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1 Problem 1

/

Problem Solve x2y’ + 12 = xyy
Solution

Rewriting the ODE as

2

y (2 -xy)+12=0 (1)

Dividing by x? # 0 gives
dy y) v
—(1-=)]+==0
dx ( x) 2
We see this is homogeneous of order 1. This can be confirmed by writing the above as
dy (xz - xy) +y2dx =0
dyx? — xydy + y?dx = 0
We want to find if a weight m can be found, so that the substitution y = vx™ makes the
above ODE separable. To find m, we assign weight m to both v and dy, and a weight of 1

to both x and dx, and then try to find if there is an m which makes each term sums to the
same total weight. (in other words, we want each term units to be the same).

The term (dy) (xz) has total weight of m+2 (it is the exponents that we add). And the term
(x) (y) (dy) has total weight 1 +2m and the last term (yz) (dx) has weight 2m +1. Therefore
we have this result for the weight of each term (there are 3 terms above).

{m+2,14+2m,1+ 2m}

We see that if m = 1 then each term will have the same total weight of 3 giving {3, 3, 3}.
So this is homogenous ODE of order m = 1. Now that we know the weight, we use the
substitution

Y =0x

Hence ' = v'x + v. Substituting these back into (1) gives a new ODE in v which is
separable. If it is not separable, it means we made a mistake somewhere.

('x +v) (x2 - xzv) +0%x2 =0

v'x3 —v'ox® + vx? — 20?2 + v*x%2 =0

vx3—v'voxd +ox? =0
Dividing by x° for x # 0 gives

v
v -vv+-=0

X
v’(l—v):—E
X
d(-0) 1
dx v x
1- 1
dv( v)z——dx
v X
dv(v_l)zldx
v X

Integrating both sides gives

f v- lclv = f 1dx
% X
v—Inv=Inx+C
Taking exponential of both sides gives
ev—lnv =Cx
eU

— =Cx
v



But v = % Therefore the above becomes

y
ex
? =Cx
X

¥
ex
—_=C
y

Hence the solution is
y
y = C1€; x#0 (2)

Where C; is the constant of integration. y can not be solved for directly in the above. But
we can solve for x in terms of y if needed as follows
Y

Iny=InCqy + =

ny nC4q x
Y
Iny-C, ==
ny-=Cp x

Yy

“hy-G, )



2 Problem 2
le
Problem Solve v’ = 5
(x+y)
Solution

Let v(x) = x+y(x). Hence v’ =1+’ or y’ = v" — 1. Substituting this back into the ODE
gives

This is separable.

——dv =dx
a? + v?

2
a
— The above becomes

a2+
aZ
(1 - m) dU = dx

2
s v
By long division i 1

Integrating both sides gives
2

a
f(l‘m)d”—fdx
1
fdv—azfa2+vzdv:fdx
1

But f azivzdv = aizf H(l—g)zdv == (a arctan (s)) = %arctan (S), hence the above becomes
a

1
v — a? (— arctan (2) =x+C
a a

v—aarctan(z) =x+C

a
v
aarctan|—|=v—-x-C
a
v v—X
arctan (—) = +Cy
a a

Where C; = %, a new constant. Taking the tan of both sides gives

v v—X
— = tan
a

+ Cl)
a

But v = x + y, and the above becomes

Xry :tan(w+cl)

a a
(L)
a a

Therefore the final solution is
y:atan(%+cl)—x a#0

Where C; is arbitrary constant.



3 Problem 3

2
Problem Solve y”" + (y’ ) +1=0
Solution

Since y is missing from the ODE, we can convert this to a first order using vy’ = p(x).
Therefore y”’ = Z—Z and the ODE becomes

dp

—+p2+1=0
Ix +p-+
dp ”
—=—(1+p)
d
P~ i
1+ p?
Integrating both sides gives
d
A f dx
1+p?

arctan (p) =—x+C;
p = tan (—x + Cq)

% = tan (-=x + C;). Integrating both sides gives

But p = y’. Hence we need now to solve
Y= ftan (—x + Cq)dx
B f sin (—x + Cq)

cos (—x + Cq)

_ f—sin(x—Cl)dx

cos (x — Cq)

dx

X

[ i (cos (x=C1)
cos(x — Cq)
But fvvldx = In (V), hence the above becomes
y =1In(cos(x — Cq)) + C,
Replacing —C; by new constant Cjs, the final solution becomes
y =1In(cos(x + C3)) + C,

Where C,, C3 are constants of integration.



