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1 Problem 1

Find the normal modes of a rectangular drum with sides of length 𝐿𝑥 and 𝐿𝑦
solution

The geometry of the problem is

x

y

Lx

Ly

ut = c2∇u

u = 0 on all edges

Figure 1: Problem to solve

Using Cartesian coordinates. Wave displacement is 𝑢 ≡ 𝑢 �𝑥, 𝑦, 𝑡� (out of page).

𝜕2𝑢 �𝑥, 𝑦, 𝑡�
𝜕𝑡2

= 𝑐2 �
𝜕2𝑢
𝜕𝑥2

+
𝜕2𝑢
𝜕𝑦2 �

0 < 𝑥 < 𝐿𝑥
0 < 𝑦 < 𝐿𝑦

Boundary conditions on 𝑥

𝑢 �0, 𝑦, 𝑡� = 0

𝑢 �𝐿𝑥, 𝑦, 𝑡� = 0
And boundary conditions on 𝑦

𝑢 (𝑥, 0, 𝑡) = 0
𝑢 �𝑥, 𝐿𝑦, 𝑡� = 0

Solution

Let 𝑢 = 𝑋 (𝑥) 𝑌 �𝑦� 𝑇 (𝑡). Substituting into the PDE gives

1
𝑐2
𝑇′′𝑋𝑌 = 𝑋′′𝑌𝑇 + 𝑌′′𝑋𝑇

1
𝑐2
𝑇′′

𝑇
=
𝑋′′

𝑋
+
𝑌′′

𝑌
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Hence, using 𝜆 as first separation constant we obtain

1
𝑐2
𝑇′′

𝑇
= −𝜆

𝑋′′

𝑋
+
𝑌′′

𝑌
= −𝜆

The time ODE becomes

𝑇′′ + 𝑐2𝜆𝑇 = 0
And the space ODE becomes

𝑋′′

𝑋
+
𝑌′′

𝑌
= −𝜆

Separating the space ODE again

𝑋′′

𝑋
= −𝜆 −

𝑌′′

𝑌
= −𝜇

Where 𝜇 is the new separation variable. This gives two new separate ODE’s

𝑋′′

𝑋
= −𝜇

−𝜆 −
𝑌′′

𝑌
= −𝜇

Or

𝑋′′ + 𝜇𝑋 = 0
𝑌′′ + 𝑌 �𝜆 − 𝜇� = 0

Solving for 𝑋 ODE first, and knowing that 𝜇 > 0 from nature of boundary conditions, we
obtain

𝑋 (𝑥) = 𝐴 cos �√𝜇𝑥� + 𝐵 sin �√𝜇𝑥�
Applying B.C. at 𝑥 = 0

0 = 𝐴
Hence 𝑋 (𝑥) = 𝐵 sin �√𝜇𝑥�. Applying B.C. at 𝑥 = 𝐿𝑥

0 = 𝐵 sin �√𝜇𝐿𝑥�
Hence

√𝜇𝐿𝑥 = 𝑛𝜋

𝜇𝑛 = �
𝑛𝜋
𝐿𝑥
�
2

𝑛 = 1, 2, 3,⋯ (1)

Therefore the 𝑋𝑛 (𝑥) solution is

𝑋𝑛 (𝑥) = 𝐵𝑛 sin �
𝑛𝜋
𝐿𝑥
𝑥� 𝑛 = 1, 2, 3,⋯ (2)
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Solving the 𝑌 �𝑦� ODE using the same eigenvalues found above

𝑌′′ + 𝑌
⎛
⎜⎜⎜⎜⎝𝜆 − �

𝑛𝜋
𝐿𝑥
�
2⎞⎟⎟⎟⎟⎠ = 0

The solution is

𝑌 �𝑦� = 𝐶 cos

⎛
⎜⎜⎜⎜⎜⎜⎝�

𝜆 − �
𝑛𝜋
𝐿𝑥
�
2

𝑦

⎞
⎟⎟⎟⎟⎟⎟⎠ + 𝐷 sin

⎛
⎜⎜⎜⎜⎜⎜⎝�

𝜆 − �
𝑛𝜋
𝐿𝑥
�
2

𝑦

⎞
⎟⎟⎟⎟⎟⎟⎠

Applying first B.C. 𝑌 (0) = 0 gives
0 = 𝐶

Hence

𝑌 �𝑦� = 𝐷 sin

⎛
⎜⎜⎜⎜⎜⎜⎝�

𝜆 − �
𝑛𝜋
𝐿𝑥
�
2

𝑦

⎞
⎟⎟⎟⎟⎟⎟⎠

Applying second B.C. 𝑌 �𝐿𝑦� = 0

0 = 𝐷 sin

⎛
⎜⎜⎜⎜⎜⎜⎝�

𝜆 − �
𝑛𝜋
𝐿𝑥
�
2

𝐿𝑦

⎞
⎟⎟⎟⎟⎟⎟⎠

Hence

�
𝜆 − �

𝑛𝜋
𝐿𝑥
�
2

𝐿𝑦 = 𝑚𝜋 𝑚 = 1, 2, 3,⋯

𝜆𝑛𝑚 − �
𝑛𝜋
𝐿𝑥
�
2

= �
𝑚𝜋
𝐿𝑦
�
2

𝜆𝑛𝑚 = �
𝑚𝜋
𝐿𝑦
�
2

+ �
𝑛𝜋
𝐿𝑥
�
2

𝑛 = 1, 2, 3,⋯ ,𝑚 = 1, 2, 3,⋯

Hence the 𝑌𝑛𝑚 solution is

𝑌𝑛𝑚 = 𝐷𝑛𝑚 sin �
𝑚𝜋
𝐿𝑦
𝑦� 𝑛 = 1, 2, 3,⋯ ,𝑚 = 1, 2, 3,⋯

We notice that 𝑋𝑛 (𝑥) solution depends on 𝑛 only, while 𝑌𝑛𝑚 �𝑦� solution depends on 𝑛 and
𝑚. Now that we found 𝜆 we can we solve the time 𝑇 (𝑡) ode

