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1 Problem 1

Find the normal modes of a rectangular drum with sides of length L, and L,
solution

The geometry of the problem is

yA u = 0 on all edges
L,

up = 2V

Le
Figure 1: Problem to solve

Using Cartesian coordinates. Wave displacement is u = u (x, Y, t) (out of page).
Pulxyt) (o | P
_ = R R
ot? x> Jdy?
0<x<L,
O<y<Ly,

Boundary conditions on x

u (O, Y, t) 0
u (Lx, Y, t) =0
And boundary conditions on y
u(x,0,t)=0
u (x, Ly, t) =0
Solution

Letu=X(x)Y (y) T (t). Substituting into the PDE gives

1
C—ZT"XY =X"YT +Y"XT
1 T// 3 X// N Y/l
2T X Y
Hence, using A as first separation constant we obtain

1 TII 3 A
2T
X// + Y// B A
X Y
The time ODE becomes
T” +2AT =0
And the space ODE becomes
X// Y//
— +—=-A
X Y
Separating the space ODE again
XII YI/
—=A-—=-yu



Where u is the new separation variable. This gives two new separate ODE’s

XN_
x - H
g
Y H
Or
X"+uX=0

Y’ +Y(A-p)=0
Solving for X ODE first, and knowing that > 0 from nature of boundary conditions, we
obtain

X (x) = Acos (\/ﬁx) + Bsin (\/ﬁx)
Applying B.C. at x =0
0=A
Hence X (x) = Bsin (\/ﬁx) Applying B.C. at x =L,

0 = Bsin (/L)

Hence

)\
yn:(—) n=1,23,-- (1)
I,
Therefore the X,, (x) solution is
nrt
X,, (x) = B, sin (L—x) n=1,23, (2)
X

Solving the Y (y) ODE using the same eigenvalues found above

o)
y(y):ccos[ A_(fi_f)zy +Dsin( A—(’i—f)zy]

Applying first B.C. Y (0) = 0 gives

The solution is

Hence

0=Dsin|+[4 - [2Z 2L
= S11n Lx Y
Hence
2
A=V = m=123, ..
Lx y Vi 4 Vi
2 2
P L I
w(Z) =(%
2
mrTt nrt



Hence the Y, solution is

mr
Ynm:Dnmsin(—y) n=1,273,--,m
Ly

=1,2,3,

We notice that X, (x) solution depends on 1 only, while Y/, (y) solution depends on 7 and
m. Now that we found A we can we solve the time T (f) ode

Thm + CzAannm =0
T, (t) = E,,;, cos (C /\nmt) + F,,; sin (c /\nmt)
Combining all solution , and merging all constants into two, we find

Upm (x/ Y t) =X, (x) Youm (y) Toum (t)

= (B, X,) (Dnm sin (?y)) (Enm Ccos (c Anmt) + F,,,;, sin (c Anmt))
Y
= B, X,, sin (nZ—:y) (E,’m coS (c )\nmt) + F},, sin (c /\nmt))

_x, sm(?y) (Efp cos (cVt) + Eppsin (cymt))

Where Ej,, F}/,, are the new constants after merging them with the other constants. Re-
naming E;,, = A,,,., F.;,, = By, the above solution can be written as

u(xy,t) = ZZX () Youn (y) Toun (6)

= i i Ay sin (L—x) sin (?y) cos (C Anmt)

— x Y

+ i i B,,, sin (;Z—nx) sin (—y) sin (C Anmt)

n=1m=1

(3)

To solve this completely, we apply initial conditions to find A,,,, B,,,. But the problem is
just asking for the normal modes. These are given by X,, (x) Y,,,,, (y) Therefore forn =1, we

have the modes sin (L%x) sin (Llyy) ,sin (L%x) sin (ZL—Zy) ,sin (%x) sin (i—:y) ,---and forn =2
have sin (%) sin (Zo) sin () sin (Z0) sin (Z2) sin (2%0) .. and

we have sin | 7-x ) sin Lyy ,sin| x| sin Lyy ,sin | x| sin Lyy ,--- and so on.

