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1 Problem 1

1
Consider the function f (z) = z» where 7 is a positive integer. The branch point is at z = 0

and the branch cut is chosen to be along the positive x axis. How many sheets are there?
What is the range of O corresponding to each sheet?

Solution
Following the example in the class handout, where it showed how to find the number of
1

sheets for z2, the same method is used here, which is to keep adding a multiple of 27
angles until the same result for the original principal value of the function g (z) evaluated
at 0 is obtained. This gives the number of sheets.

Let
1
g(z) =zn
1
g(r,0) = (reie)”
1.0
g(r,0) =rne'n 1)

In the above, 0 is called principal argument. And now the idea is to find how many times
27 needs to be added to O in order to get back the same value of original of g (r, 0) at the
starting O that one picks. Adding one time 27 to 0, equation (1) becomes

1 .(6+2n)

g(r,0+2m) =rne n
1,8 2
= rn eln+1 n
1,0 2n
=rn elnel n

And we add another 27, or now a total of 47

1 i(6+477)
g(r,0+4m) =rne =
1 .0 .4m
= j—4i—
=ynen n
1 .0 .4n

=rnene n

And so on. We keep adding 27, or a total of k (27) such that the last term above, which
k@n)i
in term of k is e » simplifies to 1 which implies getting back original function value at

g (r,0). Hence for k times we have
1 .(0+k2n)

g(r,0+kQ2n)) =rne =

6 .k
;9 4 ke
n n

1
n

=rne

0 .k(2m)
ene n

1

=7rn
1 iQ l.k(271) 1 1‘9 . .

We see from the above, is that only when k = n, then rnene » =rne ne2™ But 2™ =1,

therefore it reduces to

1 .0
g(r,0+n(2m)) =rue'n
=g(r,0)

Which is the original value of the function. Therefore there are 1 sheets.
The formula that can also be used to obtain all values for this multivalued function is
148 2_”k
g(r,@):rﬁez(’1+” ) k=0,1,---n-1

Now to answer the angle 0 range question. From the above, we see the range of the angle



for each sheet is as follows

Ri:0<0<2m
Ry, :2m< 0 <4n
R;:4n <0 <6bm

R,:(n-1)2n <60 <n(2n)
Sheet R; is called the principal sheet associated with k = 0.



2 Problem 2

Derive the formula

1 i+2z
arctanz = = In (—)
2 1—z
Solution

Let w = arctan (z) hence

z = tan (w)
sinw

zZ =
Cosw
Eiw_e—iw eiw+e—izu

But sinw = —-— and cosw = ——, hence the above simplifies to

eiw_e—iw

2i
oW 4 p—iw

2

1 eiw _ e—iw

- i el 4 p—iw

plw _ pmiw

z= —:
elw + e—lw
Multiplying the numerator and denominator of the right side by ¢ gives

eZiw -1
= E
Let ¢ = x then the above is the same as
o P |
iz= Z:1

iz(x2+1):x2—1

X%z +iz =x* -1
xiz+iz-x>+1=0
¥2(iz-1)+(1+iz)=0

, —(+iz)
(iz-1)
(1 +iz)
C(1-i2)
Simplifying gives
, i(-i+2z)
Ci(-i—-2)
_ (z-9)
(-i-2)
Hence

N =

But x = ¢, and the above becomes

zZ—1

X ==4|—
—i—-z
1
—11\2

- z—1
—-1—z

We need now to decide which sign to take. Since z = tan (w), then when w = 0, z = 0




because tan (0) = 0. Putting w = 0,z = 0 in the above gives

Hence we need to choose the + sign so both sides is positive. Hence

—_i\2
i _ zZ—1
—-1—z

Now, taking the natural log of both sides gives

1
) z—1\2
iw=In|—
—-i—z

i [z+1
=-In|—
2 z—z)

But w = arctan (z), hence the final result is

i i+z
arctan (z) = > In (—)
i-z



3 Problem 3

Using the formula for arctan z from the previous problem, find the real functions u (x, y)
and v (x, y) in the expression arctanz = u (x, y) + v (x, y)

