HW 9 Physics 5041 Mathematical Methods for Physics Spring 2019 University of Minnesota, Twin Cities

Nasser M. Abbasi

November 2, 2019

Compiled on November 2, 2019 at 10:30pm

[public]

Contents

1	Problem 1	2
2	Problem 2	5
3	Problem 3	6
4	Problem 4	9
	4.1 Finding metric tensor g_{ij}	9
	4.2 Finding Gradient	
	4.3 Finding Curl	12
	4.4 Finding Divergence	12
	4.5 Finding Laplacian	13

Problem Calculate the metric in elliptical coordinates

$$x = \frac{a}{2} \cosh \mu \cos \theta$$
$$y = \frac{a}{2} \sinh \mu \sin \theta$$

Solution

The coordinates in the Cartesian system are $\zeta^1 = x$, $\zeta^2 = y$ and the coordinates in the other system (Elliptic) are $x^1 = \mu$, $x^2 = \theta$. The relation between these must be known and invertible also, meaning $\zeta \equiv \zeta(x)$ and $x \equiv x(\zeta)$. This relation is given to use above as

$$\zeta^{1} = \frac{a}{2} \cosh \mu \cos \theta$$
$$\zeta^{2} = \frac{a}{2} \sinh \mu \sin \theta$$

The first step is to determine the metric tensor g_{ij} for the Polar coordinates. This is given by

$$g_{kl} = \delta_{ij} \frac{\partial \zeta^i}{\partial x^k} \frac{\partial \zeta^j}{\partial x^l}$$

The above using Einstein summation notation.

$$g_{11} = \frac{\partial \zeta^{1}}{\partial x^{1}} \frac{\partial \zeta^{1}}{\partial x^{1}} + \frac{\partial \zeta^{2}}{\partial x^{1}} \frac{\partial \zeta^{2}}{\partial x^{1}}$$

$$= \frac{\partial \zeta^{1}}{\partial \mu} \frac{\partial \zeta^{1}}{\partial \mu} + \frac{\partial \zeta^{2}}{\partial \mu} \frac{\partial \zeta^{2}}{\partial \mu}$$

$$= \left(\frac{\partial \zeta^{1}}{\partial \mu}\right)^{2} + \left(\frac{\partial \zeta^{2}}{\partial \mu}\right)^{2}$$

$$= \left(\frac{a}{2} \sinh \mu \cos \theta\right)^{2} + \left(\frac{a}{2} \cosh \mu \sin \theta\right)^{2}$$

$$= \frac{a^{2}}{4} \left(\sinh^{2} \mu \cos^{2} \theta + \cosh^{2} \mu \sin^{2} \theta\right)$$

$$= \frac{a^{2}}{4} \left(\left(\cosh^{2} \mu - 1\right) \cos^{2} \theta + \cosh^{2} \mu \left(1 - \cos^{2} \theta\right)\right)$$

$$= \frac{a^{2}}{4} \left(\cosh^{2} \mu \cos^{2} \theta - \cos^{2} \theta + \cosh^{2} \mu - \cosh^{2} \mu \cos^{2} \theta\right)$$

$$= \frac{a^{2}}{4} \left(\cosh^{2} \mu - \cos^{2} \theta\right)$$

And

$$g_{12} = \frac{\partial \zeta^{1}}{\partial x^{1}} \frac{\partial \zeta^{1}}{\partial x^{2}} + \frac{\partial \zeta^{2}}{\partial x^{1}} \frac{\partial \zeta^{2}}{\partial x^{2}}$$

$$= \frac{\partial \zeta^{1}}{\partial \mu} \frac{\partial \zeta^{1}}{\partial \theta} + \frac{\partial \zeta^{2}}{\partial \mu} \frac{\partial \zeta^{2}}{\partial \theta}$$

$$= \left(\frac{a}{2} \sinh \mu \cos \theta\right) \left(-\frac{a}{2} \cosh \mu \sin \theta\right) + \left(\frac{a}{2} \cosh \mu \sin \theta\right) \left(\frac{a}{2} \sinh \mu \cos \theta\right)$$

$$= 0$$

The above is as expected since the coordinate system is orthogonal. And

$$g_{21} = \frac{\partial \zeta^{1}}{\partial x^{2}} \frac{\partial \zeta^{1}}{\partial x^{1}} + \frac{\partial \zeta^{2}}{\partial x^{2}} \frac{\partial \zeta^{2}}{\partial x^{1}}$$

$$= \frac{\partial \zeta^{1}}{\partial \theta} \frac{\partial \zeta^{1}}{\partial \mu} + \frac{\partial \zeta^{2}}{\partial \theta} \frac{\partial \zeta^{2}}{\partial \mu}$$

