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1 Section 45, Problem 4

J T £aAvinIJLA | £s OLLLLUUA.

4.’ A string, stretched between the points 0 and 7 on the x axis and initially at rest, &

- released from the position y = f(x). Its motion is opposed by air resistance, which i

proportional to the velocity at each point (Sec. 28). Let the unit of time be chosen st
that the equation of motion becomes

Yu(x, £) = yoe(x,8) — 2 By, (x, t) O<x<mt=0)

where g is a positive constant. Assuming that 0 < 8 < 1, derive the expression

[oe]

yx, ) =e Z B, (cos Oyl = p sin u,,!) sin sy,
w,

nwl

where

2 T
anI\/n_Q*ﬂ2, B":;/ f(x)sinnx dx (=20
0

for the transverse displacements.

Figure 1: Problem statement

Solution

Solve for y (x, t) in

Yt = Yo — 2BY; (t>0,0<x<m) 1)
Boundary conditions
y(©0,6)=0
y(m,t)=0

Initial conditions
y (0 = f(x)
yi(x,0)=0
Let y = XT. Substituting in (1) gives
T"X =X"T -2T'X
Dividing by XT # 0
T X" T’

— =— -28—

T X T
’1"//4_2 T/_X//_ /\
T ﬁT_ X

Where A is separation constant. Due to nature of boundary conditions being both homo-
geneous, then we know A > 0 is only possible case from earlier HW’s. The eigenvalue
problem is

X"+AX =0
Which we know has eigenvalues A = n? for n = 1,2, --- with corresponding eigenfunctions
X, = sin (nx) 1)

Now we solve the time ODE using these eigenvalues.

T” + 2T +n*T =0

This is standard second order ODE with positive damping f8 and since 7 is positive. The



characteristic equation is
2 +28r+n?=0

The roots are

Hence the solution is
T, (t) = A"t + B,e"2t
pwi 22 pi 2
— Ane( princ—f )t + Bne( p—in-—p )t

— o Bt (Anei n2—p2t + Bne—i nz—ﬁzt)

But the above can be rewritten using Euler relation as (the constants A,,, B,, will be different,
but kept them the same names for simplicity)

T, (t) = P (An cos (w/nz - ﬁzt) + B, sin (w/nz — ﬁzt))

Let a, = \/n? — 2, then the above becomes
T, (t) = e P (A, cos (a,t) + B,, sin (a,t)) (2)

Since the PDE is linear and homogenous, then by superposition we obtain the final solution
as

y(x,t) = E XTIy
n=1

= Y, e P (A, cos (a,t) + B, sin (a,t)) sin (nx) (3)
n=1
Now initial conditions are applied to determine A,,B,,. At =0

f(x) =] Aysin (nx)

n=1
Hence A, are the Fourier sine coefficient of the representation of f (x) which implies

2
A== fo £ () sin (nx) dx 4)

Taking time derivative of (3) gives

v (1) = 3 [-BeP! (A, cos (ayt) + B sin (a,h)) + € (—a, A, sin (ayt) + @, B, cos (b)) sin (1)
n=1

At t = 0 the above becomes (since released from rest)

[0e]

0=} (-pA, + a,B,)sin (nx)
n=1
Therefore
-BA, +a,B,, =0
Hence B,, = ﬁ;". Therefore (3) becomes

y(x,t) = i e Pt (An cos (a,t) + pA. sin (oznt)) sin (nx)

n=1 an

=Pt i A, (cos (av,t) + 0% sin (ant)) sin (1x)

n=1

Where A, = % £n f (x) sin (nx) dx and @, = \/n? — f2. Which is the result required to show
(Book used B in place A, but it is the same thing, just different name for a constant).



2 Section 46, Problem 2

~y =y gy

Cc

9 Let a, b, and o denote nonzero constants. The general solution of the ordinary differ
ential equation

Y'(t) + a®y(t) = bsin ot

is of the form y = y, + y,, where y, is the general solution of the complementary
equation y"(¢) + a’y(t) = 0 and Yp is any particular solution of the original nonhome:
geneous equation.’

(a) Suppose that w # a. After substituting
Yp = Acoswt + Bsinwt,

where Aand B are constants, into the given differential equation, determine values
of Aand B such that y, is a solution. Thus, derive the general solution

y(@) = Cycosat + C,sinat + sin wt

FOE

of that equation.
(b) Suppose that w = a and find constants A and B such that

Yp = At coswt + Bt sin wt

is a particular solution of the given differential equation. Thus obtain the general
solution

b
¥(t) = Cycosat + Cysinat — 5 tcosat.
a

Figure 2: Problem statement

Solution

21

Part a

suppose w # a. Let

Then

Yp = Acoswt + Bsinwt

y;, = —Aw sin wt + Bw cos wt

y;' = —Aw? cos wt — Bw? sin wt

Substituting the above back into the given ODE gives

yy (1) + %y, (t) = bsin wt
(—Acuz cos wt — Bw? sin a)t) + a% (A cos wt + Bsin wt) = bsin wt

cos wt (—Aa)2 + azA) + sin wt (—Ba)2 + azB) = bsin wt

By comparing coefficients, we see that

—Aw?+a*A=0
A(a2 —a)z) =0

Since @ # a then this implies that A = 0. And from (2), we see that

~Bw?+a*B=b

Therefore (1) becomes

(1)