𝑇′′
𝑛𝑚 + 𝑐2𝜆𝑛𝑚𝑇𝑛𝑚 = 0

𝑇𝑛𝑚 (𝑡) = 𝐸𝑛𝑚 cos �𝑐�𝜆𝑛𝑚𝑡� + 𝐹𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡�
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Combining all solution , and merging all constants into two, we find

𝑢𝑛𝑚 �𝑥, 𝑦, 𝑡� = 𝑋𝑛 (𝑥) 𝑌𝑛𝑚 �𝑦� 𝑇𝑛𝑚 (𝑡)

= (𝐵𝑛𝑋𝑛) �𝐷𝑛𝑚 sin �
𝑚𝜋
𝐿𝑦
𝑦�� �𝐸𝑛𝑚 cos �𝑐�𝜆𝑛𝑚𝑡� + 𝐹𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡��

= 𝐵𝑛𝑋𝑛 sin �
𝑚𝜋
𝐿𝑦
𝑦� �𝐸′𝑛𝑚 cos �𝑐�𝜆𝑛𝑚𝑡� + 𝐹′𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡��

= 𝑋𝑛 sin �
𝑚𝜋
𝐿𝑦
𝑦� �𝐸′′𝑛𝑚 cos �𝑐�𝜆𝑛𝑚𝑡� + 𝐹′′𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡��

Where 𝐸′′𝑛𝑚, 𝐹′′𝑛𝑚 are the new constants after merging them with the other constants. Renam-
ing 𝐸′′𝑛𝑚 = 𝐴𝑛𝑚, 𝐹′′𝑛𝑚 = 𝐵𝑛𝑚 the above solution can be written as

𝑢 �𝑥, 𝑦, 𝑡� =
∞
�
𝑛=1

∞
�
𝑚=1

𝑋𝑛 (𝑥) 𝑌𝑚𝑛 �𝑦� 𝑇𝑚𝑛 (𝑡)

=
∞
�
𝑛=1

∞
�
𝑚=1

𝐴𝑛𝑚 sin �
𝑛𝜋
𝐿𝑥
𝑥� sin �

𝑚𝜋
𝐿𝑦
𝑦� cos �𝑐�𝜆𝑛𝑚𝑡�

+
∞
�
𝑛=1

∞
�
𝑚=1

𝐵𝑛𝑚 sin �
𝑛𝜋
𝐿𝑥
𝑥� sin �

𝑚𝜋
𝐿𝑦
𝑦� sin �𝑐�𝜆𝑛𝑚𝑡� (3)

To solve this completely, we apply initial conditions to find 𝐴𝑛𝑚, 𝐵𝑛𝑚. But the problem is
just asking for the normal modes. These are given by 𝑋𝑛 (𝑥) 𝑌𝑚𝑛 �𝑦�. Therefore for 𝑛 = 1, we

have the modes sin � 𝜋
𝐿𝑥
𝑥� sin � 𝜋

𝐿𝑦
𝑦� , sin � 𝜋

𝐿𝑥
𝑥� sin �2𝜋𝐿𝑦 𝑦� , sin �

𝜋
𝐿𝑥
𝑥� sin �3𝜋𝐿𝑦 𝑦� ,⋯ and for 𝑛 = 2

we have sin �2𝜋𝐿𝑥 𝑥� sin � 𝜋
𝐿𝑦
𝑦� , sin �2𝜋𝐿𝑥 𝑥� sin �2𝜋𝐿𝑦 𝑦� , sin �

2𝜋
𝐿𝑥
𝑥� sin �3𝜋𝐿𝑦 𝑦� ,⋯ and so on.

𝑛 𝑚 = 1 2 3 4

1 sin � 𝜋
𝐿𝑥
𝑥� sin � 𝜋

𝐿𝑦
𝑦� sin � 𝜋

𝐿𝑥
𝑥� sin �2𝜋𝐿𝑦 𝑦� sin � 𝜋

𝐿𝑥
𝑥� sin �3𝜋𝐿𝑦 𝑦� ⋯

2 sin �2𝜋𝐿𝑥 𝑥� sin � 𝜋
𝐿𝑦
𝑦� sin �2𝜋𝐿𝑥 𝑥� sin �2𝜋𝐿𝑦 𝑦� sin �2𝜋𝐿𝑥 𝑥� sin �3𝜋𝐿𝑦 𝑦� ⋯

3 sin �3𝜋𝐿𝑥 𝑥� sin � 𝜋
𝐿𝑦
𝑦� sin �3𝜋𝐿𝑥 𝑥� sin �2𝜋𝐿𝑦 𝑦� sin �3𝜋𝐿𝑥 𝑥� sin �3𝜋𝐿𝑦 𝑦� ⋯

⋮ ⋮ ⋮ ⋮ ⋮

To draw these modes, let us assume that 𝐿𝑥 = 1, 𝐿𝑦 = 1. This gives

𝑛 𝑚 = 1 2 3 4
1 sin (𝜋𝑥) sin �𝜋𝑦� sin (𝜋𝑥) sin �2𝜋𝑦� sin (𝜋𝑥) sin �3𝜋𝑦� ⋯
2 sin (2𝜋𝑥) sin �𝜋𝑦� sin (2𝜋𝑥) sin �2𝜋𝑦� sin (2𝜋𝑥) sin �3𝜋𝑦� ⋯
3 sin (3𝜋𝑥) sin �𝜋𝑦� sin (3𝜋𝑥) sin �2𝜋𝑦� sin (3𝜋𝑥) sin �3𝜋𝑦� ⋯
⋮ ⋮ ⋮ ⋮ ⋮

The following is a plot of the above modes for illustrations with the code used to generate
these plots.
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Out[ ]=
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Figure 2: Modes using 𝐿𝑥 = 1, 𝐿𝑦 = 1

makePlot[n_, m_] :=

ContourPlot[Sin[n Pi x]* Sin[m Pi y], {x, 0, 1}, {y, 0, 1},

PlotLegends → None,

Frame → True, FrameLabel → {{None, None}, {None, Style[Row[{"N=", n, ", M=", m}], 12]}}];

