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1 Problem 1

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 – Mathematical Methods for Physics

Homework 6 due Wednesday March 13. Show all work. Use of
Mathematica, MatLab, or similar software is not allowed.

1. (5 pts) The rate of nuclear reactions in a star is given by the formula

R = N
∫ ∞
0

dE E e−βE e−αE
−1/2

where E is energy, β = 1/kBT , α is a constant, and N is a normaliza-
tion. Evaluate this integral using the saddle point approximation when
(βα2)1/3 � 1. This is the low temperature limit appropriate for conditions
in the star.

2. (5 pts) Assume that g(x0) = 0 for a < x0 < b and that g−1(x) exists in
that range of x. Show that∫ b

a
f(x)δ(g(x))dx =

f(x0)

|g′(x0)|

3. (5 pts) Find the Fourier series that represents the periodic function

f(x) = 1 +
2x

L
when − L

2
≤ x ≤ 0

f(x) = 1− 2x

L
when 0 ≤ x ≤ L

2

4. (10 pts) Consider the Fourier series for the function f(θ) = 1 when
0 < θ < π and f(θ) = −1 when π < θ < 2π. Just to the right of θ = 0 the first
n terms in the series exhibit a local maximum of 1+δn. For large n, δn ≈ 0.2.
Using computer software, make plots of the series for 4 representative values
of n of your choosing for 0 < θ < π/2 for illustration. What is the limit of
the overshoot δn as n→∞ to 4 significant figures? Include printouts of the
programs you wrote to make the plots and to find the limit. This is called
the Gibbs phenomenon.

Figure 1: Problem statement

Solution

The first step in saddle point method is to write the integral as ∫
∞

0
𝑒𝑓(𝐸)𝑑𝐸. Hence

𝑅 = 𝑁�
∞

0
𝑒
�−𝛽𝐸−𝛼𝐸

−1
2 +ln𝐸�

𝑑𝐸

= 𝑁�
∞

0
𝑒𝑓(𝐸)𝑑𝐸 (A)

Where

𝑓 (𝐸) = −𝛽𝐸 − 𝛼𝐸
−1
2 + ln𝐸 (1)

The next step is to determine where 𝑓 (𝐸) is maximum. Therefore we need to solve 𝑓′ (𝐸) = 0
in order to determine 𝐸0, where 𝑓 (𝐸0) is maximum.

𝑓′ (𝐸) = −𝛽 +
1
2
𝛼𝐸

−3
2 +

1
𝐸

= 0
We need to make this dimensionless. Multiplying both sides of the above by 𝛼2 gives

−𝛼2𝛽 +
1
2
𝛼3𝐸

−3
2 +

𝛼2

𝐸
= 0

Let 𝐸 = 𝑥𝛼2, then the above becomes

−𝛼2𝛽 +
1
2
𝛼3 �𝑥𝛼2�

−3
2 +

𝛼2

�𝑥𝛼2�
= 0

−𝛼2𝛽 +
1
2
1

𝑥
3
2

+
1
𝑥
= 0 (2)

Case 1 Ignoring the term
1

𝑥
3
2
in (2) results in

−𝛼2𝛽 +
1
𝑥
= 0

1
𝑥
= 𝛼2𝛽

𝑥 =
1

𝛼2𝛽
Using this value for 𝑥 we check if this is larger than or smaller than the term we ignored

which is
1

𝑥
3
2
.

⎡
⎢⎢⎢⎢⎣
1

𝑥
3
2

⎤
⎥⎥⎥⎥⎦
𝑥= 1

𝛼2𝛽

=
1

� 1
𝛼2𝛽

�
3
2

=
1

� 1
𝛼𝛽2

�
3 = �𝛽2𝛼�

3
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Since �𝛼2𝛽�
1
3 ≫ 1, then 𝛼2𝛽 ≫ 1 and hence 𝑥 = 1

𝛼2𝛽 is much smaller than �𝛽2𝛼�
3
. So our

choice of ignoring
1

𝑥
3
2
was wrong. Hence we need to ignore the term

1
𝑥 from (2)