nims= 2 3 4
. Tt . TC

1 sm(L—xx)sm(L—y)

e
> ol

3 | sin

To draw these modes, let us assume that L, =1,L, = 1. This gives

n|im=1 2 3 4
1 | sin (7tx) sin (ny) sin (71x) sin (2ny) sin (71x) sin (37‘(3/)

2 | sin (27tx) sin (ny) sin (271x) sin (27zy) sin (271x) sin (3ny)

3 | sin (37x) sin (ny) sin (37tx) sin (2ny) sin (37tx) sin (3ny)

The following is a plot of the above modes for illustrations with the code used to generate

these plots.




N=1, M=1 N=1, M=2

N=1, M=3

Outf» ]=

Figure 2: Modes using L, =1,L, =1

makePlot[n_, m_ ] :=
ContourPlot [Sin[nPix] *Sin[mPiy], {x, @, 1}, {v, 0, 1},
PlotLegends - None,

Frame - True, FrameLabel -» { {None, None}, {None, Style[Row[{"N=", n, ", M=", m}], 12]}}1];

Grid@Table [makePlot[n, m], {n, 1, 3}, {m, 1, 3}]

Figure 3: Code used to draw above plot

The following is 3D view of the above modes.




N=1, M=3

N=1, M=1

RS T 7 D
N R
outf+]= OEE v.“‘\"’.
R LR
AR LR
e

RN

Figure 4: 3D view of the modes using L, =1,L, =1

in/- 1= makePlot[n , m ] :=
Plot3D[Sin[nPix] *Sin[mPiy], {x, 0, 1}, {y, 0, 1},
PlotLabel » Style[Row[{"N=", n, ", M=", m}], 12],
Boxed -> False, Axes - False
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GrideTable [makePlot[n, m], {n, 1, 3}, {m, 1, 3}]

Figure 5: Code used to draw above plot



2 Problem 2

Find the normal modes of an acoustic waves in a hollow sphere of radius R. The wave
equation is

VZ‘P (7”/ 0,9, t) = Cl_z%t

With boundary conditions 1, = 0 at r = 0 and at 7 = 7. (I used 7 in place of R because
wanted to use R () for separation of variables).

What is the lowest frequency?
Let
Y (r,0,¢,t) =u(r,0,¢)e

Substituting this back in the original PDE gives
2

2 w _
V2u(r,0,¢) + C—zu(r,Q,(p) =
Let k = % (wave number) and the above becomes
V2u+ku=0 1)
The above is called the Helmholtz PDE. In spherical coordinates it becomes

Radial part Angular part
2 1 (cosO 1 12
Uy + —U, + — | — Ug +Upp | T+ Upsy + KU =
T 2 \sin® Psin2g "¢

Let u (r 0, qb) R(r)®((6)D (cp) and the above becomes

1

2 0
R'TOP + “R'TO + (COS SORT® + @”RTCD) + ®”ROT + k2ROT = 0

24in% 6

1’2 Sin 74 Sin

Dividing by RO® # 0 gives

R”+2R’+1 COSG®’+®” N 1 CI)”+k2_0
R rR 1r2\sinO ® Q] 12sin® 0 @ B
R’/ 2R/ 6@/ @// @//
72 sin® 9? + 2 sin? G;E + sin? 6(2?596 + E) +k2r2sin% 0 = — D

The left side depends only on 7, 0 and the right side depends only on ¢. Let the second
separation constant be 72 and the above becomes
cos0® ©”

124 ’

