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1 Problem 1

/

Problem Solve x2y’ + 12 = xyy
Solution

Rewriting the ODE as

y (- xy) +y* =0 M
Dividing by x? # 0 gives

2

dy (o Y\, ¥ _
dx(l x)+x2_0

We see this is homogeneous of order 1. This can be confirmed by writing the above as

dy (xz - xy) +1y2dx =0

dyx? — xydy + y?dx = 0
We want to find if a weight m can be found, so that the substitution y = vx™ makes the
above ODE separable. To find m, we assign weight m to both y and dy, and a weight of 1

to both x and dx, and then try to find if there is an m which makes each term sums to the
same total weight. (in other words, we want each term units to be the same).

The term (dy) (xz) has total weight of m + 2 (it is the exponents that we add). And the term
(x) (y) (dy) has total weight 1 + 2m and the last term (yz) (dx) has weight 2m + 1. Therefore
we have this result for the weight of each term (there are 3 terms above).

{m+2,14+2m,1+ 2m}

We see that if m = 1 then each term will have the same total weight of 3 giving {3,3,3}.
So this is homogenous ODE of order m = 1. Now that we know the weight, we use the
substitution

Y =ox

Hence i’ = v"x+v. Substituting these back into (1) gives a new ODE in v which is separable.
If it is not separable, it means we made a mistake somewhere.

('x +v) (x2 - xzv) +0%x2 =0

V' —v'oxd + vx% — x20% + v2x% =0

v —voxd+ovx2 =0



Dividing by x° for x # 0 gives

v
v -vv+-=0

X
v'(l—v)z—g
X
dv(l—v)_ 1
dx v x
1- 1
dv( Z))=——dx
v X
dv(v_l)zldx
v X

Integrating both sides gives

1 1
fv——dv:f—dx

v X
v—-lnv=Inx+C

Taking exponential of both sides gives

ev—lnv =Cx
e
—=Cx
0

But v = % Therefore the above becomes

y
eX
T =Cx
X
y
ex
—=C
y
Hence the solution is
y
y=Cier  x#0 @)

Where C; is the constant of integration. ¥ can not be solved for directly in the above. But
we can solve for x in terms of y if needed as follows

y
Iny=InCy +2
ny Hlx

1Hy—C2:%

Yy

r= lny—Cz (3)



2 Problem 2
le
Problem Solve v’ = 5
(x+y)
Solution

Let v(x) =x+y(x). Hence v =1+ 1y’ or ¥y’ = v’ — 1. Substituting this back into the ODE
gives

This is separable.

—dv =dx
a? + v?

2
a
— The above becomes

a2+
aZ
(1 - m) dU = dx

2
s ?
By long division g 1

Integrating both sides gives
2

a
f(l‘m)d”—fdx
1
fdv—azfa2+vzdv:fdx
1

But f azivzdv = aizf H(l—g)zdv == (a arctan (s)) = %arctan (S), hence the above becomes
a

1
v —a? (— arctan (2) =x+C
a a

v—aarctan(%) =x+C

a

Where C; = %, a new constant. Taking the tan of both sides gives

+ Cl)

v v—X
— = tan
a a



But v = x + y, and the above becomes

Xy =tan(—<x+y)_x+c1)

a a
Xy :tan(y+C1)
a a

Therefore the final solution is
y:atan(%+C1)—x a+0

Where C; is arbitrary constant.



3 Problem 3

2
Problem Solve "' + (y’ ) +1=0
Solution

Since y is missing from the ODE, we can convert this to a first order using v’ = p(x).
Therefore y”’ = Z—Z and the ODE becomes

dp
— 1=0
Ix +p-+
dp ”
—=—(1+p)
d
P~ i
1+ p?
Integrating both sides gives
d
AN fdx
1+p?

arctan (p) =—x+C;
p = tan (—x + Cq)

% = tan (-=x + C;). Integrating both sides gives

y= ftan (—x + Cq)dx
B f sin (—x + Cq)
~J cos(—x+Cy)

_ f—sin(x—Cl)dx

cos (x — Cq)

But p = y’. Hence we need now to solve

dx

di (cos(x —Cy))
= f X X
cos(x — Cq)
But fvvldx = In (V), hence the above becomes
y =1In(cos(x —Cy)) + C,
Replacing —C; by new constant Cjs, the final solution becomes
y =1In(cos(x + C3)) + C,

Where C,, C3 are constants of integration.