$$= \left(-\frac{a}{2} \cosh \mu \sin \theta \right) \left(\frac{a}{2} \sinh \mu \cos \theta \right) + \left(\frac{a}{2} \sinh \mu \cos \theta \right) \left(\frac{a}{2} \cosh \mu \sin \theta \right)$$

$$= 0$$

The above is as expected since the coordinate system is orthogonal. It is also because g_{ij} is symmetric and we already found that $g_{12} = 0$. And finally

$$g_{22} = \frac{\partial \zeta^{1}}{\partial x^{2}} \frac{\partial \zeta^{1}}{\partial x^{2}} + \frac{\partial \zeta^{2}}{\partial x^{2}} \frac{\partial \zeta^{2}}{\partial x^{2}}$$

$$= \frac{\partial \zeta^{1}}{\partial \theta} \frac{\partial \zeta^{1}}{\partial \theta} + \frac{\partial \zeta^{2}}{\partial \theta} \frac{\partial \zeta^{2}}{\partial \theta}$$

$$= \left(\frac{\partial \zeta^{1}}{\partial \theta}\right)^{2} + \left(\frac{\partial \zeta^{2}}{\partial \theta}\right)^{2}$$

$$= \left(-\frac{a}{2} \cosh \mu \sin \theta\right)^{2} + \left(\frac{a}{2} \sinh \mu \cos \theta\right)^{2}$$

$$= \frac{a^{2}}{4} \left(\cosh^{2} \mu \sin^{2} \theta + \sinh^{2} \mu \cos^{2} \theta\right)$$

$$= \frac{a^{2}}{4} \left(\cosh^{2} \mu \left(1 - \cos^{2} \theta\right) + \left(\cosh^{2} \mu - 1\right) \cos^{2} \theta\right)$$

$$= \frac{a^{2}}{4} \left(\cosh^{2} \mu - \cosh^{2} \mu \cos^{2} \theta + \cosh^{2} \mu \cos^{2} \theta - \cos^{2} \theta\right)$$

$$= \frac{a^{2}}{4} \left(\cosh^{2} \mu - \cos^{2} \theta\right)$$

From the above we see that

$$g_{ij} = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix}$$
$$= \frac{a^2}{4} \begin{pmatrix} \cosh^2 \mu - \cos^2 \theta & 0 \\ 0 & \cosh^2 \mu - \cos^2 \theta \end{pmatrix}$$

That there are different ways to write the above, and they are all the same. For example, we can write

$$g_{ij} = \frac{a^2}{4} \begin{pmatrix} (1 + \sinh^2 \mu) - (1 - \sin^2 \theta) & 0 \\ 0 & (1 + \sin^2 \mu) - (1 - \sin^2 \theta) \end{pmatrix}$$
$$= \frac{a^2}{4} \begin{pmatrix} \sinh^2 \mu + \sin^2 \theta & 0 \\ 0 & \sinh^2 \mu + \sin^2 \theta \end{pmatrix}$$

Or we could use the double angle relations $\cos^2\theta = \frac{1}{2}\left(1 + \cos\left(2\theta\right)\right)$ and $\cosh^2\mu = \frac{1}{2}\left(1 + \cosh\left(2\theta\right)\right)$ to obtain

$$g_{ij} = \frac{a^2}{4} \begin{pmatrix} \frac{1}{2} (1 + \cosh(2\theta)) - \frac{1}{2} (1 + \cos(2\theta)) & 0 \\ 0 & \frac{1}{2} (1 + \cosh(2\theta)) - \frac{1}{2} (1 + \cos(2\theta)) \end{pmatrix}$$
$$= \frac{a^2}{8} \begin{pmatrix} \cosh(2\theta) - \cos(2\theta) & 0 \\ 0 & \cosh(2\theta) - \cos(2\theta) \end{pmatrix}$$

<u>Problem</u> Show that in a general coordinates system $\epsilon_{i_1\cdots i_N} = g\epsilon^{i_1\cdots i_N}$ where the covariant form is obtained by lowering the indices on the contravariant form.

Solution

In tensor analysis, contravariant components of a tensor uses upper indices and covariant components uses lower indices. Given a tensor in contravariant form ϵ^i then the covariant form ϵ_i is obtained using

$$\epsilon_i = g_{ij}\epsilon^j$$

Where on the right side the sum is taken over j since it is the repeated index. This operation is called index contracting.

