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1 Problem 1

Problem Calculate the metric in elliptical coordinates

a
X = Ecoshycos@
y= gsinhysinﬁ
Solution

The coordinates in the Cartesian system are ¢ =x2 = y and the coordinates in the
other system (Elliptic) are x! = y,x?> = 6. The relation between these must be known and
invertible also, meaning C = C(x) and x = x (). This relation is given to use above as

a
= > cosh u cos 0
a
2= 5 sinh psin 0
The first step is to determine the metric tensor g;; for the Polar coordinates. This is given by

aC 9y
8k = 05757

The above using Einstein summation notation.

aCt a9 Ir?

S11= 51 g * dxl dxl
B 8C1 8C1 .\ ac2 8C2

du du  du du

PSS
%) (%)

2
sinh u cos 6) + (g cosh u sin 9)

I
—_—
NS)
=

2

sinh? U cos? O + cosh? U sin? 6)

(cosh2 = 1) cos? 0 + cosh? i (1 — cos? 9))

cosh? 1 — cos? 6?)

(
(

= (cosh2 u cos? 0 — cos? O + cosh? Y= cosh? U cos? 9)
(



And
aCtact 9 I3
8127 51952 * dxl dx?
_ ot ot N dC% A3
du 960 Jdu d6

( sinh u cos 6) (_E cosh y sin 6) (2 cosh u sin 6?) (2 sinh u cos 6)
0

The above is as expected since the coordinate system is orthogonal. And
SIS ISS
8217 532921 922 9l
_actag a2 ac
d0 du  dJ0 Ju

= (—g cosh u sin 8) (— sinh u cos 9) (E sinh u cos 8) ( cosh i sin 8)
=0

The above is as expected since the coordinate system is orthogonal. It is also because g;; is
symmetric and we already found that g1, = 0. And finally

ot alt 9?93

82 = 51292 - dx? dx?
_ acl 8cl acz acZ
=390 96 ' 90 96

FIASNEIAS
55

2
(_E cosh u sin 6) + (g sinh u cos 6)

2

a2
T cosh? U sin? 6 + sinh? L cos 6)
a

N

Z cosh? ( — cos? 9) + (cosh2 u = 1) cos? 6)
a

N

4
a

N

(
(
(cosh2 — cosh? i cos? 0 + cosh? i cos? 6 — cos 9)
(

=7 cosh? 1 — cos? 6)



From the above we see that

gi = (811 812]

en g2
a® (cosh? 1 — cos? 0 0
T4 ( 0 cosh? Y= cos? 9)
That there are different ways to write the above, and they are all the same. For example, we
can write
3 a? (1 + sinh? y) - (1 — sin® 9) 0
8ij = 4 ( 0 (1 + sin? ‘u) - (1 — sin? 9))
% (sinh? u+ sin @ 0
- n ( 0 sinh? u o+ sin? 6)

Or we could use the double angle relations cos? 0 = % (1 + cos (20)) and cosh? p = % (1 + cosh (20))
to obtain

o ﬁ % (1 + cosh (20)) — % (1 + cos (20)) 0
8i =7 0 % (1 + cosh (260)) - % (1 + cos (20))
3 ﬁ cosh (260) — cos (26) 0

-8 0 cosh (20) — cos (20)



2 Problem 2

Problem Show that in a general coordinates system €;,...;,, = geil"'iN where the covariant
form is obtained by lowering the indices on the contravariant form.

Solution

In tensor analysis, contravariant components of a tensor uses upper indices and covariant
components uses lower indices. Given a tensor in contravariant form €' then the covariant
form €; is obtained using

€; = gij€

Where on the right side the sum is taken over j since it is the repeated index. This operation
is called index contracting.

Therefore extending the above to all indices in €;,...;,, results in

€iriy-in = 818z '"giN]'NdUZm]N @)
But we know that, from page 123 in the Matrices notes, that the determinant of the metric
can be written using Levi-Civita tensor as

g = 2 81,82, " SNy €12 N (2)

iige-in
Comparing (1) and (2) shows that
€123.-.N = §11,82i, = Niy€ 12N
— kehizin

Where k is constant, which in the case of €;53..., this constant is g. Now need to show that
the constant is g for all cases of indices in €;;,...;, and not for the case €1p3...N.