Grid@Table[makePlot[n, m], {n, 1, 3}, {m, 1, 3}]

Figure 3: Code used to draw above plot

The following is 3D view of the above modes.
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Out[ ]=

Figure 4: 3D view of the modes using 𝐿𝑥 = 1, 𝐿𝑦 = 1

In[ ]:= makePlot[n_, m_] :=

Plot3D[Sin[n Pi x]* Sin[m Pi y], {x, 0, 1}, {y, 0, 1},

PlotLabel → Style[Row[{"N=", n, ", M=", m}], 12],

Boxed -> False, Axes → False

];

Grid@Table[makePlot[n, m], {n, 1, 3}, {m, 1, 3}]

Figure 5: Code used to draw above plot
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2 Problem 2

Find the normal modes of an acoustic waves in a hollow sphere of radius 𝑅. The wave
equation is

∇ 2𝜓 �𝑟, 𝜃, 𝜙, 𝑡� =
1
𝑐2
𝜓𝑡𝑡

With boundary conditions 𝜓𝑟 = 0 at 𝑟 = 0 and at 𝑟 = 𝑟0. (I used 𝑟0 in place of 𝑅 because
wanted to use 𝑅 (𝑟) for separation of variables).

What is the lowest frequency?

solution

Let

𝜓 �𝑟, 𝜃, 𝜙, 𝑡� = 𝑢 �𝑟, 𝜃, 𝜙� 𝑒−𝑖𝜔𝑡

Substituting this back in the original PDE gives

∇ 2𝑢 �𝑟, 𝜃, 𝜙� +
𝜔2

𝑐2
𝑢 �𝑟, 𝜃, 𝜙� = 0

Let 𝑘 = 𝜔
𝑐 (wave number) and the above becomes

∇ 2𝑢 + 𝑘2𝑢 = 0 (1)

The above is called the Helmholtz PDE. In spherical coordinates it becomes
Radial part

�����������
𝑢𝑟𝑟 +

2
𝑟
𝑢𝑟 +

Angular part

�����������������������������������������������1
𝑟2 �

cos𝜃
sin𝜃

𝑢𝜃 + 𝑢𝜃𝜃� +
1

𝑟2 sin2 𝜃
𝑢𝜙𝜙 + 𝑘2𝑢 = 0

Let 𝑢 �𝑟, 𝜃, 𝜙� = 𝑅 (𝑟)Θ (𝜃)Φ �𝜙� and the above becomes

𝑅′′𝑇ΘΦ +
2
𝑟
𝑅′𝑇ΘΦ +

1
𝑟2 �

cos𝜃
sin𝜃

Θ ′𝑅𝑇Φ + Θ ′′𝑅𝑇Φ� +
1

𝑟2 sin2 𝜃
Φ ′′𝑅Θ𝑇 + 𝑘2𝑅Θ𝑇 = 0

Dividing by 𝑅ΘΦ ≠ 0 gives
𝑅′′

𝑅
+
2
𝑟
𝑅′

𝑅
+
1
𝑟2 �

cos𝜃
sin𝜃

Θ ′

Θ
+
Θ ′′

Θ � +
1

𝑟2 sin2 𝜃
Φ ′′

Φ
+ 𝑘2 = 0

𝑟2 sin2 𝜃
𝑅′′

𝑅
+ 𝑟2 sin2 𝜃

2
𝑟
𝑅′

𝑅
+ sin2 𝜃 �

cos𝜃
sin𝜃

Θ ′

Θ
+
Θ ′′

Θ � + 𝑘2𝑟2 sin2 𝜃 = −
Φ ′′

Φ
The left side depends only on 𝑟, 𝜃 and the right side depends only on 𝜙. Let the second
separation constant be 𝑚2 and the above becomes

𝑟2 sin2 𝜃
𝑅′′

𝑅
+ 𝑟2 sin2 𝜃

2
𝑟
𝑅′

𝑅
+ sin2 𝜃 �

cos𝜃
sin𝜃

Θ ′

Θ
+
Θ ′′

Θ � + 𝑘2𝑟2 sin2 𝜃 = −
Φ ′′

Φ
= 𝑚2 (2)

Which gives the first angular ODE as

Φ ′′ + 𝑚2Φ = 0 (2A)
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We now go back to (2) to obtain the rest of the solutions. We now have

𝑟2 sin2 𝜃
𝑅′′

𝑅
+ 𝑟2 sin2 𝜃

2
𝑟
𝑅′

𝑅
+ sin2 𝜃 �

cos𝜃
sin𝜃

Θ ′

Θ
+
Θ ′′

Θ � + 𝑘2𝑟2 sin2 𝜃 = 𝑚2

𝑘2𝑟2 + 𝑟2 �
𝑅′′

𝑅
+
2
𝑟
𝑅′

𝑅 �
+ �

cos𝜃
sin𝜃

Θ ′

Θ
+
Θ ′′

Θ � =
𝑚2

sin2 𝜃

𝑘2𝑟2 + 𝑟2 �
𝑅′′

𝑅
+
2
𝑟
𝑅′

𝑅 �
= − �

cos𝜃
sin𝜃

Θ ′

Θ
+
Θ ′′

Θ � +
𝑚2

sin2 𝜃
The left side depends on 𝑟 and the right side depends on 𝜃 only. Let the separation constant
be 𝑙 (𝑙 + 1) where 𝑙 is integer which results in

𝑘2𝑟2 + 𝑟2 �
𝑅′′

𝑅
+
2
𝑟
𝑅′

𝑅 �
= − �

cos𝜃
sin𝜃

Θ ′

Θ
+
Θ ′′

Θ � +
𝑚2

sin2 𝜃
= 𝑙 (𝑙 + 1) (3)

Therefore the next angular ODE is

− �
cos𝜃
sin𝜃

Θ ′

Θ
+
Θ ′′

Θ � +
𝑚2

sin2 𝜃
= 𝑙 (𝑙 + 1)