Therefore extending the above to all indices in $\epsilon_{i_1\cdots i_N}$ results in

$$\epsilon_{i_1 i_2 \cdots i_N} = g_{i_1 j_1} g_{i_2 j_2} \cdots g_{i_N j_N} \epsilon^{j_1 j_2 \cdots j_N} \tag{1}$$

But we know that, from page 123 in the Matrices notes, that the determinant of the metric can be written using Levi-Civita tensor as

$$g = \sum_{i_1 i_2 \cdots i_N} g_{1i_1} g_{2i_2} \cdots g_{Ni_N} \epsilon^{i_1 i_2 \cdots i_N}$$
 (2)

Comparing (1) and (2) shows that

$$\epsilon_{123\cdots N} = g_{1i_1}g_{2i_2}\cdots g_{Ni_N}\epsilon^{i_1i_2\cdots i_N}$$
$$= k\epsilon^{i_1i_2\cdots i_N}$$

Where k is constant, which in the case of $\epsilon_{123\cdots N}$, this constant is g. Now need to show that the constant is g for all cases of indices in $\epsilon_{i_1i_2\cdots i_N}$ and not for the case $\epsilon_{123\cdots N}$.

Looking at the case of N=2, and let us see what happens if we change the order of the indices.

$$\epsilon_{i_1i_2} = g_{i_1j_1}g_{i_2j_2}\epsilon^{j_1j_2}$$

And

$$\epsilon_{i_2i_1} = g_{i_2j_2}g_{i_1j_1}\epsilon^{j_2j_1}$$

But $g_{i_1j_1}g_{i_2j_2}$ is the same as $g_{i_2j_2}g_{i_1j_1}$. So the ordering of indices does not change the constant k. And since we found that this constant is g from above, therefore we conclude that

$$\epsilon_{i_1 i_2 \cdots i_N} = g \epsilon^{j_1 j_2 \cdots j_N} \tag{3}$$

<u>Problem</u> Compute all components of the affine connection in polar coordinates.

Solution

In polar coordinates $x^1 = r$, $x^2 = \theta$, the relation to the Cartesian coordinates is

$$x = r\cos\theta$$
$$y = r\sin\theta$$

Using

$$\Gamma_{jk}^{i} = \frac{1}{2} g^{li} \left(\frac{\partial g_{kl}}{\partial x^{i}} + \frac{\partial g_{jl}}{\partial x^{k}} - \frac{\partial g_{jk}}{\partial x^{l}} \right) \tag{1}$$

We know that in polar coordinates the metric tensor is $g_{11} = g_{rr} = 1$, and $g_{12} = g_{r\theta} = 0$, and $g_{21} = g_{\theta r} = 0$, and $g_{22} = g_{\theta \theta} = 0$ or in matrix form

$$g_{ij} = \begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$$

Hence g^{ij} is its inverse

$$g^{ij} = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{r^2} \end{pmatrix}$$

Using (1), let i = r, j = r, k = r then

$$\Gamma_{rr}^{r} = \frac{1}{2} g^{lr} \left(\frac{\partial g_{rl}}{\partial r} + \frac{\partial g_{rl}}{\partial r} - \frac{\partial g_{rr}}{\partial x^{l}} \right)$$

The sum is now over l, which goes from r, θ since these are the only coordinates. Hence the above becomes

$$\Gamma_{rr}^{r} = \frac{1}{2}g^{rr} \left(\frac{\partial g_{rr}}{\partial r} + \frac{\partial g_{rr}}{\partial r} - \frac{\partial g_{rr}}{\partial r} \right) + \frac{1}{2}g^{\theta r} \left(\frac{\partial g_{rr}}{\partial r} + \frac{\partial g_{rr}}{\partial r} - \frac{\partial g_{rr}}{\partial \theta} \right)$$

$$= \frac{1}{2}(1)(0+0-0) + \frac{1}{2}(0)\left(\frac{\partial g_{rr}}{\partial r} + \frac{\partial g_{rr}}{\partial r} - \frac{\partial g_{rr}}{\partial \theta} \right)$$

$$= 0$$
(2)

Using (1), let $i = r, j = \theta, k = r$ then

$$\Gamma_{\theta r}^{r} = \frac{1}{2} g^{lr} \left(\frac{\partial g_{rl}}{\partial r} + \frac{\partial g_{\theta l}}{\partial r} - \frac{\partial g_{\theta r}}{\partial x^{l}} \right)$$

The sum is now over l, which goes from r, θ since these are the only coordinates. Hence

the above becomes

$$\Gamma_{\theta r}^{r} = \frac{1}{2} g^{rr} \left(\frac{\partial g_{rr}}{\partial r} + \frac{\partial g_{\theta r}}{\partial r} - \frac{\partial g_{\theta r}}{\partial r} \right) + \frac{1}{2} g^{\theta r} \left(\frac{\partial g_{r\theta}}{\partial r} + \frac{\partial g_{\theta \theta}}{\partial r} - \frac{\partial g_{\theta r}}{\partial \theta} \right)$$

$$= \frac{1}{2} (1) (0 + 0 - 0) + \frac{1}{2} (0) \left(\frac{\partial g_{r\theta}}{\partial r} + \frac{\partial g_{\theta \theta}}{\partial r} - \frac{\partial g_{\theta r}}{\partial \theta} \right)$$

$$= 0$$
(3)

