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1 Problem 1

Problem Calculate the metric in elliptical coordinates

a
X = Ecoshycos@
y= gsinhysinﬁ
Solution

The coordinates in the Cartesian system are ¢ =x % = y and the coordinates in the
other system (Elliptic) are x! = i, x> = 0. The relation between these must be known and
invertible also, meaning C = C(x) and x = x (). This relation is given to use above as

a
= > cosh u cos 0
a
2= 5 sinh psin 0
The first step is to determine the metric tensor Sij for the Polar coordinates. This is given
by
B AT U
8kl = 6ij(9_ack8_9cl

The above using Einstein summation notation.

aCtalt 9?93

S11= 531 gl - dxl dxl
_ acl &Cl .\ acz acZ

du du  du du

FIASNEIAS
%) (5)

2
sinh u cos 6) + (g cosh i sin 6)

—_—
NS)
=

2

(sinh® 1 cos? 0 + cosh® i sin” 0)

((cosh?® = 1) cos? 0 + cosh® 1 (1 - cos? 0))

(cosh? p cos? 0 = cos? 6 + cosh® p — cosh? p cos? 0)
(

cosh? 1 — cos? 6)

And
~ 0‘)c1 &Cl ac2 0’)c2
§127 531922 T 9xl 922
~ acl acl s &CZ &C2
du 60 Jdu d0

a . a . a . a .
= (E sinh u cos 9) (_E cosh i sin 6) + (E cosh i sin 8) (E sinh u cos 8)
0




The above is as expected since the coordinate system is orthogonal. And
S SNISS
821 = 522 9x1 T gx2 g
B act ! N A% JC?
20 du  dJ0 Ju
= (—g cosh u sin 8) ( sinh u cos 8) (; sinh u cos 6) ( cosh i sin 6)
=0

The above is as expected since the coordinate system is orthogonal. It is also because g;;
is symmetric and we already found that g1, = 0. And finally

act ol 9r?ac?

82 = 5292 T I ox2
_ acl &Cl .\ &C2 ac2
d0 d6  JdO IO

FIASNEIAS
(55

2
(_E cosh u sin 9) + (g sinh u cos 6)

2

- %(coshzysm 6 + sinh? p cos? 6))

= Z—z(coshz (1 - cos?0) + (cosh® p — 1) cos? 0)

- Z—Z(cosh i — cosh? pcos? 0 + cosh? p cos? 6 — cos? 0)
- ‘;_2 (cosh? t - cos? 6)

From the above we see that
L |81 &2
8 (821 gzz]
3 a2 (cosh? u = cos? 6 0
0 cosh? p— cos? 6

4
That there are different ways to write the above, and they are all the same. For example,

we can write
_ @ ((1+sinh® ) - (1 - sin” 0) 0
8ij = 4 0 (1 + sin? y) - (1 — sin? 9)
_a? sinh? i + sin® O 0
4 0 sinh? u+ sin 6
Or we could use the double angle relations cos? 0 = % (1 + cos(20)) and cosh? u= % (1 + cosh (26))
to obtain

2 > (1 + cosh (20)) - 5 (1 + cos (20)) 0
8ii = g 0 > (1 + cosh (26)) — 1 (1 + cos (26))
3 Ll_ cosh (20) — cos (20) 0
-8 0 cosh (20) — cos (20)



2 Problem 2

Problem Show that in a general coordinates system €;,...;,, = geil"’iN where the covariant
form is obtained by lowering the indices on the contravariant form.

Solution

In tensor analysis, contravariant components of a tensor uses upper indices and covariant
components uses lower indices. Given a tensor in contravariant form €' then the covariant
form ¢; is obtained using

€; = gij€
Where on the right side the sum is taken over j since it is the repeated index. This operation
is called index contracting.

Therefore extending the above to all indices in €;,...;,, results in

€irig--in = 8itji8iip "+ Sinjn€ >N (1)

But we know that, from page 123 in the Matrices notes, that the determinant of the metric
can be written using Levi-Civita tensor as

8= Y, S1n82i,  GNiy€ 12N (2)

lllle
Comparing (1) and (2) shows that
€123.-.N = §11,82ip ** Niy€ 12N
— kehizin

Where k is constant, which in the case of €753..., this constant is g. Now need to show that
the constant is g for all cases of indices in €;;,...;, and not for the case €1p3...x.