4 Problem 4

Problem Solve xy’ +y + x*y*e* = 0
Solution

Dividing by x # 0 and rewriting gives

1
v+ -y = (=) ! (1)
A Bernoulli ODE has the form " + a (x) y = b (x) y" where n # 1. Comparing the above to
Bernoulli ODE form, show it is Bernoulli ODE where a (x) = )1—6, b (x) = —x3¢*. Dividing (1)
by y* gives
1 1

_ /+_ —3:_x36x
AV LY
Letting 0 = 1 or 2 = -3y, Hence 2 = - Substituting this in the above gi
etting v =y~ or — = -3y ~*--. Hence —- = —— . Substituting this in the above gives
1( doy*\ 1
— N D
y*\ dx3) «x
1do 1
— 3,x
——— 4+ —v = —x%
3dx «x
dv 3
— — v =3x%"
dx «x

3
This is now linear in v. The integrating factor u = o) 7 — p3lnx _ xis Multiplying both
sides of the above by this integrating factor making the left side complete differential

d (1 1
| — —1,3,x
I (XSZ)) x33x e

d (1
E (FU) = 3¢*

1
—30=36x+C
X

v = 3x3e" + Cx3
=x3(3¢* + C)

Integrating gives

But v = y‘3, hence the above becomes

1
— =% (3" +O)
Yy
3 _
L (Bex + C)
This shows that there are 3 solutions since the above is a cubic equation. But we can leave
the solution in implicit form

Juny

_ 3 1
y= x3 (3e* + C)
i1

1
x V3eX¥+C



5 Problem 5

Problem Find both a general solution and a singular solution of

xz(y’)z —2(xy—4)y’ +y2=0
Solution
Rewriting the ODE as

2

y? = 2xyy’ + 8y’ + x? (y’) =0
Let " = p and the above becomes
P +y (-2 ) (8p +22p%) =0

i

This is quadratic in y. Solving for y = Zi b? — 4ac

y=xp=+ E\/4x2p2 -4 (8;9 + xzpz)

=xp+ \/xzp2 — 8p — x?p?

=xp £2+/-2p

case one

Y =xp+24-2p
=xp+f (p) (1)
This can be written as
y=G (x, p)

Where G (x, p) = xp+f (p) This form of ODE is called the Clairaut ODE. Taking derivative
w.r.t. x gives

, &G dGdp
Yeox T 8p dx
But i/ = p and the above becomes
JdG  JIGdp
p= + —
Ix dp dx
But (;—G = p, hence the above reduces to
X
8 Gd
-2 @)
p dx
Then either % _ 0 or dp _ 0.
ap dx
When — =0 or y”” = 0 therefore the solution is
Y= Clx + C2 (3)

But we are solving a first order ODE. So we expect it to have one constant of integration
only. By comparing (3) with equation (1) whichisy =xp + f (p) shows that

Co = f(Cq) = 24/-2C

Then the solution will now contain one constant of integration C;. Hence the first solution

is
y = Cix +2y/-2C,



The second possibility comes from %6 0. This gives

ap
x+f’(p):0

d 1
2 _
x+2%<—2p) =0
1 -1
2 —
x+2§(—2p) (-2)=0
2 0
X — — =
NET
xy/-2p=2
—2px? = 4
2
P=-2

Now that we found p, we substitute it back into (1) given by y = xp + 24/=2p. Hence the
second solution is found directly as follows

Y =xp+24-2p

= +24/-2 2
Cox x2
= 2+2 4
Cox x2

2 4
= —— 4 —

X X
_2
Cx

Summary of case one From above we obtained the following two solutions

Y1 = Clx + 2\/ —2C1
2

yzzg

Where y, (x) is the singular solution since it can’t be obtained from the first solution with
the constants of integrations by changing them to any value.