Using (1), now let $i = r, j = \theta, k = \theta$ then

$$\Gamma_{\theta\theta}^{r} = \frac{1}{2}g^{lr}\left(\frac{\partial g_{\theta l}}{\partial \theta} + \frac{\partial g_{\theta l}}{\partial \theta} - \frac{\partial g_{\theta \theta}}{\partial x^{l}}\right)$$

The sum is now over l, which goes from r, θ since these are the only coordinates. Hence the above becomes

$$\Gamma_{\theta\theta}^{r} = \frac{1}{2}g^{rr} \left(\frac{\partial g_{\theta r}}{\partial \theta} + \frac{\partial g_{\theta r}}{\partial \theta} - \frac{\partial g_{\theta \theta}}{\partial r} \right) + \frac{1}{2}g^{\theta r} \left(\frac{\partial g_{\theta \theta}}{\partial \theta} + \frac{\partial g_{\theta \theta}}{\partial \theta} - \frac{\partial g_{\theta \theta}}{\partial \theta} \right)$$

$$= \frac{1}{2}(1)\left((0) + (0) - \frac{\partial r^{2}}{\partial r} \right) + \frac{1}{2}(0)\left(\frac{\partial g_{r\theta}}{\partial r} + \frac{\partial g_{\theta \theta}}{\partial r} - \frac{\partial g_{\theta r}}{\partial \theta} \right)$$

$$= \frac{1}{2}(-2r)$$

$$= -r \tag{4}$$

Using (1), now let $i = r, j = r, k = \theta$. Hence we need to find $\Gamma_{r\theta}^r$. But due to symmetry in lower indices, then $\Gamma_{r\theta}^r = \Gamma_{\theta r}^r$ which we found in (3) to be zero. Hence

$$\Gamma_{r\theta}^{r} = 0 \tag{5}$$

Using (1), now let $i = \theta$, j = r, k = r then

$$\Gamma_{rr}^{\theta} = \frac{1}{2} g^{l\theta} \left(\frac{\partial g_{rl}}{\partial \theta} + \frac{\partial g_{rl}}{\partial r} - \frac{\partial g_{rr}}{\partial x^l} \right)$$

The sum is now over l, which goes from r, θ since these are the only coordinates. Hence the above becomes

$$\Gamma_{rr}^{\theta} = \frac{1}{2}g^{r\theta} \left(\frac{\partial g_{rr}}{\partial \theta} + \frac{\partial g_{rr}}{\partial r} - \frac{\partial g_{rr}}{\partial r} \right) + \frac{1}{2}g^{\theta\theta} \left(\frac{\partial g_{r\theta}}{\partial \theta} + \frac{\partial g_{r\theta}}{\partial r} - \frac{\partial g_{rr}}{\partial \theta} \right)$$

$$= \frac{1}{2}(0) \left(\frac{\partial g_{rr}}{\partial \theta} + \frac{\partial g_{rr}}{\partial r} - \frac{\partial g_{rr}}{\partial r} \right) + \frac{1}{2} \left(\frac{1}{r^2} \right) (0 + 0 - 0)$$

$$= 0$$

$$(6)$$

Using (1), now let $i = \theta, j = \theta, k = r$ then

$$\Gamma_{\theta r}^{\theta} = \frac{1}{2} g^{l\theta} \left(\frac{\partial g_{rl}}{\partial \theta} + \frac{\partial g_{\theta l}}{\partial r} - \frac{\partial g_{\theta r}}{\partial x^{l}} \right)$$

The sum is now over l, which goes from r, θ since these are the only coordinates. Hence

the above becomes

$$\Gamma_{\theta r}^{\theta} = \frac{1}{2} g^{r\theta} \left(\frac{\partial g_{rr}}{\partial \theta} + \frac{\partial g_{\theta r}}{\partial r} - \frac{\partial g_{\theta r}}{\partial r} \right) + \frac{1}{2} g^{\theta \theta} \left(\frac{\partial g_{r\theta}}{\partial \theta} + \frac{\partial g_{\theta \theta}}{\partial r} - \frac{\partial g_{\theta r}}{\partial \theta} \right)$$

$$= \frac{1}{2} (0) \left(\frac{\partial g_{rr}}{\partial \theta} + \frac{\partial g_{\theta r}}{\partial r} - \frac{\partial g_{\theta r}}{\partial r} \right) + \frac{1}{2} \frac{1}{r^2} \left(0 + \frac{\partial r^2}{\partial r} - 0 \right)$$

$$= \frac{1}{2} \frac{1}{r^2} (2r)$$

$$= \frac{1}{r}$$

$$(7)$$

Using (1), now let $i=\theta, j=r, k=\theta$ which finds $\Gamma_{r\theta}^{\theta}$ but due to symmetry this is the same as $\Gamma_{\theta r}^{\theta}$ which is found above. Hence

$$\Gamma_{r\theta}^{\theta} = \frac{1}{r} \tag{8}$$

Using (1), now let $i = \theta, j = \theta, k = \theta$ then

$$\Gamma_{\theta\theta}^{\theta} = \frac{1}{2} g^{l\theta} \left(\frac{\partial g_{\theta l}}{\partial \theta} + \frac{\partial g_{\theta l}}{\partial \theta} - \frac{\partial g_{\theta \theta}}{\partial x^{l}} \right)$$