Looking at the case of N = 2, and let us see what happens if we change the order of the
indices.

€iriy = 8i1j18inj€
And

€ipiy = 8igjp8irj1 €
But g;,i,85,j, is the same as g;,;,¢;,j, . So the ordering of indices does not change the constant
k. And since we found that this constant is ¢ from above, therefore we conclude that

. = ge‘jljZ"'jN (3)

€i1i2--~1N =



3 Problem 3

Problem Compute all components of the affine connection in polar coordinates.
Solution

In polar coordinates x! = r,x%2 = 6, the relation to the Cartesian coordinates is

x=rcos@
y=rsin0
Using

) oxi | oxk 9 @D

We know that in polar coordinates the metric tensor is ¢11 = g, =1, and g1 = g9 = 0,
and gp1 = gg, = 0, and g = ggp = 0 or in matrix form

(1o
gij_Or2

gh=| 1
0 2

I—.;:r — lglr 3ng + 881’1 _ 8grr
2 dr  dr  Ix
The sum is now over /, which goes from 7, 0 since these are the only coordinates. Hence

the above becomes

1 d d % 1 d d d
Iw;fr__grr( grr+ grr_ grr)+_ Qr( grr+ grr_ grr)

i1 li(agkl N 9gii ‘981‘k)

Hence ¢ is its inverse

Using (1), let i =r,j =r,k = r then

2 ar ar ar 2 ar ar 00

=2 M©0+0-0) +%<o>(‘9gﬂ I8 &gw)

or  ar 90
=0 2)
Using (1), leti=17r,j = 0,k = r then
1 (981 98a1  9ge
o ol 7 _ r
J ( or " or  od

or — 2
The sum is now over /, which goes from 7, 0 since these are the only coordinates. Hence
the above becomes

=g (B )« (B - )
1 1 g, ) 290,
= E(1)(0+0—0)+§(0)( 3’:’ + gfg - agg )
=0 (3)
Using (1), now leti =7v,j = 0,k = O then
r 1 17(3891 N dga (9899)
0072 198 ~ 00 9

The sum is now over /, which goes from 7, 0 since these are the only coordinates. Hence




the above becomes

ro_ 1 o (980r  980r 9800\ 1 o, (9800 9800 _ 9800
907 2 22 90 " 90 " o0

20 aa o

_ 1 _ 9 98re 9800 B 9gor
—2m0> 0) ) ( > 86)
1

=5 (=2r)

= —r (4)

Using (1), now let i =r,j = r,k = 0. Hence we need to find I'};. But due to symmetry in
lower indices, then I';, = I';, which we found in (3) to be zero. Hence

=0 (5)

Using (1), now leti = 0,j =,k = r then
1 6(98n 981 98
o _ * 10 T o "
tr=38 (86 T T od

The sum is now over /, which goes from 7, 0 since these are the only coordinates. Hence
the above becomes

1 Jg 98w 98w\ 1 98e 980 98
2] L 0 rr _ T 06 T re T
=38 (a@+ar ar)+2g ((96+8r 26
1 (98  98n 8w 1
‘_(O)(ae ar 8r)+§( )(0+0 0
=0 (6)

Using (1), now leti = 0,j = 0,k = r then
1 10(98n , 9801 980
ro — Z,0(28r _ gsor
or = 38 (ae T T o

The sum is now over /, which goes from 7, 0 since these are the only coordinates. Hence
the above becomes

1 o(98n  980r 986r\ | 1 o9(980 . 9800 980
- r@ rr r _ T - 00 T _ T
T6 =5 (96+&r or ) 728\ 96 T Tar T o0

1 agrr &gﬂr 8g@r 11 87
2(0)(86 ar or |27 0+ Ir 0

= 23 @)
1

= - (7)
r

Using (1), now let i = 0,j = r,k = O which finds I"reg but due to symmetry this is the same
as I"gr which is found above. Hence

1
Trp=~ ®)

Using (1), now leti = 0,j = 0,k = O then

1 dgo1  ISa1  9I8e0
o _ L _
Foo =38 ((99 90 T ox

The sum is now over I, which goes from r, 0 since these are the only coordinates. Hence
the above becomes

o (98er . 986r 98 dge0 9S00 98
l—wge_ ge( 8+ 0 68)+2g99( 68+ 89_ 00

20 90  or d0 ' 90 90

!