− �
cos𝜃
sin𝜃

Θ ′

Θ
+
Θ ′′

Θ � +
𝑚2

sin2 𝜃
− 𝑙 (𝑙 + 1) = 0

�
cos𝜃
sin𝜃

Θ ′

Θ
+
Θ ′′

Θ � −
𝑚2

sin2 𝜃
+ 𝑙 (𝑙 + 1) = 0

Θ ′′ +
cos𝜃
sin𝜃

Θ ′ + �𝑙 (𝑙 + 1) −
𝑚2

sin2 𝜃�
Θ = 0 (4)

Let 𝑧 = cos𝜃, then 𝑑Θ
𝑑𝜃 =

𝑑Θ
𝑑𝑧

𝑑𝑧
𝑑𝜃 = −

𝑑Θ
𝑑𝑧 sin𝜃 and

𝑑2Θ
𝑑𝜃2

=
𝑑
𝑑𝜃 �

−
𝑑Θ
𝑑𝑧

sin𝜃�

= −
𝑑2Θ
𝑑𝑧2

𝑑𝑧
𝑑𝜃

sin𝜃 −
𝑑Θ
𝑑𝑧

cos𝜃

=
𝑑2Θ
𝑑𝑧2

sin2 𝜃 −
𝑑Θ
𝑑𝑧

cos𝜃

But sin2 𝜃 = 1 − cos2 𝜃 = 1 − 𝑧2 and the above becomes
𝑑2Θ
𝑑𝜃2

=
𝑑2Θ
𝑑𝑧2

�1 − 𝑧2� −
𝑑Θ
𝑑𝑧
𝑧

Using these in (4) gives

𝑑2Θ
𝑑𝑧2

�1 − 𝑧2� −
𝑑Θ
𝑑𝑧
𝑧 +

𝑧
sin𝜃 �

−
𝑑Θ
𝑑𝑧

sin𝜃� + �𝑙 (𝑙 + 1) −
𝑚2

1 − 𝑧2 �
Θ (𝑧) = 0

�1 − 𝑧2�Θ ′′ − 2𝑧Θ ′ + �𝑙 (𝑙 + 1) −
𝑚2

1 − 𝑧2 �
Θ (𝑧) = 0 (3A)
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And finally, we obtain the final ODE, which is the radial ODE from (3)

𝑘2𝑟2 + 𝑟2 �
𝑅′′

𝑅
+
2
𝑟
𝑅′

𝑅 �
= 𝑙 (𝑙 + 1)

𝑘2𝑟2𝑅 + 𝑟2 �𝑅′′ +
2
𝑟
𝑅′� − 𝑙 (𝑙 + 1) 𝑅 = 0

𝑟2𝑅′′ + 2𝑟𝑅′ + �𝑘2𝑟2 − 𝑙 (𝑙 + 1)� 𝑅 = 0

𝑅′′ +
2
𝑟
𝑅′ + �𝑘2 −

𝑙 (𝑙 + 1)
𝑟2 � 𝑅 = 0 (4A)

In summary we have obtained the following 4 ODE’s to solve (1A,2A,3A,4A)

Φ ′′ + 𝑚2Φ = 0 (2A)

�1 − 𝑧2�Θ ′′ − 2𝑧Θ ′ + �𝑙 (𝑙 + 1) −
𝑚2

1 − 𝑧2 �
Θ (𝑧) = 0 (3A)

𝑅′′ +
2
𝑟
𝑅′ + �𝑘2 −

𝑙 (𝑙 + 1)
𝑟2 � 𝑅 = 0 (4A)

Solution to (2A) requires 𝑚 to be integer due to periodicity requirements of solution. The
solution is Φ�𝜙� = 𝑒±𝑖𝑚𝜙. Equation (3A) is the associated Legendre ODE. Since we are
taking 𝑙 as integer then the solution is known to be Θ(𝑧) = 𝑃𝑚𝑙 (𝑧) + 𝑄𝑚

𝑙 (𝑧) where 𝑃𝑚𝑙 (𝑧) is
called the associated Legendre polynomial and 𝑄𝑚

𝑙 is the Legendre function of the second
kind. Finally (4A) can be converted to Bessel ODE as shown in class notes using the

transformation 𝑅 (𝑟) = 𝑢(𝑟)

√𝑟
which results in

𝑢′′ +
1
𝑟
𝑢′ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑘2 −

�𝑙 + 1
2
�
2

𝑟2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑢 = 0

Which has solution 𝐽𝑙+ 1
2
(𝑘𝑟). The second solution 𝐽

−�𝑙+ 1
2 �
(𝑘𝑟) is rejected since it is not finite

at zero and hence makes the solution blow up at center of sphere. Therefore solution to
(4A) is

𝑅 (𝑟) = 𝐶
�

𝜋
2𝑘𝑟

𝐽𝑙+ 1
2
(𝑘𝑟)

= 𝐶𝑗𝑙 (𝑘𝑟)
Where 𝐶 is arbitrary constant. Putting all the above together, then the final solution is

𝜓 �𝑟, 𝜃, 𝜙, 𝑡� = � 𝑒−𝑖𝜔𝑡
⎧⎪⎨
⎪⎩
𝑒𝑖𝑚𝜙

𝑒−𝑖𝑚𝜙

⎧⎪⎨
⎪⎩
𝑃𝑚𝑙 (cos𝜃)
𝑄𝑚

𝑙 (cos𝜃)
� 𝑗𝑙 (𝑘𝑟)

Where 𝑗𝑙 (𝑘𝑟) are the spherical Bessel functions. Now we need to satisfy the boundary condi-
tions. Since only 𝑗𝑙 (𝑘𝑟) depends on 𝑟, then 𝜓𝑟 = 0 at 𝑟 = 0 and at 𝑟 = 𝑟0 are equivalent to
looking at 𝑅′ (𝑟) = 0 at 𝑟 = 0 and 𝑟 = 𝑟0. Therefore we need to find the smallest 𝑙, 𝑘 which
satisfy both conditions. This will give the lowest frequency.
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I found from DLMF that the series expansion of 𝑗𝑙 (𝑘𝑟) is

𝑗𝑙 (𝑘𝑟) =
(𝑘𝑟)𝑙

(2𝑙 + 1)!!