Looking at the case of N = 2, and let us see what happens if we change the order of the
indices.

€iriy = 8i1j18inj€
And

€igiy = 8igjp8irj1 €
But g;,/,8i,j, is the same as g;,;,¢; i, . So the ordering of indices does not change the constant
k. And since we found that this constant is ¢ from above, therefore we conclude that

€iliy-in = g€]1]2"']N (3)



3 Problem 3

Problem Compute all components of the affine connection in polar coordinates.
Solution

In polar coordinates x! = r,x%2 = 6, the relation to the Cartesian coordinates is

x=rcos@
y=rsin0
Using

, : dgy 0g;

=28 \gxi 7 oxk 9
We know that in polar coordinates the metric tensor is g7 = g, =1, and g1 = g, = 0, and
921 = 8or = 0, and g5 = gpp = 0 or in matrix form

(1o
gij_Or2

o 3
gi=|
0 =

I—.;:r — lglr 3ng + 8grl _ 38#
2 dr  dr  Ix
The sum is now over /, which goes from r, 0 since these are the only coordinates. Hence

the above becomes

1 d d d 1 d d d
I*’t‘r__grr( grr+ grr grr)+_ Qr( gi’l’ + g}’r g}’r)

Hence ¢ is its inverse

Using (1), leti=r,j =r,k = r then

2 ar ar ar 2 ar dr  d0O

1 1 (98w 98w 9gn

_2(1)(0+0 0)+2(O)(8r+ Ep 88)

=0 ()

Using (1), leti=17r,j = 0,k =r then

r _ L (981 98a1 _ 9ISor
or = 38 (91’ T

The sum is now over /, which goes from 7, 0 since these are the only coordinates. Hence




the above becomes

agrr 8g@r agﬁr 1 or 38r9 3&96 &ger
Ff*‘zg (ar Tor "o )28 \Tar T Tar T a0

21 8gre dgo0  Igor
=;DO+0-0)+ (0)(ar Jr 90

=0 (3)
Using (1), now leti =71,j = 0,k = O then
r lglr(ggel + Igo1 9&99)

00 =355 \ 99 T 96 od

The sum is now over /, which goes from r, 0 since these are the only coordinates. Hence
the above becomes

, 1, (380r Igor 9869)+ 1 Qr(8g99 N dgo0 5899)
2

26 " 96 or
1 J J J
- E( )(( ) + (0) — _) (0)( gr@ 800 _ g@r)

00 = 3 B 96 90 90

ar 20
1
=—(-2
> (<21
=-r (4)
Using (1), now let i = r,j = r,k = 0. Hence we need to find I'};. But due to symmetry in
lower indices, then I';, = I'j,, which we found in (3) to be zero. Hence

o =0 (4)
Using (1), now leti = 0,j =,k = r then
1 o(98n , 981 98
r@ _ 2,0 T o r
=38 ( 20 " or o

The sum is now over [, which goes from 7, 0 since these are the only coordinates. Hence
the above becomes

1 o098 98w 98w\ 1 09(98r0 980 98
2] - 10 rr rr _ rr 00 T r _ rr
=38 (a@+ar ar)+zg (ae+ar 26
1 (98w  dgn dgw) 1
‘_(0)(a9 Jr ar)+2( )(O+O 0
=0 (6)

Using (1), now leti = 0,j = 0,k = r then

0 — 2,00 98 a891_389r
o2 20 " or  od

The sum is now over [, which goes from 7, 0 since these are the only coordinates. Hence




the above becomes

98w . 98er  98or\ . 1 po (980 | 9860  ISer
_ 50 rr r_ r —,00 _
For =58 (ae Tor " or )25\ 06 T Tor T o6

d 0 0 11 d
(0)( grr g@r_ g@r)+__(0 _7_0)

00 or or 212 ar
11
T
1
=7 (7)

Using (1), now let i = 0,j = v,k = 0 which finds erG but due to symmetry this is the same
as Fgr which is found above. Hence