4 Problem 4

Problem Solve xy’ +y + x*y*e* = 0
Solution
Dividing by x # 0 and rewriting gives
1
4 + -y =(- 3,x 4 1

v+ -y =(=ce)y (1)
A Bernoulli ODE has the form iy’ + a (x) y = b(x) y" where n # 1. Comparing the above to
Bernoulli ODE form, show it is Bernoulli ODE where a (x) = %, b(x) = —x3¢*. Dividing (1)
by y* gives

1 1

_/+_—3:_x36x
y4y 7/
Letting v = 175 or 22 = -3y~4% H W _ 408" Substituting this in the ab i
etting v = y™ or — = -3y ™" . Hence -~ = ——-=. Substituting this in the above gives
1 ( doy*\ 1
— Y ) Ll = 8
y*\ dx3) «x
ldo 1
— 3,x
——— 4+ -v=-x%
3dx «x
dv 3
— — —v = 3x%"
dx

3
This is now linear in v. The integrating factor y = ol R — g3y _ ;—3 Multiplying both
sides of the above by this integrating factor making the left side complete differential

d (1 1
e e — — 1,3,x
e (XSZ)) x33x e

d (1
E (FU) = 3¢*

1
—30=36x+C
X

v = 3x3e" + Cx3
=x3(3e* + C)

Integrating gives

But v = y‘3, hence the above becomes
1

7 =23 (3¢* + C)

Po

x3 (3e* + C)

This shows that there are 3 solutions since the above is a cubic equation. But we can leave



the solution in implicit form

3 1

— 3

4 x3 (3e* + C)
13/ 1

x V3eX¥+C



5 Problem 5

Problem Find both a general solution and a singular solution of

xz(y’)z —2(xy—4)y’ +y2=0
Solution
Rewriting the ODE as

2

y? = 2xyy’ + 8y’ + x? (y’) =0
Let ' = p and the above becomes
y2+y( xp) + (8p + x%p?) = 0

i

This is quadratic in y. Solving for y = Zi b? — 4ac

y=xp=+ E\/4x2p2 -4 (8;9 + xzpz)
=xp+ \/xzp2 — 8p — x2p?

=xp £2+/-2p

y=xp+2-2p
=xp+f(p) (1)

case one

This can be written as
y=G (x, p)

Where G (x, p) =xp+f (p) This form of ODE is called the Clairaut ODE. Taking derivative
w.r.t. x gives

, &G dGdp
Yeox T 8p dx
But i/ = p and the above becomes
JdG  JdGdp
p= + =
Ix dp dx
But (;—G = p, hence the above reduces to
X
_dGd
-2 @
p dx

. aG d
Then either = = 0 or = = 0.
ap dx
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d;
When £ = 0 or y”” = 0 therefore the solution is

y= Clx + C2 (3)
But we are solving a first order ODE. So we expect it to have one constant of integration
only. By comparing (3) with equation (1) whichisy =xp+ f (p) shows that

Cp = f(Cy) =2¢-2C

Then the solution will now contain one constant of integration C;. Hence the first solution

is
y= Clx + 2\/ —2C1

The second possibility comes from %6~ 0. This gives

op
x+f’(p):0

1,3
x+25 (-2p)2 (-2)=0
2

x N 0
xy-2p=2
—2px*> =4

2
P=a

Now that we found p, we substitute it back into (1) given by y = xp + 24/=2p. Hence the
second solution is found directly as follows

y=xp+2-2p

= +2 2 2
Cox x2
= 2+2 4
Cx x2

2 4
= —— 4 —

X X
_2
Cx

Summary of case one From above we obtained the following two solutions

Y = Clx + 2\/ —2C1

2

1/2:;
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Where y, (x) is the singular solution since it can’t be obtained from the first solution with
the constants of integrations by changing them to any value.