Solution

Let

i i+2z )
—Inl—|=u+iv
2 (z—z)

where u = u (x,y ,O=0 (x, y) are the real and imaginary parts of arctan (z). Therefore

i i+z i i+z| . i+z
—In|—]==|In|—|+i|larg|— |+ 2nn n=0,+1,+2,--
2 \i-z 2 i-z i-z
i li+z| 1 i+z
=—In|—|-=|arg| — | + 2nm (1)
2 li—-z| 2 i-z
Where arg (:L—i) is the principal argument. But since z = x + iy then we see that
i+vz| |i+(x+iy)
-z i—(x+iy)
Clitx+iy
Ci-x-iy
x+i(1+y)
- —x+i(1—y)
2
x2+(1+y)

(2)

And the principal argument is

 +
arg (%) =arg(i+z) —arg (i — z)
=arg(i(1-1iz)) —arg(i(1 + iz))
=argi+arg(l —iz) —argi+ arg (1 + iz)
=arg(l —iz) +arg (1 + iz)
Letting z = x + iy in the above results in
i+z
— = 1-ilx+iy)) - 1+i(x+i
arg(i_z) arg (1= i(x +iy)) —arg (14 (x + iv))
:arg(l—ix+y)—arg(1+ix—y)
= arg ((1 +y) - ix) - arg((l —y) + ix)

= arctan | —— | - arctan | — 3)
= arctan 1+y arctan 1_y

Substituting (2,3) into (1) gives

x% + (1 +y)2

—2+i(arctan( — )—arctan( i )+2nn) n=0,+1,+2,---



Setting the above equal to u + iv shows that the real part and the imaginary parts are

1 _
u = —— |arctan ) I arctan * +2nm n=0+1,+2,---
2 1+y 1-vy
2
x? + (y + 1)
v=-Inf——=
x% + (1 — y)
Therefore

i i+z
arctan (z) = Eln (—)
i—z

=u+iv

Where u,v are given above. We see that arctan (z) is multivalued as it depends on the
value of n.

For illustration of u (x, y) and v (x, y), the following is a plot of the above found solution
showing the real part u (x, y) for n = 0 (principal sheet)

Plot3D[-1/2 (ArcTan[(1+Yy), -x] -ArcTan[ (1-vVy), x]),
{x, -Pi/2, Pi/2}, {y, -Pi/2,Pi/2},
AxesLabel » {"x", "y", "u(x,y)"},
BaseStyle - 14, Ticks » {{-Pi/2, @, Pi/2}, {-Pi/2, @, Pi/2},
Automatic}]

Figure 1: Real part u(x, y) using principal sheet

And the following shows u (x, y) with both 7 = 0 and 7 =1 on the same plot showing two
sheets



nf-J= Plot3D[{-1/2 (ArcTan[ (1+Yy), -x] -ArcTan[(1-y), x]),
-1/2 (ArcTan[(1+y), -x] -ArcTan[(1-y), x] +2Pi)},
{x, -Pi/2, Pi/ 2}, {y, -Pi/2,Pi/2},
AxesLabel - {"x", "y", "u(x,y)"},
BaseStyle -» 14, Ticks » {{-Pi/2, 0, Pi/ 2}, {-Pi/2, 0, Pi/2},
Automatic}]

Figure 2: Real part u(x,y) showing n = 0,7 =1 on same plot

And the following plot shows the imaginary part v (x, y)

X2+ (y+1)2
X2+ (1-y)?

AxesLabel - {"x", "y", "u(x,y)"}, BaseStyle - 14,
Ticks » {{-Pi/2, @, Pi/2}, {-Pi/2, @, Pi/2}, Automatic}]

Infe= Plot3D[1/4Log[ ], {x, -Pi/2, Pi/ 2}, {y, -1.5, 1.5},

Figure 3: Imaginary part v(x,y)



4 Problem 4

In the domain r > 0,0 < 0 < 27. show that the function u = Inr is harmonic and find its
conjugate. Do this in both Cartesian and polar coordinates.

4.1 Part (a) Using Cartesian

A function u (x, y) is harmonic if it satisfies the Laplace PDE u,, + u,, = 0. Since
r= /%% + 12

u=Inr

= In /22 + 12

Then

And
_Jd x
C dxx?+ 2

9 f) _ flg-fg
dxglx) g2

uxx

2

Applying the integration rule to the above, where f = x and ¢ = x*> + y

results in
2112 _
y° —x(2x)

(2 +2)

x? + y? - 2x?