@//

R 2R
12 sin? 9? + 12 gin? Q;E +Sm26(sjn9§ 6 )+k2r2 sin® 6 = D m? (2)
Which gives the first angular ODE as
O + m?d =0 (2A)
We now go back to (2) to obtain the rest of the solutions. We now have
R// 2 R/ 6 @/ @//
7’2 SiIl2 6? + 7’2 Sil’l2 Q;E + SiIlz 0 (zfj@ 6 + E) + k27’2 SiIl2 0= m2
R” 2R’ cos0@" O m?
Prr+r—+==|+ —+t—|=—=
mr R rR sinf © C) sin® 0
12,2 4 2 R"+2R’ 3 COSQ®’+®” N m?
R rR sinf © C) sin 0

The left side depends on r and the right side depends on O only. Let the separation constant
be I(I +1) where [ is integer which results in

R” 2R’ cos0@® OV m2
k22 = -+ — =1(+1 3
r+r(R+rR) (sin9®+®)+sin29 (+1 @




Therefore the next angular ODE is
cos 0 ®’ N e N m?
sin0 ® O in @

S111

—1(+1)

- COS6@)—l+®—" + i -1(l+1)=0
sinf © ® sin® 0 B
2

(COSQ@' @”)

— 4+ +I(I+1)=0
sin@ © C) sin® @ ( )

cos 0 m2
vy X0 (10 41) - - 4
®+.9®+((+) '28)60 (4)

Sin S1n

de do dz de .
Let z = cos 6, then PR sin 6 and

PO _ d (do
de2 ~do\ @z ™

4’0 d de
= ———ZsinG— —cos 0

dz? do dz
e de

:Esmze—d—zcos@

But sin?6 =1 — cos?2 6 = 1 — z2 and the above becomes
20 J4’0 5 de
7O _10 ) 19,
do?  dz? dz

Using these in (4) gives

4’0 de ae

T 0-2)- e

+ ing)|+(10+1) e ©() =0
dz2 dzz sin@\ dz St 1-22 )=

2

_ 2 " _ ’ _ UL
(1-22)©" -220 +(l(l+1) -

And finally, we obtain the final ODE, which is the radial ODE from (3)

R 2R’
k2r2+r2(? + ;E) = l(l+1)

)@ (z)=0 (3A)

2
k*r°R + 12 (R” + ;R’) ~-1I+1)R=0

PR” + 2R’ + (k2r2 I+ 1)) R=0

2 I(I+1

R” + =R’ + k% - ( )R:O (4A)
r r2
In summary we have obtained the following 4 ODE’s to solve (1A,2A,3A,4A)
D" +mPP =0 (2A)
2
(1-22)©" -220" +|1(1+1) - O(z) =0 (3A)
1-22
2 I(I+1

R”+;R’+(k2— (r2 ))R:O (4A)

Solution to (2A) requires m to be integer due to periodicity requirements of solution. The
solution is @ (qb) = etim, Equation (3A) is the associated Legendre ODE. Since we are
taking / as integer then the solution is known to be © (z) = P}" (z) + Q}" (z) where P} (z) is
called the associated Legendre polynomial and Q" is the Legendre function of the second
kind. Finally (4A) can be converted to Bessel ODE as shown in class notes using the

transformation R (r) = Hr) which results in
2
1
1 (l + —)
TR U B
r r2

vr

u=20



Which has solution | ! (kr). The second solution | (l+1) (kr) is rejected since it is not finite
2 2

at zero and hence makes the solution blow up at center of sphere. Therefore solution to
(4A) is

Tt
R() = Cyf5pT,1 ()

= Cjy (kr)
Where C is arbitrary constant. Putting all the above together, then the final solution is
: eime P" (cos 0)
— | -iwt l ;
w(r, G,QD,t) = { e { pini { Q" (cos 0) {]1 (kr)

Where j; (kr) are the spherical Bessel functions. Now we need to satisfy the boundary
conditions. Since only j; (kr) depends on 7, then 1, = 0 at r = 0 and at r = r( are equivalent
to looking at R’ (r) = 0 at r = 0 and 7 = ry. Therefore we need to find the smallest [, k
which satisfy both conditions. This will give the lowest frequency.