We now do the same steps for the case of y = xp — 24/-2p. This follows the same steps as
above as the only difference is the sign and hence the steps will not be repeated. It gives the

solution
y3 = Clx — 2\/—2(:1

With the same singular solution. Therefore there are three solutions to this ODE and these

are summarized below
yl = Clx + 2\/ —2C1
2

Y2 ==

X
y3 = Clx — 2\/ —2C1

With y, (x) being the singular solution. Singular solutions do not have constant of integration
in them and can not be obtained from the general solution by any substitution for constants
of integration. The general solution contain constant of integrations in them.
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6 Problem 6

Problem

Find the general real solution to the following equation where A (x) is a known function

AX) YY"+ A X))y + ﬁ =0

Solution

Let us first assume A (x) is constant not zero. The above reduces to

=
A2
This is harmonic oscillator It has the form of y”’ + w?y = 0 with w = % being the natural
frequency. The solution to this is easily found to be

Y+ =0

Y (x) = Cq cos (wx) + Cy sin (wx)

= Cq cos (%) + Cy sin (%) (1)

Since A is not constant, then we can try a similar solutio but use f (x) for the arguments
of the trigonometric functions

y(x) = Cy cos (f (x)) + C;sin (f (x)) 2)
where f (x) is function of x to be determined. Hence. From now on, we will write f instead
of f (x) to simplify notation.

Yy =-Cyf’sin (f) + Cyf’ cos (f)
v = =Cyf”sin (f) = Cy (F7) cos (f) + Cof” cos () - Ca (")
Substituting these back into the original ODE gives
42 (=Cafsin (£) = C (£7) cos () + Caf " cos (£) = C (1) sin () +
AA (—le’ sin (f) + Cyof’ cos (f)) + Cq cos (f) + Cysin (f) =0

2

sin (f)

Collecting terms gives
cos (f) (—C1A2 (/) + Col2f” + CLANf" + C1)+sin (f) (—C1A2 - CA2 (f1) - AN + Cz) =0
Since this is zero for all sin and cos then

~C1 A2 f’)2 + CpA2f” + CLAA'f' +C; =0

—Cy A2~ A2 (f7) — CLAN + Cy = 0

IThanks to hint from the Professor.
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Multiplying the first equation by C, and the second by C; gives
2
—CoC1A2 (f') + CBA2f" + CRBAA'f' + C1Cp = 0
2
—CA2f" - C1C A% (f') = CRAA'f" + C1Cp = 0
Subtracting the second equation from the first gives
2 2
(—C2C1A2 (f7) +CaA%f" + CRAA'f" + clcz) - (—C%AZ f = CiCA2(f1) - CRAA'f" + clcz) -0
2 2
—CoC1A2(f') + CRA2F" + CRAA'f" + C1Cy + CRA2f" + C1CLA2 (') + CRAA'f = C1C, =0
CFA%f" + CSAA'f' + CIA%f + CIAA'f' =0
f7(C3A% + C3A?) + f/ (CRAA" + CRAA") =0
Let us call C%A2 + C%A2 = p and C%AA' + C%AA’ = [ for the moment. The above becomes
pf” +Bf =0

Since f is missing, then we can solve the above by assuming f’ = v. The above becomes

B
“dx
v+ gv = 0. This is linear in v. The integrating factor is I = ef # . Hence the ode becomes

d B
or (ef “dxv) =0

—fgdx

Since the proposed solution in (2) contains integration of constants already, we can choose
C3 =1 without affecting the final solution. Hence

fr =i

v=_Cze

Therefore

B
-Eq4
f(x):fe f# JCdx+C4
C3AA'+C3AA

Y S
:fcﬁ G2 gy dx + Cy (3)

Again, since the proposed solution in (2) contains integration of constants already, we can
choose C4 = 0. The above becomes

B
- Eq
x)=|e / 2y
f(x)
C3AA"+C2AA

—f—dx
2 42,2 22
fe C2A +C1A dx
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CIAA +C3AA
C3A2+C2A2

CRAA +C2AN AN (C3+CF)  Aar

C3A2 + C2A2 A2(C3+c2) A

The expression can be simplified as follows

Hence (3) becomes

fw=[e Ty

:fe_ffixdx
_f —lnAdx

A (X)