1
Fr@ - ; (8)

Using (1), now leti = 0,j = 0,k = O then
0 _ lgle(ggez . 980 38@@)

F99‘2 20 90  ax

The sum is now over /, which goes from r, 0 since these are the only coordinates. Hence
the above becomes

1 o(980r , 980r 9800\ , 1 0o (9800 , 9800 9800
ro 4 r_ 00 _
Too =38 ((99 90 or +zg 00 " 90 20
L oy(%80r  980r _ 9800) ,
= - 0+0-0
2(0)((90+ae Jr (+ )
=0 9)
This completes the computation. In summary
I, =0
T, =0
oo ="
=0
rg=0
1
rg =-
or r
1
Frge -
o =0



4 Problem 4

Problem Calculate the gradient curl and divergence and Laplacian in spherical coordinates
using tensor analysis.

Solution

The following coordinates system convention is used

Az

/Polar angle

<~

x ¢ — Azimuthal angle

Figure 1: Spherical Coordinates system

4.1 Finding metric tensor Sii

The coordinates in the Cartesian system are ¢ =x0C = Y, 3 = z. And the coordinates
in the Spherical system are x! = ¢, x> = r,x> = 0. The relation between these is known as
(Note that the following depends on convention used for which is 6 and which is ¢. Physics
convention as shown in the diagram above is used here).

= rsin O cos ¢
2= rsin @sin ¢
3 =rcosB
The first step is to determine the metric tensor ¢ for the Spherical coordinates. This is given
by
JC AU
8k = 05757



10

Since the coordinate system are orthogonal, g;; will be diagonal. Hence only ¢711, $2, ¢33 are
non zero.

811 = 8o
_ &Cl ch o-)cz 0’)C2 3C3 0’)C3
~ dxlox! " dxt dxl " dxt dxl
_ acl gcl s 0’)c2 acZ . 0’)c3 8c3
Ip dp  dp Ip  IP I

TN (a2 (a3
i (aqb) +(a¢>) +(8¢)
. 02 . 2 2
= (—r sin 0 sin qb) + (r sin 6 cos qb) + (0)
= r2sin® O sin® ¢ + 1% sin? O cos?
=r2sin® 0 (sin2 ¢+ cos? (P)

= 12sin% 0

And

822 = &rr
ot 9t 9?9t 93 a3
= X2 ox2 - dx2 dx? - dx? dx?
_ 8C1 8C1 s (;)Cz &Cz .\ 9C3 &C3
ar dr dr dr dr dr

) a1 2+ 202 2+ 20 2
“\ ar ar ar

. 2 . . 2 2
= (sm 0 cos (p) + (sm 0 sin q,‘)) + (cos )
= sin? O cos? ¢ + sin? 0 sin® ¢+ cos? 6
= sin? 0 (cos2 ¢ + sin? qZ)) + cos? 0

= sin? 0 + cos? O
=1
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And

833 = 800
_ &Cl acl 8C2 0’)C2 8C3 0’)C3
TR I0 IR o | IB I
_ 9C1 0“)C1 s 862 (962 . ac3 ac3
d0 d6  JO JO IO IO

ac\* (92" (93’
~(30) +(5a) + (50
2 )2 2
(r cos 0 cos gi)) + (1’ cos 0 sin (P) + (-rsin 0)

2 cos? 0 (C082 ¢+ sin? qb) +725in% 0
2

=12¢c0s2 0 +r2sin? O

Hence ds? in Spherical coordinates is

ds? = gdxkdx!