The sum is now over l, which goes from r, θ since these are the only coordinates. Hence the above becomes

$$\Gamma_{\theta\theta}^{\theta} = \frac{1}{2}g^{r\theta} \left(\frac{\partial g_{\theta r}}{\partial \theta} + \frac{\partial g_{\theta r}}{\partial \theta} - \frac{\partial g_{\theta \theta}}{\partial r} \right) + \frac{1}{2}g^{\theta\theta} \left(\frac{\partial g_{\theta \theta}}{\partial \theta} + \frac{\partial g_{\theta \theta}}{\partial \theta} - \frac{\partial g_{\theta \theta}}{\partial \theta} \right)$$

$$= \frac{1}{2} (0) \left(\frac{\partial g_{\theta r}}{\partial \theta} + \frac{\partial g_{\theta r}}{\partial \theta} - \frac{\partial g_{\theta \theta}}{\partial r} \right) + \frac{1}{2} \frac{1}{r^2} (0 + 0 - 0)$$

$$= 0$$

$$(9)$$

This completes the computation. In summary

$$\Gamma_{rr}^{r} = 0$$

$$\Gamma_{\theta r}^{r} = 0$$

$$\Gamma_{\theta \theta}^{r} = -r$$

$$\Gamma_{r\theta}^{r} = 0$$

$$\Gamma_{rr}^{\theta} = 0$$

$$\Gamma_{rr}^{\theta} = \frac{1}{r}$$

$$\Gamma_{\theta \theta}^{\theta} = \frac{1}{r}$$

$$\Gamma_{\theta \theta}^{\theta} = 0$$

<u>Problem</u> Calculate the gradient curl and divergence and Laplacian in spherical coordinates using tensor analysis.

Solution

The following coordinates system convention is used

Figure 1: Spherical Coordinates system

4.1 Finding metric tensor g_{ij}

The coordinates in the Cartesian system are $\zeta^1 = x$, $\zeta^2 = y$, $\zeta^3 = z$. And the coordinates in the Spherical system are $x^1 = \phi$, $x^2 = r$, $x^3 = \theta$. The relation between these is known as (Note that the following depends on convention used for which is θ and which is ϕ . Physics convention as shown in the diagram above is used here).

$$\zeta^{1} = r \sin \theta \cos \phi$$
$$\zeta^{2} = r \sin \theta \sin \phi$$
$$\zeta^{3} = r \cos \theta$$

The first step is to determine the metric tensor g for the Spherical coordinates. This is given by

$$g_{kl} = \delta_{ij} \frac{\partial \zeta^i}{\partial x^k} \frac{\partial \zeta^j}{\partial x^l}$$

Since the coordinate system are orthogonal, g_{kl} will be diagonal. Hence only g_{11}, g_{22}, g_{33} are non zero.

$$g_{11} = g_{\phi\phi}$$

$$= \frac{\partial \zeta^{1}}{\partial x^{1}} \frac{\partial \zeta^{1}}{\partial x^{1}} + \frac{\partial \zeta^{2}}{\partial x^{1}} \frac{\partial \zeta^{2}}{\partial x^{1}} + \frac{\partial \zeta^{3}}{\partial x^{1}} \frac{\partial \zeta^{3}}{\partial x^{1}}$$

$$= \frac{\partial \zeta^{1}}{\partial \phi} \frac{\partial \zeta^{1}}{\partial \phi} + \frac{\partial \zeta^{2}}{\partial \phi} \frac{\partial \zeta^{2}}{\partial \phi} + \frac{\partial \zeta^{3}}{\partial \phi} \frac{\partial \zeta^{3}}{\partial \phi}$$

$$= \left(\frac{\partial \zeta^{1}}{\partial \phi}\right)^{2} + \left(\frac{\partial \zeta^{2}}{\partial \phi}\right)^{2} + \left(\frac{\partial \zeta^{3}}{\partial \phi}\right)^{2}$$

$$= \left(-r\sin\theta\sin\phi\right)^{2} + \left(r\sin\theta\cos\phi\right)^{2} + (0)^{2}$$