2

1 d d d 11
_E(O)( Sor , 980r _ 866) ~(0+0-0)
=0

a0 20 ar
9)



This completes the computation. In summary

I}, =0
rj, =0
bo = "
o =0
rg =0

1
rgr:;

1
Frgez;



4 Problem 4

Problem Calculate the gradient curl and divergence and Laplacian in spherical coordinates
using tensor analysis.

Solution

The following coordinates system convention is used

Az

/Polar angle

o P(r,¢,0)
0 |

r

> Y

x ¢ —» Azimuthal angle

Figure 1: Spherical Coordinates system

41 Finding metric tensor g;

The coordinates in the Cartesian system are O =x0% = Yy, (3 = z. And the coordinates
in the Spherical system are x! = ¢, x? = r,x> = 0. The relation between these is known
as (Note that the following depends on convention used for which is 0 and which is ¢.
Physics convention as shown in the diagram above is used here).

= rsin 6 cos @
2= rsin @sin ¢
3 =rcosB

The first step is to determine the metric tensor ¢ for the Spherical coordinates. This is
given by
L aC oy
8k = 05757
Since the coordinate system are orthogonal, g;; will be diagonal. Hence only g11, 822, ¢33
are non zero.

811 = 8¢¢
_ &Cl &Cl . &CZ &CZ .\ &CS &CC’)
Coxloxl  Ixloxl  9xl gxt
3 ot ot N dC% JC? N PICR &
S 9P P Ip Ip  IP I
99 I IP
. . 2 . 2 2
= (—r sin O sin qb) + (r sin 6 cos (p) +(0)
= 12 gin? O sin® ¢+ 72 sin® 6 cos? ¢
= 12sin® 0 (sin2 ¢ + cos? qb)

=12sin% 0




And
822 = &rr
_ 0’)C1 0’)C1 8C2 &CZ 0’)C3 0’)C3
a2 9x2 - dx? dx? - dx? dx?
3 oCt It 92 9r 9 acd
- or (9r+8r 8r+&r ar

(98, (22, (¢
\or ar ar

: 2 . AL 2
= (sm 0 cos (P) + (sm 0 sin qb) + (cos 0)
= sin? 0 cos? ¢ + sin® O sin® P + cos? O
= sin® 0 (C082 ¢+ sin? ¢) + cos? 0

= sin? 0 + cos? 0
=1

And

833 = 800
8C1 &Cl 8C2 8C2 8C3 8C3
TR " dx3 dx3 - dx3 dx3
_ 8C1 0’)c1 s acZ acz . acS acS
d0 d6 9O J6 IO IO

aC\* (a2 (9

~(50) +(3a) (%)
2 . 2 2
:(rcosecosqb) +(rcos@sm¢)) + (—rsin 0)

=12 cos? 0 (cos.2 ¢ + sin? qb) + 72 sin® 6
2

=12¢c0s2 0 + r2sin? O

Hence ds? in Spherical coordinates is

ds? = gdx*dx!

1) % 3)2
=8n (dx ) t 822 (dx ) + 833 (dx )
=8n (d¢) + g0 (dr)? + 33 (dO)?
=r2sin® 0 (dqb) dr) +72 (d@)

From the above we see that, using the order ¢, 7, 0 for the rows and columns
811 812 &§13

8ij =821 822 §23

831 832 &33

r2sin?0 0 0

= 0 1 0

0 0 r?

4

Therefore the determinant is ¢ = 7 sin? 6 and h; are given by the square root of the

diagonal elements of Sij
I’ll =rsin@ (A)
]’lz = 1
h3 =7



10

4.2 Finding Gradient

g1 19 13
B hlaxllhzalehgé)xs

Where h; are given in (A) and xl = qb,x =r,x> = 0. Therefore

(1 4 919
~\rsin@d¢’ Ir’ r 90

Hence given a function scalar f ((P, T, 6) then

1 of, _fe 19f.