I found from DLMF that the series expansion of j; (k) is
(k) (;__Gn® _ dnt
QI+ D)1 22 +3)  8(1+5) (2 +3)

Hence for r — 0, we can approximate the above as the following by ignoring all higher
order terms

ji (kr) = (5)

R o i
i k) = G n
Which means for small 7, the derivative is
]1( r) = (21 i
At r = 0 then setting |%]l (kr)] = 0 is satisfied for all I. Now taking derivative of (5)
gives 0
-1 2 4 !
S Ll PR s (kr) o (o 20m 4 |
dr Q2+ 2@ +3) " 82i+5)(2+3) QA+ 2@ +3) 8@ +5@+3)
At r = ry the above becomes
I-1 2 4 ! 3
[ifl (kr)] _ kro) (1 _ (g™ (ko) N J+ (kro) (1 _ 20krp)  4(kno) N
dr Qi+ 200+3)  8(21+5)(2+23) Qx| 200+3)  8(2A+5)(2+3)

Now we ask, for which values of [ is the above zero? If we let | — oo then we obtain

L(krg) ™ (kro)
[_] l (kr)]wo e @D @I+ D)

>0

=0

Therefore, to satisfy both [_]l (kr)] =0 and [_]l (kr)] = 0 we need [ — oo. In other

=710
words, a very large integer. The larger [ is, the lower the radial frequency. In addition, in-

creasing k while keeping [ fixed will increase the frequency. And decreasing k while keeping
| fixed decreases the frequency. And for fixed k, increasing / decreases the frequency.
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3 Problem 3

A sphere of radius R is at temperature u = 0. At time f = 0 it is immersed in a heat bath
of temperature 1. What is the temperature distribution u (r, ) as function of time?

solution

Note: I Used u(r,t) instead of T'(r,t) as the dependent variable to allow using T (f) for
separation of variables without confusing it with the original T (7, t).

The PDE specification is, solve for u (7, t)
u,=kV?u  t>0,0<r<R

With initial conditions

u(r,0)=0
And boundary conditions

u(R,t) = uy

[u(0,t)] < oo

Where the second B.C. above means the temperature u is bounded at origin (center of
sphere). In spherical coordinates, the PDE becomes (There are no dependency on 0, ¢
due to symmetry), and only radial dependency.

1 1
= (ru),, 1)

To simplify the solution, let
U(r,t) =ru(r,t)

And we obtain a new PDE
1

Euf =U, (2)
And the boundary conditions u (R, ) = ug becomes U (R, t) = Rug and the initial conditions
becomes U (r,0) = 0. So we will solve (2) and not (1). But since the boundary conditions
are not homogenous, we can not use separation of variables. We introduce a reference
function w (r) which need to satisfy the nonhomogeneous boundary conditions only. Let
w (r) = Br. When v = R then Rug = BR or B = uy When r = 0 then w = 0 which is bounded.

Hence
w (1) = ugr
Therefore, the solution now can be written as
U(r,t) =v(rt)+ugr (3)

Where v (7, t) now satisfies the PDE but with homogenous B.C. Substituting (3) into (2)
gives

2
v = kﬁ (v (r,t) + ugr)
v; = ko, (r,t) (4)
We need to solve the above but with homogenous boundary conditions
v(R,t)=0
[v(0,t)] < oo

This is standard PDE, who can be solved by separation of variables. let v = F(r) T (¢),
hence (4) becomes

T'F = kF'T
T/ FII

k= = — = )2
T F

Which gives
F” +A%F =0
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Due to boundary conditions only A > 0 is eigenvalues. Hence solution is
F(r) = Acos(Ar) + Bsin (Ar)
At r = 0, since bounded, say 0, then we can take A = 0, leaving the solution
F (r) = Bsin (Ar)
Atr=R
0 = Bsin (AR)
For nontrivial solution