(2+12)
2 .2
=L )
(2 + )

xx =

Similarly
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Applying the integration rule i@ =1 ,‘;f £ to the above, where f=vyand g =x*+y?

9y 3(y)

results in
x+ 7 -y (2y)

(2+12)
x? +y? — 2%

(2 +2)

)
2oy o
(2 +v?)

we need to verify that u,, + 1, = 0. Adding (1,2) gives

yy =

Now that we found u,, and u,,,

y2 42 \2 yz
+
(2492 (2+2)

yZ__x24_x2__y2

(2 +42)

Uy + Uy, =

=0

Hence u = Inr is harmonic.

To find its conjugate. Let the conjugate be v (x, y). Let u be the real part of analytic function

f=u+iv
Applying Cauchy Riemann equations to f results in
o 3)
dx dy
L @)
dy dx
From (3) and using the earlier result found for u, gives
Jv x

Integrating the above w.r.t. y gives

X
U:fmdy'i'q)(?(f)

1
ZXImdy+q)(X)

1 1
_ ;f1+(z)2dy+®(x)

X

d 1
The above is integrated using substitution. Let u = %, then é = - and the integral becomes

1 1
v:;(f1+u2(xdu))+®(x)
:f L i+ o

1+ u?

1
But f —du = arctan (u) = arctan (Z), therefore the above becomes
1+u2 x

v = arctan (%) + O (x) (5)

Taking derivative of (5) w.r.t. x gives an ODE to solve for ® (x)

Jdu d

I (arctan (%)) + @’ (x) (6A)
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d y
To find - arctan (;), let
w = arctan (z)
X

. d .
Now the goal is to find %. The above is the same as

tan (w) = 2 6)
x
Taking derivative of both sides of the above w.r.t. x gives

d y
() = =5
d

d
But - tan (w) = sec? (w) %, and the above can be written as
dw y

e = __L
sec” (w) o

do y 1

(7)

dx ~ xZsec (w)

1 : L .
But sec? (w) = —7, and cos?w + sin?w = 1. Therefore dividing by cos?w gives 1 +

sin?w

s sec? (w) or 1+ tan® w = sec? (w). But from (6) we know that tan (w) = %, therefore

2
1+ (%) = sec? (w). Replacing this expression for sec? (w) in (7) gives

dw y 1
dx a2, ()2
1+ ()
__y_ x
T 22 1 2
__Y
x% + 12
Now that we found dw which is 4 arctan (Z)’ then 5A becomes
dx dx X
v -y
— = + D’ (x
ax x>+ )
But from Cauchy Riemann equation (4) above, we know that g—: = —%, therefore the above
is the same as
du -
R e RS
dy X2 +y
We know what ? is. We found this earlier which is u 2y 5. Hence the above equation
y dy  x+y
becomes
¥ ¥ ’
= -0’ (x
2+ 2+ 1P (x)
@' (x)=0

Therefore @ is constant, say C;. Equation (5) becomes

v (x, y) = arctan (g) +Cy (8)

Which is the conjugate of u = éln (xz + yz). To verify the result in (8), we now check that
v (x, y) is indeed harmonic by checking that it satisfies the Laplace PDE.

__ Y
T 242

AC)

()

[

XX
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And
X
ARSIy
()
vy (xz N y2)2

Using the above we see that

Uy T 0y = Y (ZX) — i (Zy)

W (x2 + yz)z (x2 + yz)z
=0

This shows that v (x, y) obtained above is harmonic. It is the conjugate of u (x, y) .

v (x, y) is not a unique conjugate of u (x, y), since the constant C; is arbitrary.

4.2 Part (b) Using Polar coordinates

Here z = r¢'¥ and we are told that u(r,0) = Inr. To show this is harmonic in polar
coordinates, we need to show it satisfies Laplacian in polar coordinates, which is

1 1 0
Uy + —U, + —Ugg =
T T 2 00

d 1 1 . . .
But u, = - Inr = - and u,, = 3 and ugg = 0. Substituting these into the above gives

1 11 _
2 rr
0=0

Therefore u = Inr is harmonic since it satisfies the Laplacian in polar coordinates. To find
its conjugate, we use C-R in polar coordinates, and these are given by

Ju 1dv 1
ar  rdo
Ju  Jv ©)
20~ or
From (1), and since we know that i_)—:l = %, then this gives
1 1dv
r rdé
Ju 1
90
Or by integration w.r.t. 0
v=0+D(r)