⎛
⎜⎜⎜⎝1 −

(𝑘𝑟)2

2 (2𝑙 + 3)
+

(𝑘𝑟)4

8 (2𝑙 + 5) (2𝑙 + 3)
+⋯

⎞
⎟⎟⎟⎠ (5)

Hence for 𝑟 → 0, we can approximate the above as the following by ignoring all higher
order terms

lim
𝑟→0

𝑗𝑙 (𝑘𝑟) =
(𝑘𝑟)𝑙

(2𝑙 + 1)!!
Which means for small 𝑟, the derivative is

𝑑
𝑑𝑟
𝑗𝑙 (𝑘𝑟) =

𝑙 (𝑘𝑟)𝑙−1

(2𝑙 + 1)!!

At 𝑟 = 0 then setting � 𝑑𝑑𝑟 𝑗𝑙 (𝑘𝑟)�𝑟→0
= 0 is satisfied for all 𝑙. Now taking derivative of (5) gives

𝑑
𝑑𝑟
𝑗𝑙 (𝑘𝑟) =

𝑙 (𝑘𝑟)𝑙−1

(2𝑙 + 1)!!

⎛
⎜⎜⎜⎝1 −

(𝑘𝑟)2

2 (2𝑙 + 3)
+

(𝑘𝑟)4

8 (2𝑙 + 5) (2𝑙 + 3)
+⋯

⎞
⎟⎟⎟⎠+

(𝑘𝑟)𝑙

(2𝑙 + 1)!!

⎛
⎜⎜⎜⎝1 −

2 (𝑘𝑟)
2 (2𝑙 + 3)

+
4 (𝑘𝑟)3

8 (2𝑙 + 5) (2𝑙 + 3)
+⋯

⎞
⎟⎟⎟⎠

At 𝑟 = 𝑟0 the above becomes

�
𝑑
𝑑𝑟
𝑗𝑙 (𝑘𝑟)�

𝑟→𝑟0

=
𝑙 (𝑘𝑟0)

𝑙−1

(2𝑙 + 1)!!

⎛
⎜⎜⎜⎝1 −

(𝑘𝑟0)
2

2 (2𝑙 + 3)
+

(𝑘𝑟0)
4

8 (2𝑙 + 5) (2𝑙 + 3)
+⋯

⎞
⎟⎟⎟⎠+

(𝑘𝑟0)
𝑙

(2𝑙 + 1)!!

⎛
⎜⎜⎜⎝1 −

2 (𝑘𝑟0)
2 (2𝑙 + 3)

+
4 (𝑘𝑟0)

3

8 (2𝑙 + 5) (2𝑙 + 3)
+⋯

⎞
⎟⎟⎟⎠

Now we ask, for which values of 𝑙 is the above zero? If we let 𝑙 → ∞ then we obtain

�
𝑑
𝑑𝑟
𝑗𝑙 (𝑘𝑟)�

𝑟→𝑟0
𝑙→∞

= lim
𝑙→∞

𝑙 (𝑘𝑟0)
𝑙−1

(2𝑙 + 1)!!
+

(𝑘𝑟0)
𝑙

(2𝑙 + 1)!!

= 0

Therefore, to satisfy both � 𝑑𝑑𝑟 𝑗𝑙 (𝑘𝑟)�𝑟→0
= 0 and � 𝑑𝑑𝑟 𝑗𝑙 (𝑘𝑟)�𝑟→𝑟0

= 0 we need 𝑙 → ∞. In

other words, a very large integer. The larger 𝑙 is, the lower the radial frequency. In addition,
increasing 𝑘 while keeping 𝑙 fixed will increase the frequency. And decreasing 𝑘 while keeping
𝑙 fixed decreases the frequency. And for fixed 𝑘, increasing 𝑙 decreases the frequency.
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3 Problem 3

A sphere of radius 𝑅 is at temperature 𝑢 = 0. At time 𝑡 = 0 it is immersed in a heat bath of
temperature 𝑢0. What is the temperature distribution 𝑢 (𝑟, 𝑡) as function of time?

solution

Note: I Used 𝑢 (𝑟, 𝑡) instead of 𝑇 (𝑟, 𝑡) as the dependent variable to allow using 𝑇 (𝑡) for
separation of variables without confusing it with the original 𝑇 (𝑟, 𝑡).

The PDE specification is, solve for 𝑢 (𝑟, 𝑡)
𝑢𝑡 = 𝑘∇ 2𝑢 𝑡 > 0, 0 < 𝑟 < 𝑅

With initial conditions

𝑢 (𝑟, 0) = 0
And boundary conditions

𝑢 (𝑅, 𝑡) = 𝑢0
|𝑢 (0, 𝑡)| < ∞

Where the second B.C. above means the temperature 𝑢 is bounded at origin (center of
sphere). In spherical coordinates, the PDE becomes (There are no dependency on 𝜃, 𝜙 due
to symmetry), and only radial dependency.