AR =nm n=1,2,3,--
nm
An:f

Hence eigenfunctions are
nm
F, (r) = sin (—r) n=1,23,-
R
nrt 2
The time ODE is therefore T’ + A%kT = 0 with solution T, (t) = Ane_(F)
solution to (4) is

kt. Hence the

0 nm\2
v(r,t) = Z Ane_(?) M sin (1%7)
n=1

Therefore from (3)
& nmy2 nm
U(r,t) = A_(F)kt‘(—)+
(r, 1) (,;::1 e sin R r Ugr
But U (r,t) = ru(r,t), hence
1 & (= 2k . [(nTt

u(r,t) = (;;Ane (%) Fsin (?r)) + uy (5)

Now we find A,, from initial conditions. At t =0

1 & nm
O=ug+- ), A,si (—)
Ug rZ 5 Sin Rr

n=1
oo
. (N7
—rUy = Z A, sin (?r)
n=1
Therefore A, are the Fourier series coefficients of —ru

R R
EA” = _fo g sin (%r) dr
2 R
A, = —% . rsin(%zr) dr
R nm

Hence the solution (5) becomes

2R i 1 _ ”_7'!2 n
u(r,t) =up+ U Z (-1)" € K%) tsin(%r)

n=1
00 nm\2
= U (1 + % Z (-1)" le_k(W) Fsin (%r)) (7)

Verification of solution

Verification that (7) satisfies the PDE u; = kV2u. Taking time derivative of (7) gives

2R & a1 nm\2 3, o (nm
ut:—uoﬁkz;(—l) ;(?) e k(R) tsm(?r) (8)
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And taking space derivatives of (7) gives

2R & 1 _k("ﬂ)ztnn nm
s W R (_ )
Uy uor nzzl( ) ne cos r

R R
2R & 1 g2 (nm\2 | (nm
e = —o— ;::1 (-1)" e (%) t(?) sin (?1’)
Hence ku,, becomes
JR & 1 (T 2 nmn 2 . nm
kuxx = —uoEkE (_1)71 Ee ( R ) f (?) Sin (?7’) (9)

Comparing (8) and (9) shows they are the same expressions.

Verification that (7) satisfies the boundary condition.

When 7 = R, therefore (7) gives, when replacing r by R
2R & 1 _k(n_n)zt . (nT
RH)=up|l+ =D (-1)" =¢ & (—R)
u(R,t) uo( +R7’( (-1) ne sin R

n=1

= U (1 + % g (-1)" %e_k(%ﬂ)zt sin (nn))

=uy(1+0)

= u
But 7 is integer. Hence sin (n7t) = 0 for all n. And the above becomes

u(R,t) =uy(1+0)
=1

Verified.
Verification that (7) satisfies the initial conditions u (r,0) = 0 for r < R.

At t =0 (7) becomes
2R & nm
(1" O) = Uy (1 + E Z ( 1) E sin (?7’))

n=1

_u0+§u02(1) sm( )

B +2R ,(n)ﬂ_l, 27 1  (3m +1. 4
= Uy muo sin Rr 25111 Rr 3sm Rr 4sm Rr

I could not simplify the above by hand, but using the computer, I verified numerically it
is zero for 0 < 7 < R for a given R and given 1.

ClearAll[R, r]

R=1; (xradiusx)

uo = 10; (+B.C. valuex)

s=Sum[ (-1)”*n1/nSin[nPi/Rr], {n, 1, Infinity}] (+xobtain sumx)

Table[chop[ ue + f:i ue*s], (r, 0.05, R, .05}]

N =

i(-Log[1+e™ "] +Log[e ™ " (1+e*"")])

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0}

Figure 6: Obtaining the sum using the computer
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4 Problem 4

Consider the Helmholtz equation

V2u(r,0) +k*u(r,0) =0 1)

inside the circle r = 7y with the boundary condition u (rg, 0) = f (0). The solution can be
written in the form u (r, 0) = £2nf(6’) G(r,0;60’)d0’. Find the Green function G.