Therefore the solution from (2) is

y (x) = Cy cos (f (x)) + Cysin (f (x))

1
=C cos( A0 dx) +Cy sin( A0 dx) (4)

Let us now try to verify this solution by substituting it back into the ODE. From (4), where

we now write A instead of A (x) everywhere to simplify the notation
. 1 1Y 1 1 V
y' (x) = =Cy sin (f de) (f de) + C; cos (f de) (f de)
) 1 1 1 1
e[ e [ 3

0o [ e ] B 2 (2) |
) +C2(—s1n(fAdx)(fAdx) %+cos(f%dx)(:£ ))

Y (x) = —Cl(cos(fAdx)E—sm(fAdx) /)/+C2(—sm(fAdx)——cos(f%dx)%l)
:—Clcos(fAdx)Az+Clsm(fAdx) c2s1n(fAdx)A2 Czcos(fAdx)

Substituting the above expression for y,1/,y” into the original ODE A%y” + AA’y' +y =0
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gives

1 A A

( Clcos(fAdx)—+Clsln(de)A Czsm(fAdx) Czcos( Z )A_)
1 1 1 1

+AA (—C1 sin (f de) 71 + C, cos (f Zd )Z)+C1 cos( Am dx)+C2 sm( A(x)d ) 0

Simplifying gives

1 1 1 1
— Cq cos (f de) + Cysin (f de) A’ — Cysin (f de) — C, cos (f de) A
, 1 , 1 1 _ 1
— C1A’ sin fzdx + CyA’ cos fzdx + C; cos fzdx + C, sin A(x)dx =0

Canceling Cterms gives
—C, sin (f ldx) — C, cos (f ldx) A’ + CyA’ cos (f ldx) + C, sin (f ldx) =0
A A A A
Which simplifies to
1 1
—C, cos (f de) A"+ CyA’ cos (f de) =0

0=0

Or

Solution (4) has been verified.
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7 Problem 7

Problem Find the general real solution to the equation
Py 14
x -y=1+x
y Y
Solution

We start by writing the ODE as

X2y +3y = x + x* 1)

The solution is given by

Yy=Yntlp

where 1, is solution to homogeneous ODE x?y}’ + 3y;, = 0 and Yp is a particular solution to

xzy;,’ +3y, =x+ x*. We start by solving the homogeneous

X’y +3y =0
This is Euler type ODE. Using the standard substitution y = Ax", then y’ = Arx’"1,y" =
Ar(r—1)x"2 and the above becomes
X2 Ar(r-1)x"2+3Ax =0
Ar(r—1)x"+3Ax" =0
Since x” # 0 and A # 0 then the above simplifies to

r(r-1)+3=0
P—r+3=0
Hence

-b 1
r=—+—Vb?—4ac
2a 2

1 1
=—+-V1-12
2 2

1 1

= -+ =iVl

2 2“/_

Hence the solution is
1.1 1.1
y=Cx2 2" +Cpyx2 2
1 1 i
= =411 = =v11
=(Cix2x2" " + Cyx2x2
i
11
= Cl\/;b’lnxz + Cz\/gelnx

i —i
~vVI111L - V111
= Cl\/;€2 nx+C2\/§€2 e

11 11

=i
it
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Using Euler formula the above can now be written in terms of sin and cos

]/: \/;(Cle%\/ﬁlnx_'_cze%\/ﬁlnx)

Yp = \/E(C3 coS (%\/ﬁlnx) + Cysin (%\/ﬁlnx)) (2)

Now we find the particular solution using the method of undetermined coefficients. Since
the RHS is polynomial x + x* then we guess

Yp = A+ Bx + Cx* + Dx* + Ex*
Then iy’ = B+2Cx +3Dx? + 4Ex® and y”" = 2C + 6Dx + 12Ex?. Substituting these back in (1)
x? (ZC +6Dx + 12Ex2) +3 (A + Bx + Cx? + Dx® + Ex4) =x+x*
2Cx% + 6Dx3 + 12Ex* + 3A + 3Bx + 3Cx? + 3Dx® + 3Ex* = x + x*
3A+x(3B) +x*(2C +3C) +x3(6D +3D) + (B3E + 12E) x* = x + x*
3A +x(3B) + x% (5C) + 23 (9D) + 15Ex* = x + x*