1
𝑘
𝑢𝑡 =

1
𝑟
(𝑟𝑢)𝑟𝑟 (1)

To simplify the solution, let

𝑈 (𝑟, 𝑡) = 𝑟𝑢 (𝑟, 𝑡)
And we obtain a new PDE

1
𝑘
𝑈𝑡 = 𝑈𝑟𝑟 (2)

And the boundary conditions 𝑢 (𝑅, 𝑡) = 𝑢0 becomes 𝑈 (𝑅, 𝑡) = 𝑅𝑢0 and the initial conditions
becomes 𝑈 (𝑟, 0) = 0. So we will solve (2) and not (1). But since the boundary conditions are
not homogenous, we can not use separation of variables. We introduce a reference function
𝑤 (𝑟) which need to satisfy the nonhomogeneous boundary conditions only. Let 𝑤 (𝑟) = 𝐵𝑟.
When 𝑟 = 𝑅 then 𝑅𝑢0 = 𝐵𝑅 or 𝐵 = 𝑢0 When 𝑟 = 0 then 𝑤 = 0 which is bounded. Hence

𝑤 (𝑟) = 𝑢0𝑟
Therefore, the solution now can be written as

𝑈 (𝑟, 𝑡) = 𝑣 (𝑟, 𝑡) + 𝑢0𝑟 (3)

Where 𝑣 (𝑟, 𝑡) now satisfies the PDE but with homogenous B.C. Substituting (3) into (2)
gives

𝑣𝑡 = 𝑘
𝜕2

𝜕𝑟2
(𝑣 (𝑟, 𝑡) + 𝑢0𝑟)

𝑣𝑡 = 𝑘𝑣𝑟𝑟 (𝑟, 𝑡) (4)
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We need to solve the above but with homogenous boundary conditions

𝑣 (𝑅, 𝑡) = 0
|𝑣 (0, 𝑡)| < ∞

This is standard PDE, who can be solved by separation of variables. let 𝑣 = 𝐹 (𝑟) 𝑇 (𝑡), hence
(4) becomes

𝑇′𝐹 = 𝑘𝐹′′𝑇

𝑘
𝑇′

𝑇
=
𝐹′′

𝐹
= −𝜆2

Which gives

𝐹′′ + 𝜆2𝐹 = 0
Due to boundary conditions only 𝜆 > 0 is eigenvalues. Hence solution is

𝐹 (𝑟) = 𝐴 cos (𝜆𝑟) + 𝐵 sin (𝜆𝑟)
At 𝑟 = 0, since bounded, say 0, then we can take 𝐴 = 0, leaving the solution

𝐹 (𝑟) = 𝐵 sin (𝜆𝑟)
At 𝑟 = 𝑅

0 = 𝐵 sin (𝜆𝑅)
For nontrivial solution

𝜆𝑅 = 𝑛𝜋 𝑛 = 1, 2, 3,⋯

𝜆𝑛 =
𝑛𝜋
𝑅

Hence eigenfunctions are

𝐹𝑛 (𝑟) = sin �
𝑛𝜋
𝑅
𝑟� 𝑛 = 1, 2, 3,⋯

The time ODE is therefore 𝑇′ + 𝜆2𝑘𝑇 = 0 with solution 𝑇𝑛 (𝑡) = 𝐴𝑛𝑒
−� 𝑛𝜋𝑅 �

2
𝑘𝑡. Hence the

solution to (4) is

𝑣 (𝑟, 𝑡) =
∞
�
𝑛=1

𝐴𝑛𝑒
−� 𝑛𝜋𝑅 �

2
𝑘𝑡 sin �

𝑛𝜋
𝑅
𝑟�

Therefore from (3)

𝑈 (𝑟, 𝑡) = �
∞
�
𝑛=1

𝐴𝑛𝑒
−� 𝑛𝜋𝑅 �

2
𝑘𝑡 sin �

𝑛𝜋
𝑅
𝑟�� + 𝑢0𝑟

But 𝑈 (𝑟, 𝑡) = 𝑟𝑢 (𝑟, 𝑡), hence

𝑢 (𝑟, 𝑡) = �
1
𝑟

∞
�
𝑛=1

𝐴𝑛𝑒
−� 𝑛𝜋𝑅 �

2
𝑘𝑡 sin �

𝑛𝜋
𝑅
𝑟�� + 𝑢0 (5)
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Now we find 𝐴𝑛 from initial conditions. At 𝑡 = 0

0 = 𝑢0 +
1
𝑟

∞
�
𝑛=1

𝐴𝑛 sin �
𝑛𝜋
𝑅
𝑟�

−𝑟𝑢0 =
∞
�
𝑛=1

𝐴𝑛 sin �
𝑛𝜋
𝑅
𝑟�

Therefore 𝐴𝑛 are the Fourier series coe�cients of −𝑟𝑢0
𝑅
2
𝐴𝑛 = −�

𝑅

0
𝑟𝑢0 sin �

𝑛𝜋
𝑅
𝑟� 𝑑𝑟

𝐴𝑛 = −
2𝑢0
𝑅 �

𝑅

0
𝑟 sin �

𝑛𝜋
𝑅
𝑟� 𝑑𝑟

= −
2𝑢0
𝑅
(−1)𝑛+1

𝑅2

𝑛𝜋

= (−1)𝑛
2𝑅
𝑛𝜋
𝑢0

Hence the solution (5) becomes

𝑢 (𝑟, 𝑡) = 𝑢0 + 𝑢0
2𝑅
𝑟𝜋

∞
�
𝑛=1

(−1)𝑛
1
𝑛
𝑒−𝑘�

𝑛𝜋
𝑅 �

2
𝑡 sin �

𝑛𝜋
𝑅
𝑟�

= 𝑢0 �1 +
2𝑅
𝑟𝜋

∞
�
𝑛=1

(−1)𝑛
1
𝑛
𝑒−𝑘�

𝑛𝜋
𝑅 �

2
𝑡 sin �

𝑛𝜋
𝑅
𝑟�� (7)

Verification of solution

Verification that (7) satisfies the PDE 𝑢𝑡 = 𝑘∇ 2𝑢. Taking time derivative of (7) gives

𝑢𝑡 = −𝑢0
2𝑅
𝑟𝜋
𝑘

∞
�
𝑛=1

(−1)𝑛
1
𝑛
�
𝑛𝜋
𝑅
�
2
𝑒−𝑘�

𝑛𝜋
𝑅 �

2
𝑡 sin �

𝑛𝜋
𝑅
𝑟� (8)

And taking space derivatives of (7) gives

𝑢𝑥 = 𝑢0
2𝑅
𝑟𝜋

∞
�
𝑛=1

(−1)𝑛
1
𝑛
𝑒−𝑘�

𝑛𝜋
𝑅 �

2
𝑡𝑛𝜋
𝑅

cos �
𝑛𝜋
𝑅
𝑟�

𝑢𝑥𝑥 = −𝑢0
2𝑅
𝑟𝜋

∞
�
𝑛=1

(−1)𝑛
1
𝑛
𝑒−𝑘�

𝑛𝜋
𝑅 �

2
𝑡 �
𝑛𝜋
𝑅
�
2

sin �
𝑛𝜋
𝑅
𝑟�

Hence 𝑘𝑢𝑥𝑥 becomes

𝑘𝑢𝑥𝑥 = −𝑢0
2𝑅
𝑟𝜋
𝑘

∞
�
𝑛=1

(−1)𝑛
1
𝑛
𝑒−𝑘�

𝑛𝜋
𝑅 �

2
𝑡 �
𝑛𝜋
𝑅
�
2

sin �
𝑛𝜋
𝑅
𝑟� (9)

Comparing (8) and (9) shows they are the same expressions.