Where @ (r) is the constant of integration (a function). Taking derivative of the above w.r.t.
r gives

dv ,
E =0 (7’)

1du

But from (2) % =—-25 = 0. (Because u does not depend on 0). Hence the above results

in @’ (r) = 0 or ® = C; a constant. Therefore the conjugate harmonic function is

v(r,0) =0+C;

Now we verify this satisfies Laplacian in Polar. From
Uy + lv + lv =0
Tt 2 00
We see since v, = 0 and v,, = 0 and vy = 1 and vgg = 0, therefore we obtain 0 = 0 also.
Hence v = 0 + C; satisfies the Laplacian.
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5 Problem 5

Find the value of L f (z) dz where f (z) = e* for two different contours. C; is straight line

from the origin to the point (2,1). C, is a straight line from the origin to the point (2,0)
followed by another straight line from (2,0) to (2,1)

Solution
Part (a) problem Part (b) problem
Yy )
(2,0) (2,0)
Cy
Co
x x

Figure 4: Showing contours for part(a) and pat (b)

51 Parta

Using contour Cq. The line starts from (xo,yo) = (0,0) and ends at (xl,yl) =(2,1). Hence
the parametrization for this line is given by

x(t) =0 -1t)xg + txg

=2t
And
y() =1 -Hyo+ty
=t
Now f (z) = ¢# = e, Therefore in terms of ¢ this becomes
f(t) — eZt+it
— et(2+i)

Hence

f f@iz= [ Fozmd
C

) t=0
1
= [ ez @yar
0

But z (t) = x (t) + iy (t) = 2t + it, hence z’ (t) = 2 + i and the above becomes
1 -
f F(2)dz = f 2+ (2 4 i) dt
Cq 0

1
= 2+i) f £+ gy
0

ol(2+) )1
2+1) 0
1

=(2+i)(

— (et(2+i))
0

Hence the final result is

f(z)dz =e*" -1
G
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5.2 Partb

Using C,. The first line starts from (xo, yo) = (0,0) and ends at (xl,yl) = (2,0). Hence the

parametrization for this line is given by

x(t) =1 -t)xy + txg

=2t
And
y() =1 -1yo+ty
=0
Now f (z) = ¢ = e** Therefore in terms of ¢ the function f (z) becomes
fl=e
Hence, for the line from (0,0) to (2,0) we have
t=1
f(z)dz = f )z (t)dt
C21 t=0
1
- f 2t (1) dt
0

But z = x + iy = 2t since y () = 0. hence z’ (t) = 2 and the above becomes

F(2)dz = 2f1 2t
0

C21
1

eZt
-(3)
2
0
=e?-1 1)

The second line starts from (xo,yo) = (2,0) and ends at (xl,yl) = (2,1). Hence the
parametrization for this line is given by

x(t) =1 -t)xy + txg

= (1-£)2+2t
=2
And
y(t) =10 -ty +ty,
=t
Now f (z) = ¢* = et Therefore in terms of  this becomes
f(t) — 62+it
Hence, for the line from (2,0) to (2,1) we have
t=1
f(z)dz= f )z (t)dt
Cz, t=0
1 .
= f etitz! (t) dt
0

But z = x + iy = 2 + it. hence z’ (t) = i and the above becomes

[ 1

F@)dz = f ie2+it gt
0
1

. €2+it
=1 -
1
0

.1
— (62+zt)
0

¢ (2)

2
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Therefore the total is the sum of (1) and (2)

f(z)dz=e?—1+e* —¢?
C

Hence the final result is

) f(z)dz=e*"-1 (3)

To verify this, since e* is analytic then £ f(z)dz - L f (z) dz should come out to be zero
2 1

(By Cauchy theorem). This is because § f(z)dz = 0 around the closed contour, going

clockwise. Let us see if this is true:

_ — | p2+i _ 2+
sz(z)dz j;lf(z)dz [ —1] - [ -1]

~0
:§f(z)dz

Verified. A small note: § f (z)dz = 0 does not necessarily mean that f (z) is analytic on
C

and inside C as some non analytic function can give zero, depending on C. But if f (z)

happened to be analytic, then 9§ f (z) dz is always zero. But here we now that e” is analytic.
C
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