By comparing coefficients the following equations are generated

A=0
3B=1
5C=0
9D =0
15E =1

Hence A=0,B = %,C =0,D=0,E= 11—5 Therefore
1 1,

yp:§x+ﬁx

Hence the final solution is
Y=YntYp
1 1 1 1 4
= yx|Cscos|= nx 4sin | = nx —X+ —Xx
Vx|C 2\/ﬁ1 +C 2\/ﬁ1 X

15
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8 Problem 8

Problem For what values of k does the equation

e + 6y - 0 (1)
Y 4 % y=
defined for 0 < x < oo have a solution vanishing at x =0 and at x = c0 ?

Solution
1

Let us look what happens at x — oo, then the term 7

> ; and the ODE simplifies to

1
" __y=0
27
x Jx
Which has the solutions y = {62 ,e2 } We reject the first one since it does not vanish at

-1
x — oo, and use iy = eZ*. Now we assume the solution to (1) is of the form

-1
y=P(x)ez" 2)
And we now try to find P (x). Substituting this solution back into (1), given that

-x -x -x 1 -x
Yy’ =P'e2 —=P'e2 ——P'e2 + ZPe 2
=X =X =X

-X

Substituting the above into (1) and canceling common term e 2 gives
1 1 k
P”"-P' +-P|-[-+-]P=0
4 4 x

k
P’ —P ~=P=0
X
xP” ~xP' kP = 0 (3)

To solve this for P (x), we use Frobenius series. Assuming

P(x) = Z X"
n=0

P (x) = 2 (n+7)c,x1
n=0

P (x) = E n+r)(n+r—-1)c,x"2
n=0



Hence (3) becomes

x Z m+r)(m+r-1)cx""2—x 2 (n+71)c, X1 —k Z c, X" =0

n=0 n=0 n=0

o0 (o) (o)
Z n+7r)(n+r-1)c,x" "1 - Z (n+7r)c,x™" -k Z X" =0
n=0 n=0 n=0

(59 (o) (o)
Z m+r)(n+r-1)c,x""1 - Z (n+r-1)c,x"" 1 -k Z Cp1 X1 =0
n=0 n=1 n=1

For n = 0, and assuming ¢y # 0 then
m+r(n+r-1)c, =0
() (r=1)co =0

r(r-1)=0
Hencer=1orr=0.
Caser=1
pP= 2 Cnxn+1
n=0
= 2 Cpq X"
n=1
Hence

(o)
’ _ n—-1
P = Z ne,_1x
n=1

P = 3 () (n=1) ¢, 12"
n=1
And now (3) becomes

(e¢] (o] (o]
x Y, () (n=1)cpqx" 2= x Y nc,qx =k D e qx" =0
n=1 n=1 n=1

Y () (n=1) g x™ = Y ney g x" =k ¢ qx" =0
n=1 n=1 n=1

Y () (n=1) g x™ = Y ne, g x" =k Y cuqx" =0
n=2 n=1 n=1

Z (n+1)(n)c,x™ - Z nc,_1x" —k z Cp1X" =0
n=1 n=1 n=1

Hence for n > 1 we obtain
(n+1)(n)c, —nc,_1 —kc,.1 =0
_(n+k)e,q
" nn+1)
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Forn=1
(k+1)c
C1:—
2
Forn=2
C(k+2ep  (k+2)(k+1)  (k+1)(k+2)
2T72E 200 2 T T o0
Forn =3
C _(k+3)c2_(k+3)(k+1)(k+2)c _(k+1)(k+2)(k+3)c
T34 3@ Q0 Y @6)e@
Forn=4

o (k+4)c,qy  (k+4)cs (k+1)(k+2)(k+3)(k+4)c
TT@We) T @6) T Q0 w@e)

And so on. Hence
P(x) = E Cp1X"
n=1

= CoX + 1 X% + x> + czxt + -
— ¢ (x+ (k+1)x2+ (k+1)(k+2)x3+ (k+1)(k+2)(k+3)x4+ (k+1) (k+2) (k+3)(k+4) -
0 2 2)2)©) 2)(2)(3)(3) @) 2)(2)(3)(3) (4) (4) (5)