Case 2 Ignoring the term
1
𝑥 results in

−𝛼2𝛽 +
1
2
1

𝑥
3
2

= 0

−2𝑥
3
2𝛼2𝛽 + 1

2𝑥
3
2

= 0

−2𝑥
3
2𝛼2𝛽 + 1 = 0

𝑥
3
2 =

−1
−2𝛼2𝛽

Solving gives

𝑥 = �
1

2𝛼2𝛽�

2
3

But 𝐸 = 𝑥𝛼2, and from the above we the energy 𝐸0 which makes 𝑓 (𝐸) maximum as

𝐸0 = 𝛼2 �
1

2𝛼2𝛽�

2
3

=
𝛼2−

4
3

2
2
3𝛽

2
3

=
𝛼

2
3

2
2
3𝛽

2
3

Hence

𝐸0 = � 𝛼
2𝛽
�
2
3

Now that we found which value of 𝐸 makes 𝑓 (𝐸) maximum, we can expand 𝑓 (𝐸) in Taylor
series around 𝐸0

𝑓 (𝐸) = 𝑓 (𝐸0) + 𝑓′ (𝐸0) (𝐸 − 𝐸0) +
𝑓′′ (𝐸0)

2!
(𝐸 − 𝐸0)

2 + 𝐻.𝑂.𝑇

But 𝑓′ (𝐸0) = 0 then the above becomes, after ignoring H.O.T.

𝑓 (𝐸) = 𝑓 (𝐸0) +
𝑓′′ (𝐸0)

2!
(𝐸 − 𝐸0)

2 (3)

Since 𝑓′ (𝐸) = −𝛽 + 1
2𝛼𝐸

−3
2 + 1

𝐸 then

𝑓′′ (𝐸0) = −
3
4
𝛼𝐸

−5
2
0 − 𝐸−20

Since 𝐸
−5
2
0 ≫ 𝐸−2

0 the above becomes

𝑓′′ (𝐸0) = −
3
4
𝛼𝐸

−5
2
0

≃ −
3
2
𝛽2

𝐸0
(4)
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Equation (A) now becomes

𝑅 = 𝑁�
∞

0
𝑒𝑓(𝐸)𝑑𝐸

= 𝑁�
∞

0
𝑒𝑓(𝐸0)+

𝑓′′�𝐸0�
2! (𝐸−𝐸0)

2
𝑑𝐸

= 𝑁𝑒𝑓(𝐸0)�
∞

0
𝑒
𝑓′′�𝐸0�

2! (𝐸−𝐸0)
2
𝑑𝐸

We would like to write the above as ∫
∞

0
𝑒−𝑎𝑥2𝑑𝑥 = �

𝜋
𝑎 . Therefore, assuming 𝑢 = 𝐸 − 𝐸0,

hence
𝑑𝑢
𝑑𝐸 = 1. When 𝐸 = 0 then 𝑢 = −𝐸0 and when 𝐸 = ∞ then 𝑢 = ∞. Hence the above

becomes

𝑅 = 𝑁𝑒𝑓(𝐸0)�
∞

−𝐸0
𝑒
𝑓′′�𝐸0�

2! 𝑢2𝑑𝑢

= 𝑁𝑒𝑓(𝐸0)�
∞

−𝐸0
𝑒
− 3
4
𝛽2

𝐸0
𝑢2
𝑑𝑢

Since 𝐸0 is positive, then contribution from lower limit 𝑢 = −𝐸0 to the value of the integral
is Negligible. We can then let lower limit go to −∞ without a�ecting the overall result of
the integral. The above becomes

𝑅 = 𝑁𝑒𝑓(𝐸0)�
∞

−∞
𝑒
− 3
4
𝛽2

𝐸0
𝑢2
𝑑𝑢

This is now in the form of Gaussian ∫∞

−∞
𝑒−𝑎𝑥2𝑑𝑥 = �

𝜋
𝑎 . Hence we can write the above,

using 𝑎 = 3
4
𝛽2

𝐸0

𝑅 = 𝑁𝑒𝑓(𝐸0)
�
⃓
⃓
⎷

𝜋
3
4
𝛽2

𝐸0

= 𝑁𝑒𝑓(𝐸0)
�

4𝜋𝐸0
3𝛽2

But 𝑓 (𝐸0) from (1) is 𝑓 (𝐸0) = −𝛽𝐸0 − 𝛼𝐸
−1
2
0 + ln𝐸0, hence the above becomes

𝑅 = 𝑁𝐸0𝑒−𝛽𝐸0−𝛼𝐸
−1
2
0

�

4𝜋𝐸0
3𝛽2

= 𝑁𝐸0𝑒−𝛽𝐸0−𝛼𝐸
−1
2
0
�
⃓
⃓
⎷

4𝜋

3𝛼𝐸
−5
2
0

But 𝐸0 = � 𝛼
2𝛽
�
2/3
, therefore the above becomes, after some more simplifications

