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1 Section 61, Problem 2

E) Suppose that two continuous functions f(x) and ¥ (x), with positive norms, are lineatl
independent on an interval @ < x < b; that is, one is not a constant times the other.
determining the linear combination f + Ay of those functions that is orthogonal to {
on the fundamental interval a < x < b, obtain an orthogonal pair ¥, ¥ where

(f, )

llr 112

Interpret this expression geometrically when f, ¥, and yr, represent vectors in thr

dimensional space.

Pa(x) = f(x) = Y1 (x).

Figure 1: Problem statement

Solution
Let ¢, = f + Aty such that (i, 11) = 0. Hence
(f + Ay, 91) =0
(f, 1) + (A, P1) =0
(fr1) + A1, 91) =0
oy + Al =0
_ )
2
[[A]|

Therefore, since 1, = f + A, then

W = f - £

2
[
(Y1,f) U1

Geometrically, the term ol Y1 represents the projection of f on 1;. The term Tonl makes
V1

1
YA o e magnitude of projection

(K
”gbl” cos (0) where 0 is the inner angle between f, ;. The result of —<|f '¢12>1,01 is a vector in

V1

a unit vector in the direction of 1); and the term

. . . . . 1
the opposite direction of 1;. Adding this to f gives ¢, which is now orthogonal to f. This
process is called Gram Schmidt.



2 Section 61, Problem 3

B e T

LE] In Problem 2, suppose that the fundamental interval is —w < x <7 and that
f(x) = cosnx +sinnx and Y (x) = cosnx,

where 7 is a fixed positive integer. Show that the function ¥ (x) there turns out to b
Y (x) = sinnx.

Suggestion: One can avoid evaluating any integrals by using the fact that the
in Example 3, Sec. 61, is orthogonal on the interval —m < x < ]T

Figure 2: Problem statement

Solution

Let

f = cosnx + sinnx

1 = cosnx

Then by Gram Schmidt process from problem 2 we know that

<f/17b1>
Yy = f - Y
T el

Hence

n .
f (cos nx + sin nx) cos nxdx
Y, = (cos nx + sinnx) — —
f " cos? (nx) dx
=Tt

COs nx

T T
f cos nx cos nxdx + f sin nx cos nxdx
=Tt

= (cos nx + sinnx) — —2% COS Nx
T

T T 2 T, .

But f cos X cos nxdx = f cos” nxdx = 7 and f sin nx cos nxdx = 0 since these are or-
—Tt =Tt =Tt

thogonal. Hence the above simplifies to

V2

(cos nx + sin nx) — cos nx

= sin nx



3 Section 63, Problem 3

—_—

3., In thewspace of continuous functions on the interval ¢ < x < b, prove that if two
functions f and g have the same Fourier constants with respect to a closefi (Se.c. 62)
orthonormal set {¢, (x)}, then f and g must be identical. Thus show that f is uniquely

determined by its Fourier constants.
Suggestion: Note that (f — g, ¢») = 0 for all values of # when

(f, (Pn) = (g’ ¢n)

{or all 2. Then use the definition of a closed orthonormal set to show that || f — gll = 0.
Finally, refer to the suggestion with Problem 4, Sec. 61.

(1}

Figure 3: Problem statement

Solution

The Fourier coefficients of f — g are given by (f — g, ¢,,) by definition. But due to linearity
of inner product, this can be written as

<f - & ¢’n> = <f, (Pn) - <g/ (Pn)

But (f, ¢,,) are the Fourier coefficients of f and (g, ¢,,) are the Fourier coefficients of g, and
we are told these are the same. Therefore

<f - & ¢n> =0
Which implies that ||f —g” = (. Using part(b) in problem 4, section 61, which says that
if || f || = 0 then f (x) = 0 except at possibly finite number of points in the interval, then
applying this to || f - g” = 0 leads to
f-g=0
Which implies f = ¢ which is what required to show.



4 Section 63, Problem 4

@ Let {(,z;,l (x)} be an orthonormal set in the space of continuous functions on the interval
“"a<x<b,and suppose that the generalized Fourier series for a function f(x) in that
space converges uniformly (Sec. 17) to a sum s(x) on that interval.

(a) Show that s(x) and f(x) have the same Fourier constants with respect to {¢, (x)}.