:Co(x+(k+1)x_2+(k+1)(k+2)x_3 kD (k+2)(k+Dxt k+DE+D(k+3) (k42

2! 2! 3t 3l a1 1 5!
(4)

2 3 2 .3
Bute*=1+x+ % + % + . Ore*=1=x+ % + % + ---. So there is an exponential term
inside (4). Hence to make (4) vanish at x — oo, then k needs to be a negative integer. Taking

k = =1 makes all terms with k in them vanish, leaving
P (x) = cox

So now the solution from (2) becomes

y (@) = coxe 2

Which goes to zero as x — oo since an exponential decays to zero faster that x going to
infinity.

We now need to check if negative k integer value (specifically k = —1 which we picked from
above) will also make the solution vanish as x — 0. When x — 0 the ODE becomes

Lo 5
v - y= (5)

. k 1 . . <
Since - > - close to x = 0. Since k is negative integer —1 then the above becomes
k
"+-y=0
y+3Y

k
To see this will go to zero as x — 0, Intuitively since - is now positive and very large,
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then this is like a harmonic oscillator with very large stiffness. (Spring mass system). When
the stiffness becomes very large, the solution goes to zero (the natural frequency goes to

infinity, since w = \/E which means the period goes to zero since w = 2nT) which implies
no motion. So this shows that negative integer value of k found from first part makes the
solution vanish at both x — oo and at x — 0. Actually for x — 0 we just needed k to be
negative in order to change the sign. But for x — co we found we needed k to be a negative
integer which we choose —1. So this will work for x = 0 and x = co.

8.1 Appendix

I first tried to solve the give ODE directly using series method. I left this here as an appendix,
not to be graded but as a reference.

x is singular point. But it is a regular singular point since lim,_, xz; = x and hence the
limit exist. Therefore assuming solution is Frobenius series

o0 oo
— AT no_ n+r
y=x chx —chx
n=0 n=0

Therefore y' = ¥°"  (n+7)c,x™*" T and y” = X (n+71) (n+r—1)c,x"*"2, then (1) be-
comes

+ +7r—-1 n+r-2 _ | — + = n+r _ 0
Z:O m+ry(n+r-1)c,x (4 x) Z;)cnx

Z m+r)(n+r-1)c,x""2 - = Z 0, — = Z X" = 0
n=0 X n=0 4 =0
(oe] oo 1 oo
Z m+ry(n+r- 1)Cnxn+r—2 —k Z Cnxn+r—1 -1 Z €, " = 0
n=0 n=0 n=0

But k E;o:o c, Xl =k 220:1 cpo1X™7 2 and EZO:O C X"t = 220:2 CrpX"2 and the above
becomes

o0 o 1 o0
DM +r)(n+r-1)c,x" "2 -k Y cpqx™2 - 1 N cpax™ 2 =0 (2)
n=0 n=1 n=2

The first step is to obtain the indicial equation. As the nature of the roots will tell us how
to proceed. The indicial equation is obtained from 7 = 0 in (2) with the assumption that
co # 0. This leads to
m+ryn+r-1)c, =0
r(r=1)cg=0
Co is always taken as non-zero. This leads to
r(r-1)=0

With solutions 1 =1 or r, = 0. (We take rq as the larger root first, since Frobenius series
solution can only guarantee solution for the larger root, when the roots differ by an integer
as this is the case).
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Since rq — 1, is an integer, then this tells us we can obtain a first solution y; (x) associated

with 7; =1 from the Frobenius series
yi (0 = Y e 3)
n=0

But to find the second solution ¥, (x) associated with r, = 0 we can try either reduction of
order method or use

Yo (x) = Ayp (0) In (x) + ), d,,x" (4)

n=0
Where A is some constant, which can be zero, and d,, are the coefficients for the second series.
We have to do the above when the roots of the indicial equation differ by integer. Otherwise,

the second solution would have been found using Frobenius series 1y, (x) E:’:O C,X"*72 like
with the first solution.