𝑅 = 𝑁�
𝛼
2𝛽�

2/3

exp

⎛
⎜⎜⎜⎜⎝−𝛽 �

𝛼
2𝛽�

2/3

− 𝛼 �
𝛼
2𝛽�

−2/6⎞⎟⎟⎟⎟⎠
�
⃓
⃓
⃓
⎷

4𝜋

3𝛼 � 𝛼
2𝛽
�
−10/6

Simplifies to

𝑅 =
�

𝜋
3
𝑁 �𝑘𝛽𝑇�

3
2 𝛼𝑒

−�
𝛼2
4 𝑘𝛽𝑇�

1
3

This was a hard problem. See key solution.
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2 Problem 2

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 – Mathematical Methods for Physics

Homework 6 due Wednesday March 13. Show all work. Use of
Mathematica, MatLab, or similar software is not allowed.

1. (5 pts) The rate of nuclear reactions in a star is given by the formula

R = N
∫ ∞
0

dE E e−βE e−αE
−1/2

where E is energy, β = 1/kBT , α is a constant, and N is a normaliza-
tion. Evaluate this integral using the saddle point approximation when
(βα2)1/3 � 1. This is the low temperature limit appropriate for conditions
in the star.

2. (5 pts) Assume that g(x0) = 0 for a < x0 < b and that g−1(x) exists in
that range of x. Show that∫ b

a
f(x)δ(g(x))dx =

f(x0)

|g′(x0)|

3. (5 pts) Find the Fourier series that represents the periodic function

f(x) = 1 +
2x

L
when − L

2
≤ x ≤ 0

f(x) = 1− 2x

L
when 0 ≤ x ≤ L

2

4. (10 pts) Consider the Fourier series for the function f(θ) = 1 when
0 < θ < π and f(θ) = −1 when π < θ < 2π. Just to the right of θ = 0 the first
n terms in the series exhibit a local maximum of 1+δn. For large n, δn ≈ 0.2.
Using computer software, make plots of the series for 4 representative values
of n of your choosing for 0 < θ < π/2 for illustration. What is the limit of
the overshoot δn as n→∞ to 4 significant figures? Include printouts of the
programs you wrote to make the plots and to find the limit. This is called
the Gibbs phenomenon.

Figure 2: Problem statement

Solution

Let 𝑢 = 𝑔 (𝑥), hence
𝑑𝑢
𝑑𝑥

= 𝑔′ (𝑥) (1)

But

𝑥 = 𝑔−1 �𝑔 (𝑥)�
= 𝑔−1 (𝑢)

Replacing 𝑥 in (1) by the above results (so everything is in terms of 𝑢) gives
𝑑𝑢
𝑑𝑥

= 𝑔′ �𝑔−1 (𝑢)�

Now we take care of the limits of integration. When 𝑥 = 𝑎 then 𝑢 = 𝑔 (𝑎) and when 𝑥 = 𝑏
then 𝑢 = 𝑔 (𝑏). Now the integral 𝐼 becomes in terms of 𝑢 the following

𝐼 = �
𝑔(𝑏)

𝑔(𝑎)
𝑓 �𝑔−1 (𝑢)� 𝛿 (𝑢)

𝑑𝑢
𝑔′ �𝑔−1 (𝑢)�

= �
𝑔(𝑏)

𝑔(𝑎)
𝛿 (𝑢)

⎡
⎢⎢⎢⎢⎣
𝑓 �𝑔−1 (𝑢)�

𝑔′ �𝑔−1 (𝑢)�

⎤
⎥⎥⎥⎥⎦ 𝑑𝑢 (2)

Since we do not know the sign of 𝑔′ (𝑥0), as it can be positive or negative, so we take
its absolute value in the above, so that the limits of integration do not switch. Hence (2)
becomes

𝐼 = �
𝑔(𝑏)

𝑔(𝑎)
𝛿 (𝑢)

⎡
⎢⎢⎢⎢⎢⎣
𝑓 �𝑔−1 (𝑢)�

�𝑔′ �𝑔−1 (𝑢)��

⎤
⎥⎥⎥⎥⎥⎦ 𝑑𝑢 (3)

