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1 Problem 1

1. (5 pts) The rate of nuclear reactions in a star is given by the formula
R=N [ dBEe e
0

where F is energy, § = 1/kgT, « is a constant, and N is a normaliza-
tion. Evaluate this integral using the saddle point approximation when
(Ba?)Y/3 > 1. This is the low temperature limit appropriate for conditions
in the star.

Figure 1: Problem statement

Solution

The first step in saddle point method is to write the integral as fw ef(BdE. Hence
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Where
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The next step is to determine where f (E) is maximum. Therefore we need to solve f” (E) = 0
in order to determine E(, where f (Ej) is maximum.
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Since (azﬁ)s > 1, then @?B > 1 and hence x = ai25 is much smaller than (ﬁza) . So our
was wrong. Hence we need to ignore the term % from (2)
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Solving gives
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But E = xa?, and from the above we the energy Ey which makes f (E) maximum as
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Now that we found which value of E makes f (E) maximum, we can expand f (E) in Taylor
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series around E

f(E) = f(Eo) + f"(Eo) (E - Eg) +

But f’ (Ep) = 0 then the above becomes, after ignoring H.O.T.
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Since f’(E) =
77 3 2 -2
1" (Ep) = —Z“Eo - Eg
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Since E02 > Eaz the above becomes
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Equation (A) now becomes

R=N f efO4E
- N f SfE+ 0k JE
00 f/l
= Nef(Eo) f ( )(E Eo)* AE
0

We would like to write the above as gm ey = \/g. Therefore, assuming u = E - E,

hence Z—Z =1. When E = 0 then u = —E; and when E = oo then u = co. Hence the above
becomes
o f"(Eo) »

R:Nef(EO)f e 2 “du
-E,

o 38
:Nef(EO)f TiE gy
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Since E is positive, then contribution from lower limit u = —E; to the value of the integral
is Negligible. We can then let lower limit go to —co without affecting the overall result of
the integral. The above becomes
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.. . . 00 _ax2 T .
This is now in the form of Gaussian f e dx = \/;. Hence we can write the above,
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But f (Ep) from (1) is f (Eg) = —BEy — ozEO7 + In Ey, hence the above becomes
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But E, = (%) , therefore the above becomes, after some more simplifications
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Simplifies to

W=

- o (771

This was a hard problem. See key solution.



2 Problem 2

2. (5 pts) Assume that g(zy) = 0 for a < o < b and that ¢g~'(z) exists in
that range of x. Show that

Figure 2: Problem statement

Solution

Let u = g (x), hence

du |
=8 1)
But
=g (30)
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Replacing x in (1) by the above results (so everything is in terms of u) gives
du

 — o (o]

— =8 (s W)

Now we take care of the limits of integration. When x = 4 then u = g (a) and when x = b
then u = g(b). Now the integral I becomes in terms of u the following

g(b) du
I= () 6 () —————
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Since we do not know the sign of ¢’ (xp), as it can be positive or negative, so we take
its absolute value in the above, so that the limits of integration do not switch. Hence (2)

becomes
@ [ flgtw) }
I= S) |——=%|d (3)
I hg' o)™

We are given that there is one point x; between g (a), and g (b) where g (xy) = 0 which is
the same as saying u = 0 at that point. Hence by applying the standard property of Dirac

b
delta function, which says that f 0(0) ¢ (z)dz = ¢ (0) to equation (3) gives
a

_ flg )
¢ (57 @)
But ¢! (0) = x, therefore the above becomes

b
[ rws(gw)ax

Which is the result required to show.
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3 Problem 3

3. (5 pts) Find the Fourier series that represents the periodic function
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f(:c)zl—}—g when —§§x§0
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f(a:)zl—z; when 0<zx <
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Figure 3: Problem statement

Solution

A plot of the function to approximate is (using L = 1) for illustration

f(x)

1.9

Figure 4: The function f(x) to find its Fourier series

The function period is T = L. Hence the Fourier series is given by

— 2 2
f(x) ~ i + Z a, cos (—nnx) + b, cos (—nnx)
2 =~ L L

Since f (x) is an even function, then b,, = 0 and the above simplifies to

- 2
fx) ~ 2—0 + ,;1 a, cos (Tnnx)

Where
L
2 3
Gy = Zf_éf(x)dx
2

We can calculate this integral, but it is easier to find 4y knowing that %0 represent the
average of the area under the function f (x).