solution
I will solve (1) directly and then compare the solution obtain to u (r, ) = £2n f(0)G(r,0,0)do’

in order to read off the Green function expression. (1) in polar coordinates becomes

L+ Luge + k=0
Uy + —U, + —Ugg + k“u =
rr " r 7’2 00

Writing u (r, 0) = R(r) © (0), the above PDE becomes
1 1
R'®+-R'®+50"R + k*RO =0
R” 1R 10"

— t-—+=—+k>=0
R rR ro
2 232
r*—4+r—+r%k° =- =m
R R Q)
Where m is the separation constant. The eigenvalue problem is taken as
O"+mO =0

Due to periodicity of the solution on the disk, then ® (-7) = © (1) and ®’ (-n) = O’ (n).
These boundary conditions restrict 7 to only positive integer values. Hence let m = n?
and the solution to the above becomes

®,(0) = A, cos (n0) + B, sin (n0)
Now the radial ODE is

/7 /

rP— +r— +1%k? = a?

R R
rR” + rR’ + (rzk2 - nz) R=0
1 2
R” + =R’ +(k2—”—2)R =0
r r

This is Bessel ODE whose solutions are (since 7 are integers) is
Ra (1’) = Cn]n (kT) + EnYn (k?’)

But Y, (kr) blows up at r = 0, hence it is rejected leaving solution R, () = C,J,, (kr). Hence

the final solution is
o0

u(r,0) = Y, (A, cos (n0) + B, sin (n0)) J,, (kr) (2)
m=1
Where the constant C,, is merged with the other two constants. Now, at r = r, we are told
that u (ry, 0) = f (0). Hence the above becomes

f(0) = i (A,, cos (nO) + B, sin (n0)) J,, (krg)

m=1
By orthogonality of cos (n60), sin (n6) we find the Fourier cosine and Fourier sine coefficients
A, B, as

1 27T

Al (kro) ~ = fo £(6) cos (n6) d6
1 27T

Buly (o) = [ £ (©)sin(u6) do
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Substituting the above back into the solution found in (2) results in

00 271 271
u(r,@):n;l(]n (Zro) fo f(@’)cos(ne’)de’)cos(ne)+(]n (Zro) fo f(@/)sin(nef)de’)sin(n@)] T, (k

00 e 277 , ) ) 277 N N )
= mz::l ) (j(; f(0") cos (n0") cos (n0) dO” + j; f(0")sin (n0’) sin (n6) dO )]n (kr)
(3)

Using trig relations

1
cos AcosB = > (cos (A + B) + cos (A — B))

1
sin AsinB = > (cos (A — B) — cos (A + B))
Then (3) becomes

e8]

u(r,0) = E m (jjnf(é’) (cos (n (0" + 0)) + cos (n (6" — 0)))dO" + jjnf(G’) (cos(n (0" —0)) —cos(n (6’ +0)))do’|],

m=1

Which is simplified to, after combining both integrals to one

o0

0) = - " e 0 +0 0 -0 0 — 0))  cosn (' +0)de"
u(r, )_EZH(kro)(j; f(0") (cos (n (0" + 0)) + cos (n (0" —0)) + cos(n (0" —0)) —cosn (0’ + 0)) |

[ f 7 F (020080 - 0)dor |1, (k)

o; TC
Zzzfn(kro
3 l T / d@’]] (kr)
Z_]f F(o )In(k S cos (0= 0o ],

Exchanging integration with summation gives

27T
1 (r, 0) = f £(0) (Z o s O =0, (kr)) o’

1

Comparing the above to

271
1 (r, 0) = fo F(6)G(r,0;6")do’

Shows that Green function is

o

G(r,6,0") = (0" = 0)], (kr)
r m}:l]n(k )cos I, (kr

Where r( is radius of disk. It is symmetric in O as expected.
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