We are given that there is one point 𝑥0 between 𝑔 (𝑎), and 𝑔 (𝑏) where 𝑔 (𝑥0) = 0 which is
the same as saying 𝑢 = 0 at that point. Hence by applying the standard property of Dirac

delta function, which says that ∫
𝑏

𝑎
𝛿 (0) 𝜙 (𝑧) 𝑑𝑧 = 𝜙 (0) to equation (3) gives

𝐼 =
𝑓 �𝑔−1 (0)�

�𝑔′ �𝑔−1 (0)��

But 𝑔−1 (0) = 𝑥0, therefore the above becomes

�
𝑏

𝑎
𝑓 (𝑥) 𝛿 �𝑔 (𝑥)� 𝑑𝑥 =

𝑓 (𝑥0)
�𝑔′ (𝑥0)�

Which is the result required to show.
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3 Problem 3

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 – Mathematical Methods for Physics

Homework 6 due Wednesday March 13. Show all work. Use of
Mathematica, MatLab, or similar software is not allowed.

1. (5 pts) The rate of nuclear reactions in a star is given by the formula

R = N
∫ ∞
0

dE E e−βE e−αE
−1/2

where E is energy, β = 1/kBT , α is a constant, and N is a normaliza-
tion. Evaluate this integral using the saddle point approximation when
(βα2)1/3 � 1. This is the low temperature limit appropriate for conditions
in the star.

2. (5 pts) Assume that g(x0) = 0 for a < x0 < b and that g−1(x) exists in
that range of x. Show that∫ b

a
f(x)δ(g(x))dx =

f(x0)

|g′(x0)|

3. (5 pts) Find the Fourier series that represents the periodic function

f(x) = 1 +
2x

L
when − L

2
≤ x ≤ 0

f(x) = 1− 2x

L
when 0 ≤ x ≤ L

2

4. (10 pts) Consider the Fourier series for the function f(θ) = 1 when
0 < θ < π and f(θ) = −1 when π < θ < 2π. Just to the right of θ = 0 the first
n terms in the series exhibit a local maximum of 1+δn. For large n, δn ≈ 0.2.
Using computer software, make plots of the series for 4 representative values
of n of your choosing for 0 < θ < π/2 for illustration. What is the limit of
the overshoot δn as n→∞ to 4 significant figures? Include printouts of the
programs you wrote to make the plots and to find the limit. This is called
the Gibbs phenomenon.

Figure 3: Problem statement

Solution

A plot of the function to approximate is (using 𝐿 = 1) for illustration

Out[ ]=

-0.4 -0.2 0.2 0.4
x

0.2

0.4

0.6

0.8

1.0

f(x)

Figure 4: The function 𝑓(𝑥) to find its Fourier series

The function period is 𝑇 = 𝐿. Hence the Fourier series is given by

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
2𝜋
𝐿
𝑛𝑥� + 𝑏𝑛 cos �

2𝜋
𝐿
𝑛𝑥�

Since 𝑓 (𝑥) is an even function, then 𝑏𝑛 = 0 and the above simplifies to

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
2𝜋
𝐿
𝑛𝑥�

Where

𝑎0 =
2
𝐿 �

𝐿
2

− 𝐿
2

𝑓 (𝑥) 𝑑𝑥

We can calculate this integral, but it is easier to find 𝑎0 knowing that
𝑎0
2 represent the

average of the area under the function 𝑓 (𝑥).

We see right away that the area is 2 �12
𝐿
2
� = 𝐿

2 . Hence, solving
𝑎0
2 𝐿 = 𝐿

2 for 𝑎0 gives 𝑎0 = 1.
Now we find 𝑎𝑛

𝑎𝑛 =
2
𝐿 �

𝐿
2

− 𝐿
2

𝑓 (𝑥) cos �
2𝜋
𝐿
𝑛𝑥� 𝑑𝑥
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Since 𝑓 (𝑥) is even and cos �2𝜋𝐿 𝑛𝑥� is even, then the above simplifies to

𝑎𝑛 =
4
𝐿 �

𝐿
2

0
𝑓 (𝑥) cos �

2𝜋
𝐿
𝑛𝑥� 𝑑𝑥

=
4
𝐿 �

𝐿
2

0
�1 −

2𝑥
𝐿 � cos �

2𝜋
𝐿
𝑛𝑥� 𝑑𝑥

=
4
𝐿

⎛
⎜⎜⎜⎜⎝�

𝐿
2

0
cos �

2𝜋
𝐿
𝑛𝑥� 𝑑𝑥 −

2
𝐿 �

𝐿
2

0
𝑥 cos �

2𝜋
𝐿
𝑛𝑥� 𝑑𝑥

⎞
⎟⎟⎟⎟⎠ (1)