Vi= rsm@&qb i 1’8968

4.3 Finding Curl

Using h; in (A) and x! = ¢, x? = 7,3 = O then

- o 1 d d
(VxV) =i ( 5 (13V3) - (hzvz))
S d (TVQ) 8Vr
WX%‘?( ar ae)
And
= = 1
(VxV) = i ( —— (V1) - (h3V3))
(V% V) = 5 2 (rsinOV,) - = (V)
r 2sin0\do ¢ qb
1 &(sin HV(P) B IV,
rsin O a0 do
And
> o 1 d d
(V V)3 = i, \9x (h2V2) = =5 (h1V1))

- 1 (4 J, .
(V x V)6 =— (% (Vi) - (rsin 9V¢))

2 2)

~ r|sin@ do ar

_
Therefore given a vector V, its curl is

ItV IV, | 1 9 (sin0V,) Vo), 11 v, (V)
ar 90 )T sme|” a0 06 |7 v \sme 9~ ar |

T = (
-

4.4 Finding Divergence

. J . o
V.-V= VZ'VZ = EVZ + TZZ]V] (1)
Where T, = Loli @ + 98i _ @ = Lol (98 which simplifies to as shown in class notes
i =28\ T od o) T 28 \ 54 p
page 143 to hence above becomes
. 1 0
rj=—=(v8)

V&



11

Hence (1) becomes

J . 14 :
. = VY _— ]
10

= \/g_xl (\/gvl)
Using the covariant form the above becomes
V-V= 17 ( \/g V-)
o \\G

Where in class notes /; is used in place of 1/g;;, but it is it the same.

The sum is over i. From above, the spherical coordinates are x' = ¢, x> = r,x> = 6. And

g = r*sin® 0. Hence the above becomes after expanding

1 J V#sinzev +i r4sin29V +i V#Sinzﬁv
VTASiHZQ &qb ’/g(P‘P ¢ ar rr r 00 V806 0

1 J rZSiDGV +8 rzsinQV N ) rzsinﬁv
"~ 12gin0 dp \ rsin O . P 1 "l 96 r 0

1 d d .
= g (8(}5 (7V¢) > (1’ sin OV ) 79 (sm QVG))

J 1 10 5 1 )
_ﬂ(rsinﬁv¢)+r_2$(r Vr)+r n@&@ (sin.60Ve)

V.V =

4.5 Finding Laplacian
The Laplacian is given by

ve_ 1 i det (g)i
[qet () Ixi| & X
Hence
V2 1 d (Vr‘*sin26 8]+ 1 d (Vr‘isinze 8]+ 1 d (Vr‘isinze 8]
VrAsin20 9% | 8u Vrtsin2 0 9% | 82 Vrtsin2 0 9% 8 IxX°

1 d (r?sin® 4 N 1 9 (#*sin@ 9 N 1 i rzsiHQi
r2sin 0 dp \r2sin? @ d¢p)  r2sinOdr\ 1 Jr) r2sin60d0\ 12 90

1 d 1 2 1 4 9(9 R 1 d 9(9
_rzsin68qb sin 0 do rzsm681’ r* sin or] " r2sin6 90 sin 20

= ! o 1 (Zri +r 8—2) + ! (cos Gi + sin 0—> sl )
12sin2 0 9(]52 d dr2]  r2sin0 d0 262
1 7 29 9? cos@ d 1 9?
rzsinzeé’T()z " ror i o " r2sin 6 96 " 2 962
3 9? 2 d 1 cosO od 9? 1 9?
o2 ot (sm 696 " an) 12 sin? 6 dP?

Therefore

v2 _82u 28u 1 cos@&u 2%u 1 2%u
T o T2 \sinede T 962) T 2sim2 0 g2

2 1 (COSG
= Uy + Uy + —
r

1

2 sin 0

—— Uy + Upp | + u
r2 \ sin O 0 69) PP
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