. . 1L L . L .
We see right away that the area is 2 (E E) = 5. Hence, solving L;—OL =3 for ay gives ag = 1.

Now we find 4,

L
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2
Since f (x) is even and cos (Tnnx) is even, then the above simplifies to
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and v = =— sin (Tnx). Therefore
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Substituting these results in (1) gives
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When 7 is even we see that 4, = 0 and when 7 is odd, then a, = 22 Therefore
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4 Problem 4

4. (10 pts) Consider the Fourier series for the function f(f) = 1 when
0 <6 <mand f(#) = —1whennm < 6 < 27. Just to the right of = 0 the first
n terms in the series exhibit a local maximum of 1+4,,. For large n, 9,, ~ 0.2.
Using computer software, make plots of the series for 4 representative values
of n of your choosing for 0 < 6 < 7/2 for illustration. What is the limit of
the overshoot 9, as n — oo to 4 significant figures? Include printouts of the
programs you wrote to make the plots and to find the limit. This is called
the Gibbs phenomenon.

Figure 5: Problem statement

Solution

A plot of the above function is
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Figure 6: The function f(x) over one period

We first need to find the Fourier series of the function f (x). Since the function is odd, then
we only need to determine b,

f(x) ~ Y] b, sin (nx)
n=1
Where
b B 1 27T ‘ d
n_;j‘fummmmx

0
Since f (x) is odd, and sin is odd, then the product is even, and the above simplifies to
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When 7 is even, then b, = 0 and when 7 is odd then b,, = —, therefore

Which can be written as

fa)~2

o

)

— sin (nx)

n=1,3,5,--

4 1
f(x)~;n§:]1(2n—_1)sm((2n—1)x)

Next, 4 plots were made to see the approximation for n =1, 5,10, 20.
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Figure 7: Fourier series approximation for different 7 values

The source code used is

ClearAll[f, x, n];
flx_ /;0<x< 2Pi] := Piecewise[{{1, @ < x<Pi}, {-1, Pi< x<2Pi}}];

4
fApprox[x_, nTerms_] 1= — Sum[
Pi 2

1
1 Sin[(2n-1) x], {n, 1, nTerms}];

Grid [Partition[Table[Plot[{f[x], fApprox[x, n]}, {x, @, 2Pi},

PlotStyle » {Blue, Red}, PlotLabel -» Row[ {"Using ", n, " terms"}],
ImageSize - 320, Ticks -» {Range[@, 2Pi, Pi/ 2], Automatic}

1,
{n, {1, 5, 10, 20}}], 2], Frame -» All, Alignment - Center, Spacings - {1,

1}1]

Figure 8: Source code used to generate the above plot

The partial sum of (1) is

4
fn(x) = E

N

)

n=1

2n -1

) sin (2n —1) x)

(2)

To determine the overshoot, we need to first find x; where the local maximum near x = 0
is. This is an illustration, showing the Fourier series approximation to the right of x = 0.
This plot uses n = 100.
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Figure 9: Finding xy where maximum overshoot is located

Hence we need to determine f’ (x) and then solve for f’ (x) = 0 in order to find xg

4 N
)= — 2 cos ((2n - 1) x)
n=1

_ 25sin(2Nx)
7 sinx

Derivation that shows the above is included in the appendix of this problem. Therefore
sm(ZNx)

solving — = 0 implies sin (2Nx) = 0 or 2Nx = 7 (since we want to be on the right side
of x = 0, we do not pick 0, but the next zero, this means 7 is first value). This implies that

local maximum to the right of x = 0 is located at

_n
Xo—g\l

Therefore we need to determine fy (x) to calculate the overshoot due to the Gibbs effect
to the right of x = 0. From (2) and using xy now instead of x gives
N
1

fN(%) - %;(271—1) Sin((zn_l)%)