But

�
𝐿
2

0
cos �

2𝜋
𝐿
𝑛𝑥� 𝑑𝑥 =

1
2𝑛𝜋
𝐿

�sin �
2𝜋
𝐿
𝑛𝑥��

𝐿
2

0

=
𝐿

2𝑛𝜋 �sin �
2𝜋
𝐿
𝑛
𝐿
2��

=
𝐿

2𝑛𝜋
sin (𝜋𝑛)

= 0

And ∫
𝐿
2

0
𝑥 cos �2𝜋𝐿 𝑛𝑥� 𝑑𝑥 is integrated by parts. Let 𝑢 = 𝑥, 𝑑𝑣 = cos �2𝜋𝐿 𝑛𝑥�, hence 𝑑𝑢 = 1

and 𝑣 = 1
2𝑛𝜋
𝐿

sin �2𝜋𝐿 𝑛𝑥�. Therefore

�
𝐿
2

0
𝑥 cos �

2𝜋
𝐿
𝑛𝑥� 𝑑𝑥 = 𝑢𝑣 −�𝑣𝑑𝑢

=
1

2𝑛𝜋
𝐿

�𝑥 sin �
2𝜋
𝐿
𝑛𝑥��

𝐿
2

0
−

1
2𝑛𝜋
𝐿

� sin �
2𝜋
𝐿
𝑛𝑥� 𝑑𝑥

= −
𝐿

2𝑛𝜋 � sin �
2𝜋
𝐿
𝑛𝑥� 𝑑𝑥

=
𝐿

2𝑛𝜋

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos �2𝜋𝐿 𝑛𝑥�
2𝜋
𝐿 𝑛

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐿
2

0

= �
𝐿

2𝑛𝜋�
2

�cos �
2𝜋
𝐿
𝑛
𝐿
2�

− 1�

= �
𝐿

2𝑛𝜋�
2

(cos (𝑛𝜋) − 1)

= �
𝐿

2𝑛𝜋�
2

�(−1)𝑛 − 1�

Substituting these results in (1) gives

𝑎𝑛 = −
4
𝐿

⎛
⎜⎜⎜⎜⎝
2
𝐿 �

𝐿
2𝑛𝜋�

2

�(−1)𝑛 − 1�
⎞
⎟⎟⎟⎟⎠

= −
2

𝑛2𝜋2 �(−1)
𝑛 − 1�
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When 𝑛 is even we see that 𝑎𝑛 = 0 and when 𝑛 is odd, then 𝑎𝑛 =
4

𝑛2𝜋2 . Therefore

𝑓 (𝑥) =
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
2𝜋
𝐿
𝑛𝑥�

=
1
2
+

∞
�

𝑛=1,3,5,⋯
�

4
𝑛2𝜋2 � cos �

2𝜋
𝐿
𝑛𝑥�

=
1
2
+

4
𝜋2

∞
�
𝑛=1

1
(2𝑛 − 1)2

cos �
2𝜋
𝐿

(2𝑛 − 1) 𝑥�
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4 Problem 4

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 – Mathematical Methods for Physics

Homework 6 due Wednesday March 13. Show all work. Use of
Mathematica, MatLab, or similar software is not allowed.

1. (5 pts) The rate of nuclear reactions in a star is given by the formula

R = N
∫ ∞
0

dE E e−βE e−αE
−1/2

where E is energy, β = 1/kBT , α is a constant, and N is a normaliza-
tion. Evaluate this integral using the saddle point approximation when
(βα2)1/3 � 1. This is the low temperature limit appropriate for conditions
in the star.

2. (5 pts) Assume that g(x0) = 0 for a < x0 < b and that g−1(x) exists in
that range of x. Show that∫ b

a
f(x)δ(g(x))dx =

f(x0)

|g′(x0)|

3. (5 pts) Find the Fourier series that represents the periodic function

f(x) = 1 +
2x

L
when − L

2
≤ x ≤ 0

f(x) = 1− 2x

L
when 0 ≤ x ≤ L

2

4. (10 pts) Consider the Fourier series for the function f(θ) = 1 when
0 < θ < π and f(θ) = −1 when π < θ < 2π. Just to the right of θ = 0 the first
n terms in the series exhibit a local maximum of 1+δn. For large n, δn ≈ 0.2.
Using computer software, make plots of the series for 4 representative values
of n of your choosing for 0 < θ < π/2 for illustration. What is the limit of
the overshoot δn as n→∞ to 4 significant figures? Include printouts of the
programs you wrote to make the plots and to find the limit. This is called
the Gibbs phenomenon.