$$= r^{2}\sin^{2}\theta\sin^{2}\phi + r^{2}\sin^{2}\theta\cos^{2}\phi$$

$$= r^{2}\sin^{2}\theta\left(\sin^{2}\phi + \cos^{2}\phi\right)$$

$$= r^{2}\sin^{2}\theta$$

And

$$g_{22} = g_{rr}$$

$$= \frac{\partial \zeta^{1}}{\partial x^{2}} \frac{\partial \zeta^{1}}{\partial x^{2}} + \frac{\partial \zeta^{2}}{\partial x^{2}} \frac{\partial \zeta^{2}}{\partial x^{2}} + \frac{\partial \zeta^{3}}{\partial x^{2}} \frac{\partial \zeta^{3}}{\partial x^{2}}$$

$$= \frac{\partial \zeta^{1}}{\partial r} \frac{\partial \zeta^{1}}{\partial r} + \frac{\partial \zeta^{2}}{\partial r} \frac{\partial \zeta^{2}}{\partial r} + \frac{\partial \zeta^{3}}{\partial r} \frac{\partial \zeta^{3}}{\partial r}$$

$$= \left(\frac{\partial \zeta^{1}}{\partial r}\right)^{2} + \left(\frac{\partial \zeta^{2}}{\partial r}\right)^{2} + \left(\frac{\partial \zeta^{3}}{\partial r}\right)^{2}$$

$$= \left(\sin \theta \cos \phi\right)^{2} + \left(\sin \theta \sin \phi\right)^{2} + \left(\cos \theta\right)^{2}$$

$$= \sin^{2} \theta \cos^{2} \phi + \sin^{2} \theta \sin^{2} \phi + \cos^{2} \theta$$

$$= \sin^{2} \theta \left(\cos^{2} \phi + \sin^{2} \phi\right) + \cos^{2} \theta$$

$$= \sin^{2} \theta + \cos^{2} \theta$$

$$= 1$$

And

$$g_{33} = g_{\theta\theta}$$

$$= \frac{\partial \zeta^{1}}{\partial x^{3}} \frac{\partial \zeta^{1}}{\partial x^{3}} + \frac{\partial \zeta^{2}}{\partial x^{3}} \frac{\partial \zeta^{2}}{\partial x^{3}} + \frac{\partial \zeta^{3}}{\partial x^{3}} \frac{\partial \zeta^{3}}{\partial x^{3}}$$

$$= \frac{\partial \zeta^{1}}{\partial \theta} \frac{\partial \zeta^{1}}{\partial \theta} + \frac{\partial \zeta^{2}}{\partial \theta} \frac{\partial \zeta^{2}}{\partial \theta} + \frac{\partial \zeta^{3}}{\partial \theta} \frac{\partial \zeta^{3}}{\partial \theta}$$

$$= \left(\frac{\partial \zeta^{1}}{\partial \theta}\right)^{2} + \left(\frac{\partial \zeta^{2}}{\partial \theta}\right)^{2} + \left(\frac{\partial \zeta^{3}}{\partial \theta}\right)^{2}$$

$$= \left(r\cos\theta\cos\phi\right)^{2} + \left(r\cos\theta\sin\phi\right)^{2} + (-r\sin\theta)^{2}$$

$$= r^{2}\cos^{2}\theta \left(\cos^{2}\phi + \sin^{2}\phi\right) + r^{2}\sin^{2}\theta$$

$$= r^{2}\cos^{2}\theta + r^{2}\sin^{2}\theta$$

$$= r^{2}$$

Hence ds^2 in Spherical coordinates is

$$ds^{2} = g_{kl}dx^{k}dx^{l}$$

$$= g_{11} (dx^{1})^{2} + g_{22} (dx^{2})^{2} + g_{33} (dx^{3})^{2}$$

$$= g_{11} (d\phi)^{2} + g_{22} (dr)^{2} + g_{33} (d\theta)^{2}$$

$$= r^{2} \sin^{2}\theta (d\phi)^{2} + (dr)^{2} + r^{2} (d\theta)^{2}$$

From the above we see that, using the order ϕ , r, θ for the rows and columns

$$g_{ij} = \begin{pmatrix} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33} \end{pmatrix}$$
$$= \begin{pmatrix} r^2 \sin^2 \theta & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & r^2 \end{pmatrix}$$

Therefore the determinant is $g = r^4 \sin^2 \theta$ and h_i are given by the square root of the diagonal elements of g_{ij}

$$h_1 = r \sin \theta$$

$$h_2 = 1$$

$$h_3 = r$$
(A)

4.2 Finding Gradient

$$\nabla = \left(\frac{1}{h_1} \frac{\partial}{\partial x^1}, \frac{1}{h_2} \frac{\partial}{\partial x^2}, \frac{1}{h_3} \frac{\partial}{\partial x^3}\right)$$