~ é [sin (%) sin (3%) sin (5%) s sin ((ZN -1) %)]

= + +
T 1 3 5 2N -1
But 2™ _ sine (z), therefore we rewrite the above as
TC T TC . TT
f (i) . 81n(2N) . sm(32N) s 81n(52N) s s1n((2N—1) ﬁ)
N\2n n 3n 51 2N -1
1 . 3 5 . (2N-1)
1 sin|mog 1 sin{7mos 1 sin{7mog 1 sin|m=—
=4 2N—1+ﬁl—l+2N—+m+ﬁ—1
ﬂﬁ 377& 57'(51 (2N-1) T[ﬁ
1 1 1 3 1 5 1 . (2N-1
= 4| —sinc — sinc — sinc -+ — sin¢c | ———
2N 2N 2N 2N 2N 2N 2N 2N
Therefore

( T ) _» 1 1 1 3 1 5 N 1 . 2N -1
fN N = Nsmc 2N Nsmc 2N Nsmc 2N Nsmc N

ol (L) (2 5) s (N1
= sinc N sinc N sinc ZN SInc N N

Therefore, if we consider a length of 1 and % is partition length, then the sum inside {}

above is a Riemann sum and the above becomes In the limit, as N — oo

]\}I—I}loofN( ) 2f sinc (x) dx
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Divide 0...1 into N partitions

dx

(U
N

one partition

Figure 10: Converting Riemman sum to an integral

Therefore

T 1 sin (1)
tim (o) =2 [ d
am fv\an o
The — dx is known as Si. I could not solve it analytically. It has numerical value of
0.5894898772. Therefore

1 sin(mx)

) e
A}Er})o N (ﬁ) = 2(0.5894898772)
=1.17897974

Since f (x) =1 between 0 and 7, then we see that the overshoot is the difference, which is
lim 65 =1.17897974 -1

N—-ooo
= 0.1789

For 4 decimal places. The above result gives good agreement with the plot showing that
the overshoot is a little less than 0.2 when viewed on the computer screen. The only use
for computation used by the computer for this part of the problem was the evaluation of

1 .
L sin(x) dx. The code is

X

Integrate[Sin[Pix] / (Pix), {x, 0, 1}]
SinIntegral [i]

JT

N[%, 16]
0.5894898722360836

Figure 11: Finding the limit

41 Appendix

Here we show the following result used in the above solution.
_ 25sin(2Nx)

4 N
— Y, cos((@2n-1)x) = _
T T sinx

Since cosz = Re (eiz), then cos ((2n —1)x) = Re (ei(zn_l)x). Hence the above is the same as

43 g N
— Y cos((2n—1)x) = = Re Y @D QO
a3 T

n=1
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But

N ) N ) _
Z pl@n-1x _ z p2ixn—ix
n=1 n=1

N

— pix Z eszn

. . 1-rN . . -
Using partial sum property ij:l 1" =r——, then we can write the above using r = e*™ as

N 1- eZiNx
Z ei(Zn—l)x — e—z’x eZix

1- eZix
1- eZiNx

1— eZix
1= eZiNx

n=1

— ez’x
= e—ix _ eix

eZz’Nx -1

eix _ e—ix

eziNx -1

2isin (x)

_ cos(2Nx) +isin(2Nx) -1
Bl 2i sin (x)

Multiplying numerator and denominator by i gives

% i2n-1)x icos (2Nx) — sin(2Nx) — i
e =
n=1

—2sin (x)
(cos(2Nx) -1) N sin (2Nx)
=1
—2sinx 2 sin (x)
The real part of the above is S;I;(i](\g), hence (1) becomes

45 4 N

= Z cos(2n-1)x) = — Re E pi2n=1)x
=1 T oa=

4 (sin (2Nx)

7t \ 2sin (x)

2 sin (2Nx)

7T sin(x)

Which is the result was needed to show.
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