Figure 5: Problem statement

Solution

A plot of the above function is

Out[ ]=

π

4

π

2

3 π

4
π 5 π

4

3 π

2

7 π

4
2π
x

-1.0

-0.5

0.5

1.0

f(x)

Figure 6: The function 𝑓(𝑥) over one period

We first need to find the Fourier series of the function 𝑓 (𝑥). Since the function is odd, then
we only need to determine 𝑏𝑛

𝑓 (𝑥) ∼
∞
�
𝑛=1

𝑏𝑛 sin (𝑛𝑥)

Where

𝑏𝑛 =
1
𝜋 �

2𝜋

0
𝑓 (𝑥) sin (𝑛𝑥) 𝑑𝑥

Since 𝑓 (𝑥) is odd, and sin is odd, then the product is even, and the above simplifies to

𝑏𝑛 =
2
𝜋 �

𝜋

0
𝑓 (𝑥) sin (𝑛𝑥) 𝑑𝑥

=
2
𝜋 �

𝜋

0
sin (𝑛𝑥) 𝑑𝑥

=
2
𝜋
�−

cos 𝑛𝑥
𝑛

�
𝜋

0

=
−2
𝑛𝜋

(cos 𝑛𝑥)𝜋0

=
−2
𝑛𝜋

(cos 𝑛𝜋 − 1)

=
−2
𝑛𝜋

�(−1)𝑛 − 1�

=
2
𝑛𝜋

�1 − (−1)𝑛�
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When 𝑛 is even, then 𝑏𝑛 = 0 and when 𝑛 is odd then 𝑏𝑛 =
4
𝑛𝜋 , therefore

𝑓 (𝑥) ∼
4
𝜋

∞
�

𝑛=1,3,5,⋯

1
𝑛

sin (𝑛𝑥)

Which can be written as

𝑓 (𝑥) ∼
4
𝜋

∞
�
𝑛=1

1
(2𝑛 − 1)

sin ((2𝑛 − 1) 𝑥) (1)

Next, 4 plots were made to see the approximation for 𝑛 = 1, 5, 10, 20.

Out[ ]=

π

2
π 3 π

2
2 π

-1.0

-0.5

0.5

1.0

Using 1 terms

π

2
π 3 π

2
2 π

-1.0

-0.5

0.5

1.0

Using 5 terms

π

2
π 3 π

2
2 π

-1.0

-0.5

0.5

1.0

Using 10 terms

π

2
π 3 π

2
2 π

-1.0

-0.5

0.5

1.0

Using 20 terms

Figure 7: Fourier series approximation for di�erent 𝑛 values

The source code used is

In[ ]:= ClearAll[f, x, n];

f[x_ /; 0 ≤ x ≤ 2 Pi] := Piecewise[{{1, 0 ≤ x < Pi}, {-1, Pi ≤ x ≤ 2 Pi}}];

fApprox[x_, nTerms_] :=
4

Pi
Sum

1

2 n - 1
Sin[(2 n - 1) x], {n, 1, nTerms};

Grid[Partition[Table[Plot[{f[x], fApprox[x, n]}, {x, 0, 2 Pi },

PlotStyle → {Blue, Red}, PlotLabel → Row[{"Using ", n, " terms"}],

ImageSize → 320, Ticks → {Range[0, 2 Pi, Pi/ 2], Automatic}

],

{n, {1, 5, 10, 20}}], 2], Frame → All, Alignment → Center, Spacings → {1, 1}]

Figure 8: Source code used to generate the above plot

The partial sum of (1) is

𝑓𝑁 (𝑥) =
4
𝜋

𝑁
�
𝑛=1

1
(2𝑛 − 1)

sin ((2𝑛 − 1) 𝑥) (2)

To determine the overshoot, we need to first find 𝑥0 where the local maximum near 𝑥 = 0
is. This is an illustration, showing the Fourier series approximation to the right of 𝑥 = 0.
This plot uses 𝑛 = 100.
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local max

x0 where max located

0.05 0.10 0.15 0.20

0.2

0.4

0.6

0.8

1.0

1.2

Figure 9: Finding 𝑥0 where maximum overshoot is located

Hence we need to determine 𝑓′ (𝑥) and then solve for 𝑓′ (𝑥) = 0 in order to find 𝑥0