Verification that (7) satisfies the boundary condition.
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When 𝑟 = 𝑅, therefore (7) gives, when replacing 𝑟 by 𝑅

𝑢 (𝑅, 𝑡) = 𝑢0 �1 +
2𝑅
𝑅𝜋

∞
�
𝑛=1

(−1)𝑛
1
𝑛
𝑒−𝑘�

𝑛𝜋
𝑅 �

2
𝑡 sin �

𝑛𝜋
𝑅
𝑅��

= 𝑢0 �1 +
2𝑅
𝑅𝜋

∞
�
𝑛=1

(−1)𝑛
1
𝑛
𝑒−𝑘�

𝑛𝜋
𝑅 �

2
𝑡 sin (𝑛𝜋)�

= 𝑢0 (1 + 0)
= 𝑢0

But 𝑛 is integer. Hence sin (𝑛𝜋) = 0 for all 𝑛. And the above becomes

𝑢 (𝑅, 𝑡) = 𝑢0 (1 + 0)
= 𝑢0

Verified.

Verification that (7) satisfies the initial conditions 𝑢 (𝑟, 0) = 0 for 𝑟 < 𝑅.

At 𝑡 = 0 (7) becomes

𝑢 (𝑟, 0) = 𝑢0 �1 +
2𝑅
𝑟𝜋

∞
�
𝑛=1

(−1)𝑛
1
𝑛

sin �
𝑛𝜋
𝑅
𝑟��

= 𝑢0 +
2𝑅
𝑟𝜋
𝑢0

∞
�
𝑛=1

(−1)𝑛

𝑛
sin �

𝑛𝜋
𝑅
𝑟�

= 𝑢0 +
2𝑅
𝑟𝜋
𝑢0 �− sin �

𝜋
𝑅
𝑟� +

1
2

sin �
2𝜋
𝑅
𝑟� −

1
3

sin �
3𝜋
𝑅
𝑟� +

1
4

sin �
4𝜋
𝑅
𝑟� −⋯�

I could not simplify the above by hand, but using the computer, I verified numerically it is
zero for 0 < 𝑟 < 𝑅 for a given 𝑅 and given 𝑢0.

In[ ]:= ClearAll[R, r]

R = 1; (*radius*)

u0 = 10; (*B.C. value*)

s = Sum[(-1)^n 1/ n Sin[n Pi/ R r], {n, 1, Infinity}] (*obtain sum*)

TableChop u0 +
2 R

r Pi
u0* s, {r, 0.05, R, .05}

Out[ ]= -
1

2
ⅈ -Log1 + ⅇ

ⅈ π r
 + Logⅇ-ⅈ π r

1 + ⅇ
ⅈ π r



Out[ ]= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Figure 6: Obtaining the sum using the computer
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4 Problem 4

Consider the Helmholtz equation

∇ 2𝑢 (𝑟, 𝜃) + 𝑘2𝑢 (𝑟, 𝜃) = 0 (1)

inside the circle 𝑟 = 𝑟0 with the boundary condition 𝑢 (𝑟0, 𝜃) = 𝑓 (𝜃). The solution can be

written in the form 𝑢 (𝑟, 𝜃) = ∫
2𝜋

0
𝑓 (𝜃′) 𝐺 (𝑟, 𝜃; 𝜃′) 𝑑𝜃′. Find the Green function 𝐺.

solution

I will solve (1) directly and then compare the solution obtain to 𝑢 (𝑟, 𝜃) = ∫
2𝜋

0
𝑓 (𝜃′) 𝐺 (𝑟, 𝜃; 𝜃′) 𝑑𝜃′

in order to read o� the Green function expression. (1) in polar coordinates becomes

𝑢𝑟𝑟 +
1
𝑟
𝑢𝑟 +

1
𝑟2
𝑢𝜃𝜃 + 𝑘2𝑢 = 0

Writing 𝑢 (𝑟, 𝜃) = 𝑅 (𝑟)Θ (𝜃), the above PDE becomes

𝑅′′Θ +
1
𝑟
𝑅′Θ +

1
𝑟2
Θ ′′𝑅 + 𝑘2𝑅Θ = 0

𝑅′′

𝑅
+
1
𝑟
𝑅′

𝑅
+
1
𝑟2
Θ ′′

Θ
+ 𝑘2 = 0

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
+ 𝑟2𝑘2 = −

Θ ′′

Θ
= 𝑚

Where 𝑚 is the separation constant. The eigenvalue problem is taken as

Θ ′′ + 𝑚Θ = 0
Due to periodicity of the solution on the disk, then Θ(−𝜋) = Θ (𝜋) and Θ ′ (−𝜋) = Θ ′ (𝜋).
These boundary conditions restrict 𝑚 to only positive integer values. Hence let 𝑚 = 𝑛2 and
the solution to the above becomes