We now do the same steps for the case of y = xp — 2+4/-2p. This follows the same steps as
above as the only difference is the sign and hence the steps will not be repeated. It gives

the solution
y3 = Clx - 2\/ —2C1

With the same singular solution. Therefore there are three solutions to this ODE and these

are summarized below
= Clx + 2\/ —2C1
2

Y2=12

X
y3 = Clx - 2\/ —2C1

With v, (x) being the singular solution. Singular solutions do not have constant of integra-
tion in them and can not be obtained from the general solution by any substitution for
constants of integration. The general solution contain constant of integrations in them.




6 Problem 6

Problem

Find the general real solution to the following equation where A (x) is a known function

AX) Y + A (x)y +Ay() 0

Solution

Let us first assume A (x) is constant not zero. The above reduces to

’” Y
Yy +ﬁ:0

This is harmonic oscillator It has the form of ¥ + w?y = 0 with w = % being the natural
frequency. The solution to this is easily found to be

Y (x) = Cq cos (wx) + Cy sin (wx)

= Cq cos (%) + Cy sin (%) (1)

Since A is not constant, then we can try a similar solutio but use f (x) for the arguments
of the trigonometric functions

Y (x) = Cq cos (f (x)) + C; sin (f (x)) 2)
where f (x) is function of x to be determined. Hence. From now on, we will write f instead
of f (x) to simplify notation.

Yy =-Cyf’sin (f) + Cyf’ cos (f)
2 2
Yy’ =-Cyf" sin (f) -C ( ’) cos (f) + Cof” cos (f) -G (f’) sin (f)
Substituting these back into the original ODE gives
2
42 (=Cafsin (£) = C (£7) cos () + Caf cos (£) = C (1) sin () +
AA (—le’ sin (f) + Cof’ cos( )) + Cq cos (f) +C, sm( ) =0
Collecting terms gives
2 2
cos (f) (—C1A2 (1) + CLA2f" + CLAA'f" + C1)+sin (f) (—C1A2 f=CA%(f) - CLAA'f + cz) -0
Since this is zero for all sin and cos then
2
—C1A2(f') + CLA2f" + CLAA'f' +C1 =0
2
—C1A2f" = CA%(f') = CLAA'f + C, =0
Multiplying the first equation by C, and the second by C; gives
2
—CoC1A2 (f') + CBA2f" + CRBAA'f' + C1Cp = 0
2
—CA2f" — C1C A% (f') - CRAA'f" + C1Cp = 0
Subtracting the second equation from the first gives
2 2
(—C2C1A2 (f7) +CoA%f" + CRAA'f" + clcz) - (—C%AZ f = C1CA2(f1) - CRAA'f" + clcz) -0
2 2
—CoC1A2(f') + CRA2f" + CRAA'f" + C1Cy + C3A2" + C1CLA2 (') + CZAA'f = C1Cp =0
CFA%f" + CSAA'f' + CIA%f” + CIAA'f' =0
f7(C3A% + C3A?) + f/ (CRAA" + CRAA") =0
Let us call C5A% +C2A? = y and C3AA’ + C2AA’ = B for the moment. The above becomes
uf” +Bf =0

Since f is missing, then we can solve the above by assuming f” = v. The above becomes

IThanks to hint from the Professor.
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(s Ev = 0. This is linear in v. The integrating factoris [ = ¢

Ir (ef “dxv) 0

v=Cze

fgdx

. Hence the ode becomes

—fgdx

Since the proposed solution in (2) contains integration of constants already, we can choose
C3 =1 without affecting the final solution. Hence

_rE
fra=edi®
Therefore

B
- L4
f(x):fe Jit a1 e,
C3AA'+C3AA!