𝑓′𝑁 (𝑥) =
4
𝜋

𝑁
�
𝑛=1

cos ((2𝑛 − 1) 𝑥)

=
2
𝜋

sin (2𝑁𝑥)
sin 𝑥

Derivation that shows the above is included in the appendix of this problem. Therefore

solving
sin(2𝑁𝑥)

sin 𝑥 = 0 implies sin (2𝑁𝑥) = 0 or 2𝑁𝑥 = 𝜋 (since we want to be on the right side
of 𝑥 = 0, we do not pick 0, but the next zero, this means 𝜋 is first value). This implies that
local maximum to the right of 𝑥 = 0 is located at

𝑥0 =
𝜋
2𝑁

Therefore we need to determine 𝑓𝑁 (𝑥0) to calculate the overshoot due to the Gibbs e�ect
to the right of 𝑥 = 0. From (2) and using 𝑥0 now instead of 𝑥 gives

𝑓𝑁 �
𝜋
2𝑁

� =
4
𝜋

𝑁
�
𝑛=1

1
(2𝑛 − 1)

sin �(2𝑛 − 1)
𝜋
2𝑁

�

=
4
𝜋

⎛
⎜⎜⎜⎜⎜⎝
sin � 𝜋

2𝑁
�

1
+

sin �3 𝜋
2𝑁
�

3
+

sin �5 𝜋
2𝑁
�

5
+⋯ +

sin �(2𝑁 − 1) 𝜋
2𝑁
�

2𝑁 − 1

⎞
⎟⎟⎟⎟⎟⎠

But
sin(𝜋𝑧)
𝜋𝑧 = sinc (𝑧), therefore we rewrite the above as

𝑓𝑁 �
𝜋
2𝑁

� = 4

⎛
⎜⎜⎜⎜⎜⎝
sin � 𝜋

2𝑁
�

𝜋
+

sin �3 𝜋
2𝑁
�

3𝜋
+

sin �5 𝜋
2𝑁
�

5𝜋
+⋯ +

sin �(2𝑁 − 1) 𝜋
2𝑁
�

(2𝑁 − 1) 𝜋

⎞
⎟⎟⎟⎟⎟⎠

= 4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
2𝑁

sin �𝜋 1
2𝑁
�

𝜋 1
2𝑁

+
1
2𝑁

sin �𝜋 3
2𝑁
�

3𝜋 1
2𝑁

+
1
2𝑁

sin �𝜋 5
2𝑁
�

5𝜋 1
2𝑁

+⋯+
1
2𝑁

sin �𝜋 (2𝑁−1)
2𝑁

�

(2𝑁 − 1) 𝜋 1
2𝑁

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 4 �
1
2𝑁

sinc �
1
2𝑁� +

1
2𝑁

sinc �
3
2𝑁� +

1
2𝑁

sinc �
5
2𝑁� +⋯ +

1
2𝑁

sinc �
2𝑁 − 1
2𝑁 ��

Therefore

𝑓𝑁 �
𝜋
2𝑁

� = 2 �
1
𝑁

sinc �
1
2𝑁� +

1
𝑁

sinc �
3
2𝑁� +

1
𝑁

sinc �
5
2𝑁� +⋯ +

1
𝑁

sinc �
2𝑁 − 1
2𝑁 ��

= 2��sinc �
1
2𝑁� + sinc �

3
2𝑁� + sinc �

5
2𝑁� +⋯ + sinc �

2𝑁 − 1
2𝑁 ��

1
𝑁�

Therefore, if we consider a length of 1 and 1
𝑁 is partition length, then the sum inside {}

above is a Riemann sum and the above becomes In the limit, as 𝑁 → ∞

lim
𝑁→∞

𝑓𝑁 �
𝜋
2𝑁

� = 2�
1

0
sinc (𝑥) 𝑑𝑥
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0 1

. . .

