| <1. Comparing this to the above gives
—ae

Hence

hy [n] = —2(31) uln]



5 Problem 5.19, Chapter 5

Consider a causal and stable LTT system S whose input x[n] and output y[n] are related
through the second-order difference equation

1 1
yInl - cyln-11- zyln-21= x[n]

(a) Determine the frequency response H (Q) for the system S. (b) Determine the impulse
response h[n] for the system S.

solution

51 parta
Taking DFT of the difference equation gives
I o I _»o
Y(Q) - ge 22Y (Q) - ge 1222Y (Q) = X (Q)

1 . 1 .
Y(Q) (1 - ge_]Q — EE_JZQ = X(Q)

Y(Q 1
X(Q) 1- %e—jQ _ %e—jZQ

Let 79 = x to simplify the notation, then

Y(Q) 1 6 -6 -6
XQ 1-L_ 12 6-x-x2 2+x-6 (x-2)(x+3)
6" 6

Hence
B -6
(e‘fQ - 2) (e‘fQ + 3)
5.2 partb

Applying partial fractions

~6 __A B
(e‘jQ—Z)(e‘fQ+3)_(x—2) (x +3)

HQ) =



Hence A = —g,B = g. Therefore

6 1 6 1
A A e
3 1 2 1
:_gl —-jQ _1 +51 -1 41
Ze 38
3 1 2 1

“5._1 0 5;.1 0
1—561 1+§€]

Taking the inverse DFT using tables gives

10



11

6 Problem 5.30, Chapter 5

In Chapter 4, we indicated that the continuous-time LTT system with impulse response

W Wt in (Wt
h(t) = —sinc(—) = sin (WH)
T ;e it
plays a very important role in LTI system analysis. The same is true of the discrete time
LTT system with impulse response

w . Wn sin (Wn)
h(n) = —sinc|— | =

U U T
(a) Determine and sketch the frequency response for the system with impulse response # [n].
(b) Consider the signal x[n] = sin (%) —2cos (%) Suppose that this signal is the input to
LTT systems with the following impulse responses. Determine the output in each case (i)

it = 2205 g = 208 05)

T n
solution
6.1 Parta
. W . Wn sin(Wn) . . .

Given h(n) = — smc(T) =—. We will show that H(Q) is the rectangle function by

1 Q| <2W
reverse. Assuming that H(Q) = 2 . therefore

otherwise

1 (W |
x[n] = — f X(Q) " daw
27'[ W

1 W
= f e Mde
27T W

1 Wn — p-jWn

T 2n n

1
= —sin(Wn)
n

Which is the [n] given. Therefore, the above shows that W has DFT of H(Q) as the
rectangle function. Here is sketch



12

H(Q)
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Figure 1: Plot of H(Q)

6.2 Partb
x [n] = sin (%) —2cos (%)

() I [n] = Sm(f). Hence y[n] = x[n] ® h[n]. Or Y(Q) = X(Q)H (Q), and then we find y [n]
by taking the inverse discrete Fourier transform. Here is the result and the code used. The
result is

y[n] = sin (%)

ClearAll[h, x, n];

wTn zTn
x[n_1] :=Sin[— —2Cos[— H
8 4
1 N
hin ] :=—Sin[— H
Tn 6

X = FourierSequenceTransform[x[n], n, w, FourierParameters -» {1, 1}];
H = FourierSequenceTransform[h[n], n, w, FourierParameters -» {1, 1}];
y = InverseFourierSequenceTransform[X *H, w, n]

Sin[n?ﬂ]

Figure 2: Code used to generate y[n]

Here is plot of y[n] forn =-8---8
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Figure 3: Plot of above y[n]

sin(%) sin(%n)

. Here is the result and the code used. The result is

y[n] = Zsin(%) —2cos (%—()

ClearAll[h, x, n, w];

x[n_] :=Sin[7;—n] -2Cos[7r4—n ;

1 b ]
hil[n ] :=—Sin[—

tn 6

1 mn
h2[n ] := —Sin[— H

tn 2

X = FourierSequenceTransform[x[n], n, w, FourierParameters -» {1, 1}];
H1 = FourierSequenceTransform[hl[n], n, w, FourierParameters -» {1, 1}];
H2 = FourierSequenceTransform[h2[n], n, w, FourierParameters -» {1, 1}];
yl = InverseFourierSequenceTransform[X « H1, w, n];

y2 = InverseFourierSequenceTransform[X * H2, w, n];

y=yl+y2

-2@5[%] +2Sin[”?”]

Figure 4: Code used to generate y[n]

Here is plot of y[n] forn=-8---8



Figure 5: Plot of above y[n]
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