Y S Gl
_ f Cse ~ G2 gxldx + Cy (3)

Again, since the proposed solution in (2) contains integration of constants already, we can
choose C4 = 0. The above becomes

fx) = f f” dx

C3AA'+C3AA!

|G
2 42,2 22
— fe C5A2+CI A dx

CZAA +C2AA . .
—2———1 can be simplified as follows

C3A2+(C2A2
CRAA +C2AN AN (C3+CF)  Awr
C3A2 + C2A2 A2(C3+C2) A

The expression

Hence (3) becomes

f (x f f AA’

f fA Ydx
_f “nAg,

A (x)

Therefore the solution from (2) is

y (x) = Cy cos (f (x)) + Cysin (f (x))

1 1
=C cos( A0 dx) +Cy sin( A0 dx) (4)

Let us now try to verify this solution by substituting it back into the ODE. From (4), where

we now write A instead of A (x) everywhere to simplify the notation
) 1 1Y 1 1V
y/ (x) = _Cl Sin (f de) (f de) + Cz COS (f de) (f de)
. 1 1 1 1
e [ e [ 3

And y” (x) becomes

¥ @0 =-C (cos( IE dx) S Adx) —+Sm(f Ad")(_A,))
res(con( 30 3o Fo( ) )
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or

yosa (COS (f Adx) e (f Adx) /)/+ Cz( Sm(f Adx) e (f Adx) A/;,)
P el el

Substituting the above expression for y,1/,y” into the original ODE A%y” + AA'y +y =0

gives

A? ( Cy Cos(fAdx) Yy +C; sm(f Adx) A Czsm(fAdx) Yy Czcos( dx) %)
1 1 1
+AA’ (—C1 sin (f de) 1 + C, cos (f Adx) A)+C1 cos (fA( )dx)+C2 sm( A ) 0

Simplifying gives
1 . 1 , . 1 1 ,
- C1 COS fzdx + C1 S fzdx A - Cz S f de - C2 CcoSs fzdx A
, . 1 , 1 1 ) 1
— C1A’sin fzdx + CyA’ cos dex + Cq cos fzdx + C, sin A(x)dx =0

Canceling Citerms gives
. 1 1 , , 1 . 1
—C2 S1in fzdx - Cz CcOoSs fzdx A+ CzA Ccos fzdx + Cz Sin fzdx =0
Which simplifies to
1 1
—C, cos (f de) A" + CyA’ cos (f de) =0

0=0

Or

Solution (4) has been verified.
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7 Problem 7

Problem Find the general real solution to the equation
ey 1a
x -y=1+x
y Y
Solution

We start by writing the ODE as

X2y +3y = x + x* 1)
The solution is given by
Y=Yn+Yp
where y, is solution to homogeneous ODE x?y}’ + 3y, = 0 and Yp is a particular solution

to xzyi'g’ +3y, =x+ x*. We start by solving the homogeneous

X’y +3y =0
This is Euler type ODE. Using the standard substitution y = Ax’, then v’ = Arx’"!,y” =
Ar(r—1)x"2 and the above becomes
X2 Ar(r-1)x2+3Ax =0
Ar(r—-1)x"+3Ax" =0
Since x” # 0 and A # 0 then the above simplifies to

r(r-1)+3=0
?—-r+3=0
Hence

-b 1
r=—+ —Vb?—4ac
2a 2

1 1
=—+=-V1-12
22

1 1
=—+=iV1l
73Vl

Hence the solution is
1.1 1.1
y=Cx2 2" +Cpyx2 2

1 i 1 -
S iym = W11
=(Cix2x2" " + Cyx2x2
i
5 V11
= Cl\/;b’lnxz + Cz\/gelnx

i —i
~vVI111L - V111
= Cl\/;€2 nx+C2\/§€2 e

Using Euler formula the above can now be written in terms of sin and cos
y — \/;(Cle%\/ﬁlnx + Cze%l\/ﬁlnx)
1 1
Yp = \/;(C3 oS (E\/ﬁlnx) + Cysin (E\/ﬁlnx)) (2)

Now we find the particular solution using the method of undetermined coefficients. Since
the RHS is polynomial x + x* then we guess

11 11

=i
i

Y, = A+ Bx + Cx? + Dx’ + Ex*

Then y’ = B + 2Cx + 3Dx? + 4Ex® and y”” = 2C + 6Dx + 12Ex?. Substituting these back in
(1)
x? (ZC +6Dx + 12Ex2) +3 (A +Bx + Cx? + Dx® + Ex4) =x+xt
2Cx% + 6Dx® + 12Ex* + 3A + 3Bx + 3Cx? + 3Dx® + 3Ex* = x + x4
3A+x(3B) +x%>(2C +3C) + x3 (6D +3D) + (3E + 12E) x* = x + x*
3A +x(3B) + x% (5C) + 23 (9D) + 15Ex* = x + x*