Where h_i are given in (A) and $x^1 = \phi$, $x^2 = r$, $x^3 = \theta$. Therefore

$$\nabla = \left(\frac{1}{r\sin\theta} \frac{\partial}{\partial \phi}, \frac{\partial}{\partial r}, \frac{1}{r} \frac{\partial}{\partial \theta}\right)$$

Hence given a function scalar $f(\phi, r, \theta)$ then

$$\nabla f = \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \hat{e}_{\phi} + \frac{\partial f}{\partial r} \hat{e}_{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \hat{e}_{\theta}$$

4.3 Finding Curl

Using h_i in (A) and $x^1 = \phi$, $x^2 = r$, $x^3 = \theta$ then

$$\left(\vec{\nabla} \times \vec{V} \right)_1 = \frac{1}{h_2 h_3} \left(\frac{\partial}{\partial x^2} \left(h_3 V_3 \right) - \frac{\partial}{\partial x^3} \left(h_2 V_2 \right) \right)$$

$$\left(\vec{\nabla} \times \vec{v} \right)_{\phi} = \frac{1}{r} \left(\frac{\partial \left(r V_{\theta} \right)}{\partial r} - \frac{\partial V_r}{\partial \theta} \right)$$

And

$$\begin{split} \left(\vec{\nabla} \times \vec{V}\right)_2 &= \frac{1}{h_3 h_1} \left(\frac{\partial}{\partial x^3} \left(h_1 V_1 \right) - \frac{\partial}{\partial x^1} \left(h_3 V_3 \right) \right) \\ \left(\vec{\nabla} \times \vec{V}\right)_r &= \frac{1}{r^2 \sin \theta} \left(\frac{\partial}{\partial \theta} \left(r \sin \theta V_\phi \right) - \frac{\partial}{\partial \phi} \left(r V_\theta \right) \right) \\ &= \frac{1}{r \sin \theta} \left(\frac{\partial \left(\sin \theta V_\phi \right)}{\partial \theta} - \frac{\partial V_\theta}{\partial \phi} \right) \end{split}$$

And

$$(\vec{\nabla} \times \vec{V})_3 = \frac{1}{h_1 h_2} \left(\frac{\partial}{\partial x^1} (h_2 V_2) - \frac{\partial}{\partial x^2} (h_1 V_1) \right)$$

$$(\vec{\nabla} \times \vec{V})_{\theta} = \frac{1}{r \sin \theta} \left(\frac{\partial}{\partial \phi} (V_r) - \frac{\partial}{\partial r} (r \sin \theta V_{\phi}) \right)$$

$$= \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial V_r}{\partial \phi} - \frac{\partial (r V_{\phi})}{\partial r} \right)$$

Therefore given a vector \vec{V} , its curl is

$$\vec{\nabla} \times \vec{V} = \frac{1}{r} \left(\frac{\partial (rV_{\theta})}{\partial r} - \frac{\partial V_r}{\partial \theta} \right) \hat{e}_{\phi} + \frac{1}{r \sin \theta} \left(\frac{\partial \left(\sin \theta V_{\phi} \right)}{\partial \theta} - \frac{\partial V_{\theta}}{\partial \phi} \right) \hat{e}_r + \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial V_r}{\partial \phi} - \frac{\partial \left(rV_{\phi} \right)}{\partial r} \right) \hat{e}_{\theta}$$

4.4 Finding Divergence

$$\nabla \cdot V = \nabla_i V^i = \frac{\partial}{\partial x^i} V^i + \Gamma^i_{ij} V^j \tag{1}$$

Where $\Gamma^{i}_{ij} = \frac{1}{2}g^{li}\left(\frac{\partial g_{jl}}{\partial x^{i}} + \frac{\partial g_{il}}{\partial x^{j}} - \frac{\partial g_{ij}}{\partial x^{l}}\right) = \frac{1}{2}g^{li}\left(\frac{\partial g_{il}}{\partial x^{j}}\right)$ which simplifies to as shown in class notes page 143 to hence above becomes

$$\Gamma^{i}_{ij} = \frac{1}{\sqrt{g}} \frac{\partial}{x^{j}} \left(\sqrt{g} \right)$$

Hence (1) becomes

$$\nabla \cdot V = \frac{\partial}{\partial x^{i}} V^{i} + \frac{1}{\sqrt{g}} \frac{\partial}{x^{j}} \left(\sqrt{g} \right) V^{j}$$
$$= \frac{1}{\sqrt{g}} \frac{\partial}{x^{i}} \left(\sqrt{g} V^{i} \right)$$

Using the covariant form the above becomes

$$\nabla \cdot V = \frac{1}{\sqrt{g}} \frac{\partial}{x^i} \left(\frac{\sqrt{g}}{\sqrt{g_{ii}}} V_i \right)$$

Where in class notes h_i is used in place of $\sqrt{g_{ii}}$, but it is it the same.