1) % 3)2
= g1 (dx ) + 822 (dx?) + gas (ax°)
=8n (d¢) + g0 (dr)? + 33 (dO)?
= r2sin? 0 (d(z)) dr) + 72 (d@)

From the above we see that, using the order ¢, 7, 0 for the rows and columns
811 812 &13

8ij = 1821 822 §23

831 832 &33

r2sin’0 0 0

= 0 1 0

0 0 2

Therefore the determinant is ¢ = *sin? @ and J; are given by the square root of the diagonal
elements of g;;

hy = rsin6 (A)
h2:1
h3:1’

4.2 Finding Gradient

gL 19 13
B h19x1'h28x2'h3&x3
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Where /; are given in (A) and xl = o, x2 =7,x3 = 0. Therefore

(19010
“\rsin@d¢’ Ir’ r 90

Hence given a function scalar f (¢, r, 9) then

1 &f fA 18f
Vf= rsm@&qﬁ o F 8966

4.3 Finding Curl
Using h; in (A) and x! = ¢, x% = 7,x> = O then

(V x V)l = Tl (&xz (h3V3) = (hzvz))
o 1(a0Vy) aV,
(V”)qf?( o (99)
And
- = 1
(VxV), =i ( 5 (V1) - <h3V3>)
(Vx V) = o (2 (rsmev )~ Vo)
r r2sin0\d0 ¢ (,‘b
1 8(sin 9V¢,) B IV,
rsin a0 do
And
S o 1 d d
(V X V)3 = i \ o (haV2) - 52 (h1V1))

<
X
<!

1 % d .
)6 - rsin @ (% Vi) = or (rsm 6V¢))

[ 2)

r{sin@ Jd¢ ar

-
Therefore given a vector V, its curl is

ItVe) IV, 1 (I(m6Vy) ave). 1( 1 v, (Vo))
ar 00  rsmo| a0 90 sn0 9 ar |°

r

¥x7 =1
,
4.4 Finding Divergence

V-V= VZ'VZ = wvl + rzl]V] (1)
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1 (9% 9 98ij 1 i (i 1 e 1 .
Where I’fj = Zgll ( -t % - a_xllj) = Egll (%) which simplifies to as shown in class notes

page 143 to hence above becomes

rj= =5 ()

Hence (1) becomes

J . 134 .
V~V:EV+@;(\/§)VJ

- 22 ()
Using the covariant form the above becomes
V.-V= Li ( V8 V-)
B G

Where in class notes h; is used in place of /g;;, but it is it the same.

The sum is over i. From above, the spherical coordinates are xl = P, x2 =r,x% = 6. And

¢ = r*sin® 0. Hence the above becomes after expanding

1 V#sinzev +i r4sin20V +i Vﬂsinzev
Vrd sin? 8(]5 VEp¢ °)" or Srr "] 00 V&oe o

1 8 rsin@v +8 rzsinQV . 0 rzsiHGV
" 25in6 dop \ rsinf ¢ ar 1 r 00 r 0

1 d d :
=5 (8(75 (rV(P) = (r sin OV, ) 20 (Slﬂ GVG))

—i EEN +li(zv) ! 8( V)
T 9 \rsin0 ?) " 2ar\ 77T rsin0d0 sin Ve

V.V=

4.5 Finding Laplacian
The Laplacian is given by




14

Hence
v | 9 (Vrisin®6 o L] 9 (Vrisin®6 o L] 9 (Vrisin®6 o
V4 sin2 6 911 811 ! Vrdsin2 0 9%2 822 Vrdsin2 0 9%3 g3 0x8

1 0 (rzsinQ 8) 1 0 (r sin 0 8) 1 0 (rzsinQ 8)

rzsineﬁ ,,281112@% * 2sin 0 dr 1 0 * 2sin 0 960 2 90
1 i 1 i 1 J 2l J 1 J 0% J
"~ 2sin6 d¢ \sin 0 do 24in 6 Jr sin ar 24in 60 960 sin 20

s 128+ i 1 @9+ 982
—r2sin29c9¢2 2 7’(97, r? 972 rzsine cos 50 sin 53

1 2 29 2 cos@ 9 1 92
220902 | rar 9 2sm@d0 12962
9? 2 d 1 cosB o 9? 1 9?

AT (sm@ 26 " 392) 12 sin® 6 dP?
Therefore

Vu =

u 29u 1 [cosOdu J*u 1 J%u
— e — | —=—+ +

ort radr r2\sin0d0 J0%] r2sin® 6 Ip?
2 1 (COSQ 1

= U, + —U, + — — u
Ty P2gin20 7

Ug + M@Q) +

r2 \ sin O
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