By comparing coeflicients the following equations are generated

A=0
3B=1
5C=0
9D =0
15E =1

Hence A=0,B = %,C =0,D=0,E = 11—5 Therefore
1 1,

:I/F,ZEX-FEX

Hence the final solution is
Y=Yntlyp
1 1 A

1 1
= \/;(C?) oS (E\/l_llnx) + Cysin (E\/l_llnx)) + gx + Ex

13
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8 Problem 8

Problem For what values of k does the equation
y”—(1+k)y=0 1)
4 x
defined for 0 < x < oo have a solution vanishing at x =0 and at x = c0 ?

Solution
1

Let us look what happens at x — oo, then the term 7

> ; and the ODE simplifies to

1
" __y=0
27
Which has the solutions y = {62 ,e2 } We reject the first one since it does not vanish at

-1
x — oo, and use iy = eZ*. Now we assume the solution to (1) is of the form

-1
y=P(x)ez" 2)
And we now try to find P (x). Substituting this solution back into (1), given that

-x -x -x 1 -x
Yy’ =P'e2 —=P'e2 ——P'e2 + ZPe 2
=X =X =X

-X

Substituting the above into (1) and canceling common term e 2 gives
1 1 k
P”"-P ' +-P|-[=-+-]P=0
4 4 x

k
P"-P -=P=0
X
xP” —xP' —kP =0 (3)

To solve this for P (x), we use Frobenius series. Assuming

P(x) = Z X"
n=0

P (x) = 2 (n+7)c,x1
n=0

P (x) = E n+r)(n+r—-1)c,x"2
n=0
Hence (3) becomes

(o) o0 (o)
x Z m+r)(n+r-1)cx""2—x 2 (n+71)c, X1 -k Z c, X" =0
n=0 n=0 n=0

oo o0 (e}
Z m+r)(m+r-1)cx"1 - Z (n+r7r)c,x"" -k E c, X" =0
n=0 n=0 n=0

(59 (o) (o)
Z m+r)(n+r-1)c,x""1 - Z n+r-1)c,x"" 1 -k Z Cy1 X1 =0
n=0 n=1 n=1

For n = 0, and assuming ¢y # 0 then
m+r(n+r-1)c, =0
() (r=1)co =0
r(r-1)=0

Hencer=1orr=0.
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Caser=1
o0
P = Z Cnxn+1
n=0
o0
= z Cn_lx”
n=1
Hence

(0]
[ n-1
P = E nc,_1x
n=1
(0]

P = 3 (1) (1= 1) g2

n=1
And now (3) becomes

x Y, () (n=1)cpq X2 = x Y me, 3"t =k D, qx" =0
n=1

(0]

nn—lc_x”‘—oonc_x”—kmc_x”:O
D () (n=1) cpqx™ = Y mey D Cnn

n=1 n=1 n=1
(0] (o] [e¢]
3 (1) (n=1) g x™t = D 10, 2" =k D cugx™ =0
n=2 n=1 n=1
o0 (o] (o]
2 (n+1)(n)c,x™ - Z nc,_1x" —k Z Ch1X* =0
n=1 n=1 n=1

Hence for n > 1 we obtain

(n+1)(n)c, —nc,_q4 —kc,_.1 =0

C_(n+k)cn—1
" onm+1)
Forn=1
C_(k+1)co
1=
Forn=2
C_(k+mq__@+2xk+nc__w+1xk+mc
27 23 2080 2 7 @@ °
Forn =3
C _(k+3)c2_(k+3)(k+1)(k+2)c _(k+1)(k+2)(k+3)c
T3 (@ 0 Y 0003 °
Forn=4

. _(k+4)c, _(k+4)c3_(k+1)(k+2)(k+3)(k+4)c
w6 @6) 0 0B @w@e)