Θ𝛼 (𝜃) = 𝐴𝑛 cos (𝑛𝜃) + 𝐵𝑛 sin (𝑛𝜃)
Now the radial ODE is

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
+ 𝑟2𝑘2 = 𝛼2

𝑟2𝑅′′ + 𝑟𝑅′ + �𝑟2𝑘2 − 𝑛2� 𝑅 = 0

𝑅′′ +
1
𝑟
𝑅′ + �𝑘2 −

𝑛2

𝑟2 �
𝑅 = 0

This is Bessel ODE whose solutions are (since 𝑛 are integers) is

𝑅𝛼 (𝑟) = 𝐶𝑛𝐽𝑛 (𝑘𝑟) + 𝐸𝑛𝑌𝑛 (𝑘𝑟)
But 𝑌𝑛 (𝑘𝑟) blows up at 𝑟 = 0, hence it is rejected leaving solution 𝑅𝑛 (𝑟) = 𝐶𝑛𝐽𝑛 (𝑘𝑟). Hence
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the final solution is

𝑢 (𝑟, 𝜃) =
∞
�
𝑚=1

(𝐴𝑛 cos (𝑛𝜃) + 𝐵𝑛 sin (𝑛𝜃)) 𝐽𝑛 (𝑘𝑟) (2)

Where the constant 𝐶𝑛 is merged with the other two constants. Now, at 𝑟 = 𝑟0 we are told
that 𝑢 (𝑟0, 𝜃) = 𝑓 (𝜃). Hence the above becomes

𝑓 (𝜃) =
∞
�
𝑚=1

(𝐴𝑛 cos (𝑛𝜃) + 𝐵𝑛 sin (𝑛𝜃)) 𝐽𝑛 (𝑘𝑟0)

By orthogonality of cos (𝑛𝜃) , sin (𝑛𝜃) we find the Fourier cosine and Fourier sine coe�cients
𝐴𝑛, 𝐵𝑛 as

𝐴𝑛𝐽𝑛 (𝑘𝑟0)
1
𝜋
= �

2𝜋

0
𝑓 (𝜃) cos (𝑛𝜃) 𝑑𝜃

𝐵𝑛𝐽𝑛 (𝑘𝑟0)
1
𝜋
= �

2𝜋

0
𝑓 (𝜃) sin (𝑛𝜃) 𝑑𝜃

Substituting the above back into the solution found in (2) results in

𝑢 (𝑟, 𝜃) =
∞
�
𝑚=1

��
𝜋

𝐽𝑛 (𝑘𝑟0)
�

2𝜋

0
𝑓 (𝜃′) cos (𝑛𝜃′) 𝑑𝜃′� cos (𝑛𝜃) + �

𝜋
𝐽𝑛 (𝑘𝑟0)

�
2𝜋

0
𝑓 (𝜃′) sin (𝑛𝜃′) 𝑑𝜃′� sin (𝑛𝜃)� 𝐽𝑛 (𝑘𝑟)

=
∞
�
𝑚=1

𝜋
𝐽𝑛 (𝑘𝑟0)

��
2𝜋

0
𝑓 (𝜃′) cos (𝑛𝜃′) cos (𝑛𝜃) 𝑑𝜃′ +�

2𝜋

0
𝑓 (𝜃′) sin (𝑛𝜃′) sin (𝑛𝜃) 𝑑𝜃′� 𝐽𝑛 (𝑘𝑟)

(3)

Using trig relations

cos𝐴 cos𝐵 =
1
2
(cos (𝐴 + 𝐵) + cos (𝐴 − 𝐵))

sin𝐴 sin𝐵 =
1
2
(cos (𝐴 − 𝐵) − cos (𝐴 + 𝐵))

Then (3) becomes

𝑢 (𝑟, 𝜃) =
∞
�
𝑚=1

𝜋
2𝐽𝑛 (𝑘𝑟0)

��
2𝜋

0
𝑓 (𝜃′) (cos (𝑛 (𝜃′ + 𝜃)) + cos (𝑛 (𝜃′ − 𝜃))) 𝑑𝜃′ +�

2𝜋

0
𝑓 (𝜃′) (cos (𝑛 (𝜃′ − 𝜃)) − cos (𝑛 (𝜃′ + 𝜃))) 𝑑𝜃′� 𝐽𝑛 (𝑘𝑟)

Which is simplified to, after combining both integrals to one

𝑢 (𝑟, 𝜃) =
∞
�
𝑚=1

𝜋
2𝐽𝑛 (𝑘𝑟0)

��
2𝜋

0
𝑓 (𝜃′) (cos (𝑛 (𝜃′ + 𝜃)) + cos (𝑛 (𝜃′ − 𝜃)) + cos (𝑛 (𝜃′ − 𝜃)) − cos 𝑛 (𝜃′ + 𝜃)) 𝑑𝜃′� 𝐽𝑛 (𝑘𝑟)

=
∞
�
𝑚=1

𝜋
2𝐽𝑛 (𝑘𝑟0)

��
2𝜋

0
𝑓 (𝜃′) 2 cos (𝜃′ − 𝜃) 𝑑𝜃′� 𝐽𝑛 (𝑘𝑟)

=
∞
�
𝑚=1

��
2𝜋

0
𝑓 (𝜃′)

𝜋
𝐽𝑛 (𝑘𝑟0)

cos (𝜃′ − 𝜃) 𝑑𝜃′� 𝐽𝑛 (𝑘𝑟)

Exchanging integration with summation gives

𝑢 (𝑟, 𝜃) = �
2𝜋

0
𝑓 (𝜃′) �

∞
�
𝑚=1

𝜋
𝐽𝑛 (𝑘𝑟0)

cos (𝜃′ − 𝜃) 𝐽𝑛 (𝑘𝑟)� 𝑑𝜃′
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Comparing the above to

𝑢 (𝑟, 𝜃) = �
2𝜋

0
𝑓 (𝜃′) 𝐺 (𝑟, 𝜃; 𝜃′) 𝑑𝜃′

Shows that Green function is

𝐺 (𝑟, 𝜃; 𝜃′) =
∞
�
𝑚=1

𝜋
𝐽𝑛 (𝑘𝑟0)

cos (𝜃′ − 𝜃) 𝐽𝑛 (𝑘𝑟)

Where 𝑟0 is radius of disk. It is symmetric in 𝜃 as expected.
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