OK, Now we will first find y; (x) from (3)
case r =1

Using (3)

Q\
I
D¢

(n+1)c,x"

B
I
(@]

n(n+1)c,x"1

Q\
I
De

B
Il
(e}

n(n+1)c,x" 1

=
Il
Ju

Substituting the above into (1) gives

ngln(n+1)cnx”‘1 _(Z+ ;)chx”“ =0

Mnm+1)c ==Y e - = Y o, =0
n=1 4 n=0 x n=0

(oe] 1 (o0] (oe]
Z nn+1)c,x" 1 - 1 2_: c, X" —k Z c,x" =0
n=1 n=0 n=0

(o] 1 (o] (oe]
D (+1) (1 +2) cpx = = Y, cpx =k Y0 x" =0
n=0 4 n=1 n=0

Forn =0
(1) (2) 1 — kCO =0
k

1 = ECO



For n > 0 we obtain the recursion equation

1
(m+1)(n+2)c e — =Cy_q —kc, =0

~ icn_1+kcn
LT ) (n+ 2)
Forn=1
1 1 k 1 K2 1 K2
. _ZCo+kC1_ZC0+k(ECO) 0t 3% _ Z+§_C1+2k2
27 (2 @3) 6 6 Y6 0 2
Forn=2
icl'i'kCz
“T 0@
1k K 1+2k?
_ 10 K0y
12
k K 1+2k?
_ §C0+ Co 7
12
3k+k+2k3
_ 24
~ )
4k + 2k3
:CO
288
And so on. Hence
Y1 (%) = cox + 0162 + X3 + czxt + -
Koo 1+2k23+ 4k+2k34+
= coX + =cox* + ¢ X +c X
05T ™0 0" 24 0" 288
1.k +1+2k2 2+4k+2k3 3,
= CpX —x X x4
0 2 24 288

k 1 1 k
= 1+ =x+ =+ —=k|x®>+ — (4 +2K*) x> + -+

Cox( 2" (24 12 )x 255 ( )x )
I could not find closed form function for the above.

Now that we found y; (x), then y; (x) is, from (4), repeated here

Y2 (1) = Ayy (0 In (x) + Y3 d,x"

(4)
n=0
Since we want the solution to vanish at x = 0 then we set A = 0 and y, (x) simplifies to

12 () = Y g
n=0
Where dy # 0. Hence y' (v) = X nd,x" ! and y” = 3,

(©e]

ol (n —1)d,x"2. Rewriting the
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ODE as xy" - (z + k) y = 0 and now substituting the derivatives into this gives

[ee] x [ee]
xZn(n—l)dnx”‘z— (Z +k) Zdnx” =0
n=0 n=0
o0 x o0 o0
Zn(n—l)dnx”‘l -1 Zdnx” —kZdnx” =0
n=0 n=0 n=0

(¢} 1 (ee] o0
Z] nm—-1)dx"1 - 1 Z d x" — k 2_] dx"=0
n=2 n=0 n=0

1 o0 o0
D +1) (1) dyx™ — 1 M dpax" =k Y, dx" =0
n=1 n=0

n=1

For n = 0 we obtain kdy = 0 which implies dy = 0 since k # 0.

Forn >0
1
(n+1) (n)dn+1_1dn—1_kdn:0
1
] :Zdn_1+kdn
LT ) (n+ 1)
Forn=1
1
—d0+kd1 k
dy=4——=_4
2 7 2 1
Forn=2
1 1 k
e 2 tkdy Zd1+k(§d1) _dy +2k%d, _ 4 1+ 2k?
3T 20 6 - 3 Tt
Forn =23
1 k 1+2k2 1
. i tkds  dy+akd; 5d1+4k(d1 > )_ <k (22 + 5) _ (2% + 5k)
LTTE@ T 48 18 "My TH T3y

And so on. Hence the second solution is
o0
Yo (x) = D d,x"
n=0
= do + dlx + d2x2 + d3x3 + d4x4 + .-

1 + 2k2 2k3 + 5k
T x° +d1ux4+

384
k 1+ 2k2 2k® + 5k
:dlx 1+§X+d1 30 X2+d1%

k
= dlx + §d1x2 + dl

B+

I am not sure if the above solution for y, (x) is correct. I need to check this again later.
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