And so on. Hence
P(x) = Z Cpq X"
n=1

= CoX + C1x% + cpx> + cgxt + -+
B k+D) , (k+D)(k+2) 5 G+Dk+)k+3) , G+Dk+)k+3)(k+4) 5
- (“ 2 T o006 T oe00® T 0000@d6
2 3 4 5
:Co(x+(k+1)x_+(k+1)(k+2)x_+(k+1)(k+2)(k+3)x_+(k+1)(k+2)(k+3)(k+4)x_+
21 21 31 3! 4! 4! 51
(4)

2 3 2 3
Bute*=1+x+ % + % +.0Ore*r-1=x+ z—' + % + -+-. So there is an exponential term
inside (4). Hence to make (4) vanish at x — oo, then k needs to be a negative integer.

Taking k = —1 makes all terms with k in them vanish, leaving
P (x) = cox

So now the solution from (2) becomes

y (@) = coxe 2



16

Which goes to zero as x — oo since an exponential decays to zero faster that x going to
infinity.

We now need to check if negative k integer value (specifically k = —1 which we picked from
above) will also make the solution vanish as x — 0. When x — 0 the ODE becomes

//_E =0 (5)
U

. k 1 . . . .
Since . > n close to x = 0. Since k is negative integer —1 then the above becomes

”+k =0
Y xy—

To see this will go to zero as x — 0, Intuitively since — is now positive and very large,
then this is like a harmonic oscillator with very large stiffness. (Spring mass system). When
the stiffness becomes very large, the solution goes to zero (the natural frequency goes to

infinity, since w = g which means the period goes to zero since w = 27tT) which implies
no motion. So this shows that negative integer value of k found from first part makes the
solution vanish at both x — oo and at x — 0. Actually for x — 0 we just needed k to be
negative in order to change the sign. But for x — co we found we needed k to be a negative
integer which we choose —1. So this will work for x = 0 and x = o0

8.1 Appendix

I first tried to solve the give ODE directly using series method. I left this here as an
appendix, not to be graded but as a reference.

x is singular point. But it is a regular singular point since lim,_, xzz = x and hence the
limit exist. Therefore assuming solution is Frobenius series

o0 o
— AT n n+r
y=x chx chx
n=0 n=0

Therefore y' = ¥°" (n+7)c,x™* " and y”’ = X" (n+7) (n+7-1)c,x"""2, then (1)
becomes

Z (m+r)y(n+r—1)c,x""2 - (Z + ;) E c, X" =0

n=0 n=0
Z m+r)(n+r-1)cx""2-— Z c, XM — = Z c, X" =0
n 0 X n:O 4 n=0
1 o0
2(n+r)(n+r—1)c X2 ch Xl —Ecnx””—O
n=0 n=0 4 n=0
But kE o Cn X L=k Z L Cn1 X 2 and E C X"t = 2:’22 X2 and the above
becomes
oo o 1 o0
M +r)(n+r-1)c,x™2—k Y 0, qx™ 2 - 1 D cpax™ 2 =0 (2)
n=0 n=1 n=2

The first step is to obtain the indicial equation. As the nature of the roots will tell us how
to proceed. The indicial equation is obtained from 7 = 0 in (2) with the assumption that
co # 0. This leads to

nm+ry(n+r-1)c, =0
r(r-1)cg=0
Cp is always taken as non-zero. This leads to
r(r-1) =

With solutions 1 =1 or r, = 0. (We take r{ as the larger root first, since Frobenius series
solution can only guarantee solution for the larger root, when the roots differ by an integer
as this is the case).

Since 11 — 15 is an integer, then this tells us we can obtain a first solution v, (x) associated
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with 7; =1 from the Frobenius series

y1(x) = Y ! (3)
n=0

But to find the second solution y; (x) associated with r, = 0 we can try either reduction of
order method or use

y2 (1) = Ayp (1) In (x) + D] d,x" (4)
n=0
Where A is some constant, which can be zero, and d,, are the coefficients for the sec-
ond series. We have to do the above when the roots of the indicial equation differ by
integer. Otherwise, the second solution would have been found using Frobenius series
Y2 () X €, X"*72 like with the first solution.