(b) Use results in part (a) and Problem 3 to show that if {¢n(0)} is closed (Sec. 62)
then s(x) = f(x) on the interval a =X =D, b

: Suggestion‘: Refcall from Sec. 17 that the sum of a uniformly convergent series of
continuous functionsis continuous and that such a series can be integrated term by term

Figure 4: Problem description

solution

4.1 Part (a)

Let the generalized Fourier series of f (x) be

£0) = Y0, )
n=1

Let the sum the above converges uniformly to be s(x). Therefore we have, per problem
statement the following equality

S (), ) b = 5 ()
n=1

Taking the inner product of both sides with respect to ¢,, gives

b (& b
f (E<f (x)’¢n>¢n)¢mdx: f 5 (%) ¢
a \n=1

= <S (x) /(Pm>

Since the sum converges uniformly, then we are allowed to integrate the left side term by

term while keeping the equality with the right side. Hence moving the integration inside the
sum gives

o0 b
Y@, 00 [ dubudx = (s (), 0)
n=1 a



b
But due to orthogonality of ¢, and ¢,, and since they are normalized, then f QP dx =
a
(¢, &y =1 if n = m and zero otherwise. Hence the above simplifies to

f @), P) = (s (), Ppu)

And since the above is valid for any arbitrary m =1 --- oo, then it shows that f (x) and s (x)
have the same generalized Fourier coefficients.

4.2 Part (b)

From part (a), we found

frPn) = (s, Pn)

By linearity of inner product, the above is the same as

(frPn) = (s Pn) =0
(f=5,¢n)=0
But from problem 3, we know that (f —s, ¢, = 0 implies ||f —s|| = 0.

Next, using part(b) in problem 4, section 61, which says that if ” f ” = 0 then f (x) = 0 except
at possibly finite number of points in the interval, then applying this to our case here that

||f - s|| = 0 leads to

Which is the result required to show.



5 Section 66, Problem 4

\ : !
: E} (a) Use the same steps as in Example 3, Sec. 61, to verify that the set of functions

( ——1— ( —~—1~cos— Ponlx) = ———sn@
do x)—\/z—c, D1 x)—ﬁ T 2n T ’
: n=1,2,,

is orthonormal on the interval —c¢ < x < ¢. (This set becomes the one in that
ample when ¢ = .)
(b) By proceeding as in Example 3, Sec. 63, show that the generalized Fourier se
corresponding to a function f(x) in C,(—c, ¢) with respect to the orthonormal
in part (a) can be written as an ordmary Fourier series on —¢c < x < ¢ (Sec. I
- with the usual coefficients a, and b,,.
(c) Derive Bessel’s inequality

2 N

%"JrZ(a +b2) = / [f(0] dx (N=1,2,

n=1

for the coefficients a, and b, in part (b) from the general form (1), Sec. 65, ol
inequality for Fourier constants. [Compare with inequality (6), Sec. 66.]
Suggestion: Inpart (a),some integrals to be used can be evaluated by wil

[

JT
X = —5
¢

in integrals (1) and (4), Sec. 61.

Figure 5: Problem description

solution

5.1 Part (a)
We need to find

<(P0/ ¢2n>

<¢0/ ¢2n—1>
(Pan, Pom)
(P2n-1, Pom-1)
<¢2m—1/ ¢2n>



And also show that
(0.90) = [lpoll” =1
(G20, 020} = |02l =1
(P2n-1, Pan-1) = ||9’52n-1||2 =1
(Do, Pan)

nrt

(Po, P2n) = f ——cos(

_ 1 sm(%x)c

nncx/_ [S““ (m )]

[sin (n7t) + sin (n7)]

x) dx
c

c

—C

- nnx/i

=0
Since 7 is integer.
<QZ)O/ ¢2n—1>
c1 1  (nm
(Po, Pon-1) = f_ e (Tx) dx
1 |—cos (%x) ‘
cV2 % )
—C nrTe C
) nmcy2 [COS (Tx)] c
= — > [cos (nm) — cos (nm)]
nm
<¢2nr ¢’2m>

(Pans Pom) = f —=sin ( x) % sin (?x) dx

1 ¢ nrm mmn
=- f sin (—x) sin (—x) dx
cJ_. c c

Let %S = x, then dx = %ds. When x = —c then s = —7t and when x = ¢ then s = 7= and the



above becomes

1 TT
(Do, Do) = . f ) sin (ns) sin (ms) %ds

1 pn
=— f sin (ns) sin (ms) ds

Since the integrand is even, then

s

2
(Don, Pom) = ;f sin (ns) sin (ms) ds

0
From equation (1), page 192 we see that

<¢2n/ ¢2m> =0

Since n, m are different.

(P2n-1, Pom-1)

(P2n-1, Pom-1) = f—COS( X)%cos(gx)dx

1 ¢ nm mr
= - f cos (—x) cos (—x) dx
cJ_. c c

Let %S = x, then dx = %ds. When x = —c then s = —7t and when x = ¢ then s = 7 and the

above becomes

(Pon-1, Pom-1) = %fﬂ cos (ns) cos (ms) %ds

-7t

1 T
- f cos (ns) cos (ms) ds

Since the integrand is even, then

7T

2
(P2n-1, Pom-1) = — f cos (ns) cos (ms) ds

0
From equation (4), page 192 we see that

<¢2n—1/ ¢2m—1> =0

Since n, m are different.