The sum is over *i*. From above, the spherical coordinates are $x^1 = \phi$, $x^2 = r$, $x^3 = \theta$. And $g = r^4 \sin^2 \theta$. Hence the above becomes after expanding

$$\begin{split} \nabla.V &= \frac{1}{\sqrt{r^4 \sin^2 \theta}} \left(\frac{\partial}{\partial \phi} \left(\frac{\sqrt{r^4 \sin^2 \theta}}{\sqrt{g_{\phi \phi}}} V_{\phi} \right) + \frac{\partial}{\partial r} \left(\frac{\sqrt{r^4 \sin^2 \theta}}{\sqrt{g_{rr}}} V_{r} \right) + \frac{\partial}{\partial \theta} \left(\frac{\sqrt{r^4 \sin^2 \theta}}{\sqrt{g_{\theta \theta}}} V_{\theta} \right) \right) \\ &= \frac{1}{r^2 \sin \theta} \left(\frac{\partial}{\partial \phi} \left(\frac{r^2 \sin \theta}{r \sin \theta} V_{\phi} \right) + \frac{\partial}{\partial r} \left(\frac{r^2 \sin \theta}{1} V_{r} \right) + \frac{\partial}{\partial \theta} \left(\frac{r^2 \sin \theta}{r} V_{\theta} \right) \right) \\ &= \frac{1}{r^2 \sin \theta} \left(\frac{\partial}{\partial \phi} \left(r V_{\phi} \right) + \frac{\partial}{\partial r} \left(r^2 \sin \theta V_{r} \right) + \frac{\partial}{\partial \theta} \left(\sin \theta V_{\theta} \right) \right) \\ &= \frac{\partial}{\partial \phi} \left(\frac{1}{r \sin \theta} V_{\phi} \right) + \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 V_{r} \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta V_{\theta} \right) \end{split}$$

4.5 Finding Laplacian

The Laplacian is given by

$$\nabla^2 = \frac{1}{\sqrt{\det\left(g\right)}} \frac{\partial}{\partial x_i} \left(\frac{\sqrt{\det\left(g\right)}}{g_{ii}} \frac{\partial}{\partial x^i} \right)$$

Hence

$$\nabla^{2} = \frac{1}{\sqrt{r^{4} \sin^{2} \theta}} \frac{\partial}{\partial x_{1}} \left(\frac{\sqrt{r^{4} \sin^{2} \theta}}{g_{11}} \frac{\partial}{\partial x^{1}} \right) + \frac{1}{\sqrt{r^{4} \sin^{2} \theta}} \frac{\partial}{\partial x_{2}} \left(\frac{\sqrt{r^{4} \sin^{2} \theta}}{g_{22}} \frac{\partial}{\partial x^{2}} \right) + \frac{1}{\sqrt{r^{4} \sin^{2} \theta}} \frac{\partial}{\partial x_{3}} \left(\frac{\sqrt{r^{4} \sin^{2} \theta}}{g_{33}} \frac{\partial}{\partial x^{3}} \right)$$

$$= \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \phi} \left(\frac{r^{2} \sin \theta}{r^{2} \sin^{2} \theta} \frac{\partial}{\partial \phi} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial r} \left(\frac{r^{2} \sin \theta}{1} \frac{\partial}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\frac{r^{2} \sin \theta}{r^{2}} \frac{\partial}{\partial \theta} \right)$$

$$= \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \phi} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \phi} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial r} \left(r^{2} \sin \theta \frac{\partial}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right)$$

$$= \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} + \frac{1}{r^{2}} \left(2r \frac{\partial}{\partial r} + r^{2} \frac{\partial^{2}}{\partial r^{2}} \right) + \frac{1}{r^{2} \sin \theta} \left(\cos \theta \frac{\partial}{\partial \theta} + \sin \theta \frac{\partial^{2}}{\partial \theta^{2}} \right)$$

$$= \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{\partial^{2}}{\partial r^{2}} + \frac{\cos \theta}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} + \frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}$$

$$= \frac{\partial^{2}}{\partial r^{2}} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^{2}} \left(\frac{\cos \theta}{\sin \theta} \frac{\partial}{\partial \theta} + \frac{\partial^{2}}{\partial \theta^{2}} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}$$

Therefore

$$\begin{split} \nabla^2 u &= \frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \left(\frac{\cos \theta}{\sin \theta} \frac{\partial u}{\partial \theta} + \frac{\partial^2 u}{\partial \theta^2} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 u}{\partial \phi^2} \\ &= u_{rr} + \frac{2}{r} u_r + \frac{1}{r^2} \left(\frac{\cos \theta}{\sin \theta} u_\theta + u_{\theta\theta} \right) + \frac{1}{r^2 \sin^2 \theta} u_{\phi\phi} \end{split}$$