OK, Now we will first find y; (x) from (3)
caser; =1

Using (3)

Q\
I
De

(n+1)c,x"

B
I
o

n(n+1)c,x" 1

Q\
I
Nk

=
Il
[}

N

n(n+1)c,x" 1

=
1l
iy

Substituting the above into (1) gives

Z n(n+1)c,x" - (Z + ;) Z c, X1 =0
n=1 n=0

M+t ==Y a1 - =Y o, =0
n=1 4 n=0 X =0
(e¢] 1 o0 (oe]
Mnn+1)c,x" ! - 1 Yeax™ =k Y, =0
n=1 n=0 n=0

oo 1 [ee] oo
Z m+1)(n+2)c X" — = Z Cp X" —k Z c,X"=0
n=0 4 n=1 n=0

Forn =0
(1) (2) c1— kCO =0
k
1 = ECO

For n > 0 we obtain the recursion equation

1
m+1)(n+2)c,e1 — ch_l —kc, =0

1
. B ch_l + kCn
T D) (n+2)
Forn=1
1 k 2 2
lCO +ke, G0tk (ECO) lcO + k—CO 1LE 1 + 2k2
=14 = =4 - =qt—2=¢
(2)(3) 6 6 6 24



Forn=2

iCl +kC2
AT
1k
42

Co + kCO

1+2k?
24

12
k
gCO + kCO

12
3k+k+2k3
_ 24
1)
4k + 2k3
288

= CO
And so on. Hence

Y1 (%) = cox + 0162 + cx3 + czxt + -+

k 1 + 2k?

— 2 3
= CogX + —CpX~ + C
0 20 0 24

X~ +Cy

1+2k2

24

4k +2k3
xX* +
288

24

288

( ko 142k, 4k+2i3 )
:cox1+§x+ x° + bl SRR

24 12

k 1 Lo)o, K 2\ ,3
:cox(1+§x+(—+—k)x +@(4+2k)x + -

I could not find closed form function for the above.

Now that we found v, (x), then y, (x) is, from (4), repeated here

y2 (%) = Ayg (0 In (x) + Y d,x" (4)

n=0
Since we want the solution to vanish at x = 0 then we set A = 0 and y, (x) simplifies to

Yo () = Y d,x" (4)
n=0

Where d # 0. Hence v’ (x) = E:’ZO nd,x"! and y” = Z:;O n(n-1)d,x"2. Rewriting the
ODE as xy" - (Z + k) y = 0 and now substituting the derivatives into this gives

(o) x o0
xnz:%n(n “1)d, 2 — (Z +k)n§dnxn ~0

(o] ~ x [oe] [oe]
nz:;)n(n—l)dnx” 1_ Z;:;)dnxn —knz_;)dnx” =0

(ee] 1 (ee] o0
ngzn(n ~1)d, "1 - Z};}dnx”“ —anOdnx” =0

o 1 o0 (o)
Z (n+1) (n)d,1x" - 1 Z d,_1x" —k Z dx" =0
n=1 n=1 n=0

For n = 0 we obtain kdy = 0 which implies dy = 0 since k # 0.

Forn >0
1
(7’1 + 1) (1’1) dn+1 - Zdn—l - kdn =0
1
p _ Zdn_l + kdn
T ) (n+1)
Forn=1

o +kdy g

_dl

d = =
2 2 2

18



Forn=2

1 1 k

Jd+kdy gtk (zdl) dp +2k%d, 1+ 2k?

d3 e} = = = dl
) (3) 6 32 32
Forn =3
k 1+2k2
] idz +kds  dy+akd, % Tk (dl 22 ) ] ék (Zk2 + 5) ; (2% + 5k)
T )@ 0 48 48 IR 7l 384

And so on. Hence the second solution is

Yo () = Y d,x"
n=0
= do + dlx + d2x2 + d3x3 + d4x4 + .-
3
1 + 2k2 s (Zk + 5k)

k
_ A ) A
—d1x+2d1x +d; 5 X’ +d; 281 x*+
k 1+ 2k2 2k® + 5k
=dix|1+ =x+d, x2+dlux+
2 384

I am not sure if the above solution for y, (x) is correct. I need to check this again later.
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