(P2m-1, Pon)

(Dom-1, Pon) = f — cos (mnx) % sin (nTnx) dx

1 f‘ mr nr
= cos (—x) sin (—x) dx
cJ_, c c

Let %s = x, then dx = %ds. When x = —c then s = —7t and when x = ¢ then s = 7t and the



above becomes

1 7T
(Pam1, Pon) = p fﬂ cos (ms) sin (ns) %ds

1 7T
= f cos (ms) sin (ns) ds

Using cos (ms) sin (ns) = % (cos (s (m + n)) + cos (s (m — n))). Hence the above becomes

(Dom-1, Pon) = 21_71 (j:n cos (s (m + n))ds + fﬂ cos (s (m — n))ds)

Since the integration is over one full period, then each is zero. Hence

<(PO/ ¢O>

Hence ||qb0|| =1.
<(P2n/ (P2n>

Hence ||qb2n|| =1.

<¢)2m—11 ¢2n> =0

1 1
(b0, o) = f R

2 1fc
= — d

ool = 52
=1

nrt
c

(Pons Pan) = ji % sin (—x) % sin (nTnx) dx

I
Al ol

Rl=

10



11

<q52n—1/qb2n—1>

— c c /A c
2l = = f " cos? (?x) dx

1 [cos (2Tx) }C ]
= % 2c — ZT
¢ -
= l 2c — - [cos (2n—nx)]c )
2c 2nm c /1,

21C (ZC - ﬁ [cos (2nT) — cos (2n7'()])
= l2c
2c
=1
Hence ||q52n_1|| =1.
5.2 Part (b)
1
¢o (x) = \/—2—(:
nmx
Pan-1(x) = 7 (T)

$an (1) = 7 sin (")

On —c¢ < x < c. The generalized Fourier series for f (x) in C, (-¢, ¢) is

D cny (1) = copo (x) + Y, (CZn—1¢2n—1 (%) + 2, P2n (x))
n=0 n=1
That is

\ 21 (NTXY G (HTOX
P9~ o 5 (o (12 S () .
Where
1
0= {f.00) = = f £ () dx



12

And
nmnx
C2n1_<f ¢2n 1(x \/_ff X)COS( )dx n:]/ZI...
=(f, P (¥)) = — f f x)sm(nnx)dx n=1,2--
\/—
If we write
o Con-1 Con
ag = 2—=,a, = Jb,=—= n=12,
0 \/% n \/E n \/E

Then (1) becomes
fx)~— 0, Z a, cos (mc'(x) +b, Sm(nnx)

c

1 C
:—ff(x)cos(@)dx n=1,2,
cJ_, c

1 C
=—ff(x)sm(@)dx n=1,2,
cJ_, c

This is the ordinary Fourier series on —c < x <c.

Where

5.3 Part (c)
From (1) section 65

N 2

2=l @

n=0
But from part (b) we found that

c Cope c
a0—2—0a = an,bnzﬂ n=1,2,

V2ot e

Hence
a —
20 2

Cop-1 = lln\/E
Cop = bn\/E



Substituting the above into (1) gives

N N
&+ 2 Gy + z &, <|IfI°
610 N
(2V2) + 3 e )< [l ar

s

20) Za c+ szc<f[f(x)

q>|§,\,i

2
?O+7§1(an+b%)szf[f(x)] dx

13



6 Section 66, Problem 5

7

5/ Let sn(x) (N = 1,2, ...) be a sequence of functions defined on the interval 0 < x = |
by means of the equations

0 when x =1,

— N =

sy(x) =
it when x # 1,

2|~ 2|~

E,...,

Show that this sequence converges in the mean to the function f(x) = 1in C,(0, 1)
but that for each positive integer p,

lim SN (l> = 0.
N—o00 P
Suggestion: Observe that

1
sN(;) = 10) when N > p.

solution

Figure 6: Problem description

The function Sy (x) is almost 1 everywhere as can be seen from this diagram




15

SN(m):l
Sn (@) . Sn(x) =0
A
oo ¢
[
[ | [
ty '
IS 1 1 =
54 3 2
N=3 N=2 N=1
Af(w)zl j
1
- T
1

Figure 7: Showing the function Sy(x) and f(x)

And the problem is asking us to show that Sy (x) — f (x) in the mean. This means we need
to show the following is true

lim [|$y () - f @] =0

Except at possibly finite number of points x. But this is the case here. Looking at Sy (x) we
s _ - 111
see it is equal to f (x) = 1 everywhere except at the points x =1, 53, and compared to

all the points between 0 and 1, then Sy (x) = f (x) =1 almost everywhere. Even though as
N — oo the number of points where Sy (x) # 1 increases, it is still finitely many compared

to the number of points where Sy (x) = f (x) =1.

. . . 1
To answer the second part: Since Sy (x) = 0 at any x value which can written as ; where

p is an integer (this by definition given), then Sy (%) = 0. Then it clearly follows that

th—)oo SN (%) =0.
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