1
N

dx

one partition

Divide 0 . . . 1 into N partitions

Figure 10: Converting Riemman sum to an integral

Therefore

lim
𝑁→∞

𝑓𝑁 �
𝜋
2𝑁

� = 2�
1

0

sin (𝜋𝑥)
𝜋𝑥

𝑑𝑥

The ∫
1

0
sin(𝜋𝑥)
𝜋𝑥 𝑑𝑥 is known as Si. I could not solve it analytically. It has numerical value of

0.5894898772. Therefore

lim
𝑁→∞

𝑓𝑁 �
𝜋
2𝑁

� = 2 (0.5894898772)

= 1.17897974
Since 𝑓 (𝑥) = 1 between 0 and 𝜋, then we see that the overshoot is the di�erence, which is

lim
𝑁→∞

𝛿𝑁 = 1.17897974 − 1

= 0.1789
For 4 decimal places. The above result gives good agreement with the plot showing that
the overshoot is a little less than 0.2 when viewed on the computer screen. The only use
for computation used by the computer for this part of the problem was the evaluation of

∫1

0
sin(𝜋𝑥)
𝜋𝑥 𝑑𝑥. The code is

In[ ]:= Integrate[Sin[Pi x]/(Pi x), {x, 0, 1}]

Out[ ]=
SinIntegral[π]

π

In[ ]:= N[%, 16]

Out[ ]= 0.5894898722360836

Figure 11: Finding the limit

4.1 Appendix

Here we show the following result used in the above solution.

4
𝜋

𝑁
�
𝑛=1

cos ((2𝑛 − 1) 𝑥) =
2
𝜋

sin (2𝑁𝑥)
sin 𝑥

Since cos 𝑧 = Re �𝑒𝑖𝑧�, then cos ((2𝑛 − 1) 𝑥) = Re �𝑒𝑖(2𝑛−1)𝑥�. Hence the above is the same as

4
𝜋

𝑁
�
𝑛=1

cos ((2𝑛 − 1) 𝑥) =
4
𝜋

Re
𝑁
�
𝑛=1

𝑒𝑖(2𝑛−1)𝑥 (1)
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But
𝑁
�
𝑛=1

𝑒𝑖(2𝑛−1)𝑥 =
𝑁
�
𝑛=1

𝑒2𝑖𝑥𝑛−𝑖𝑥

= 𝑒−𝑖𝑥
𝑁
�
𝑛=1

𝑒2𝑖𝑥𝑛

= 𝑒−𝑖𝑥
𝑁
�
𝑛=1

�𝑒2𝑖𝑥�
𝑛

Using partial sum property ∑𝑁
𝑛=1 𝑟

𝑛 = 𝑟1−𝑟
𝑁

1−𝑟 , then we can write the above using 𝑟 = 𝑒2𝑖𝑥 as
𝑁
�
𝑛=1

𝑒𝑖(2𝑛−1)𝑥 = 𝑒−𝑖𝑥 �𝑒2𝑖𝑥
1 − 𝑒2𝑖𝑁𝑥

1 − 𝑒2𝑖𝑥 �

= 𝑒𝑖𝑥
1 − 𝑒2𝑖𝑁𝑥

1 − 𝑒2𝑖𝑥

=
1 − 𝑒2𝑖𝑁𝑥

𝑒−𝑖𝑥 − 𝑒𝑖𝑥

=
𝑒2𝑖𝑁𝑥 − 1
𝑒𝑖𝑥 − 𝑒−𝑖𝑥

=
𝑒2𝑖𝑁𝑥 − 1
2𝑖 sin (𝑥)

=
cos (2𝑁𝑥) + 𝑖 sin(2𝑁𝑥) − 1

2𝑖 sin (𝑥)
Multiplying numerator and denominator by 𝑖 gives

𝑁
�
𝑛=1

𝑒𝑖(2𝑛−1)𝑥 =
𝑖 cos (2𝑁𝑥) − sin(2𝑁𝑥) − 𝑖

−2 sin (𝑥)

= 𝑖
(cos (2𝑁𝑥) − 1)

−2 sin 𝑥
+

sin (2𝑁𝑥)
2 sin (𝑥)

The real part of the above is
sin(2𝑁𝑥)
2 sin(𝑥) , hence (1) becomes

4
𝜋

𝑁
�
𝑛=1

cos ((2𝑛 − 1) 𝑥) =
4
𝜋

Re
𝑁
�
𝑛=1

𝑒𝑖(2𝑛−1)𝑥

=
4
𝜋 �

sin (2𝑁𝑥)
2 sin (𝑥) �

=
2
𝜋

sin (2𝑁𝑥)
sin (𝑥)

Which is the result was needed to show.
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