(2)

(3)



Now we need to find the complementary solution to
yd +aty =0
Since a? > 0, then the solution is the standard one given by
Y. (t) = Cycosat + Cysinat (4)
Adding (3,4) gives the general solution

b
y(t) = Cycosat + Cysinat + —— sinwt

a2 — w2
2.2 Part (b)
Let
Yy = At coswt + Bt sin wt (1)
Then

Y, = Acoswt — Atwsinwt + Bsin wt + Btw cos wt
Yy = —Awsinwt - (Aa) sin wt + Atw? cos a)t) + Bw cos wt + (Ba) cos wt — Btw? sin a)t)
= (—Ata)2 + 2Ba)) cos wt + (—2Aa) —~ Bta)z) sin wt
Substituting the above back into the given ODE gives
vy (B) + a®y, (t) = bsin wt
((—Ata)2 + 2Ba)) cos wt + (—2Aa) - Bth) sin a)t) + a? (At cos wt + Bt sin wt) = bsin wt
cos wt (—Atw2 +2Bw + aZAt) + sin wt (—2Aa) — Btw? + ath) = bsin wt
(2)
By comparing coefficients, we see that
—Atw? + 2Bw + a?At = 0
At(-w? +a%) + BQw) =0 (3)
And from (2), we see also that
—2Aw - Btw? + a®Bt = b
A (-2w) + Bt (—a)2 + az) =b (4)

But since w = g, then (3) becomes

BQw) =0
B=0
And (4) becomes
A(-2w) =D
-b
"

Substituting these values we found for A, B, in (1) gives

Yp = Etcos wt

But w = a, therefore

Yp = Zt cos at (5)

The complementary solution do not change from part (a). Hence the general solution is

b
y(t) = Cycosat + Cysinat — gtcos at

Which is the result required to show.



3 Section 46, Problem 3

|3.] Use the general solutions derived in Problem 2 to obtain the following solutions of the
initial value problem

y' () + a’y(t) = bsinot, y(0) =0, y'(0) = 0:

o . :
8 2(—smat—smwt) when w # a,

w:—a’\ a

y(0) =
b Gls iy : 1
— | —sinat —tcosat when w = a.
2a \ a

Figure 3: Problem statement

Solution
The general solution from problem 2 is

. b .
Cicosat + Cysinat + ——sinwt w #a
ac—w

y(t) =

. b
Cqcosat + Cysinat — S tcosat  w=a

We need to find C;, C, when initial conditions are y (0) = 0,1’ (0) = 0 for each of the above
cases.

case w # a
y(0) =0 gives

0=C;
Hence solution now becomes

b
y(t) = Cz sin at + az_—a)z sin wt

Taking time derivative gives

Yy (t) = aCycosat + 2 cos wt
At t = 0 the above gives
3 wb
0= HCZ + 202
Co = 1 wb
2T g2 -2
Using Cq, C, found above, the solution becomes
1 wb :
y(t) = sz 2 sin at + 5[2——(4)2 sin wt
b (o :
= P (; smat—sma)t) (1)
case w =4
y(0) = 0 gives
0= C1

Hence solution now becomes
b
t) = Cysinat — —tcosat
y (t) 2 2

Taking time derivative gives

'(t) = aC t b t btz' t
]/ =alycosa 2aCOSLZ 26! Sina



At t = 0 the above gives

0 C b
=a _—
2 2a
c _1b
2_a2a

Using Cq, C, found above, the solution becomes

b
y(t) = oy sinat — Ztcosat

b (1 , )
= — | —-sinat —tcosat
2a\a

From (1,2) we see that

# (% sinat—sina)t) w #*a
y(t) = b (1 .
> -sinat — tcosat w=4a

a

Which is the result required to show.

(2)



4 Section 52, Problem 3

|} Assume that a function f(x) has the Fourier integral representation (8), Sec. 50, which
can be written

f(x) = lim / [Aa) cos ax + B(w) sin ax] da.
cC—>CQ 0

Use the exponential forms (compare with Problem 8, Sec. 15)
0, o g9 et _ o—if
: sind = :
2 21
of the cosine and sine functions to show formally that

cosf =

f(x) = lim / C(a) "~ da,

where
o A i B

Ax) lB(Ol)’ G (@) + [ B(a) G0
2 7

I'hen use expressions (9), Sec. 50, for A(x) and B(w) to obtain the single formula®

Cla) =

Cla) = / oy e (—0 < o < 00).

Figure 4: Problem statement

Solution
fx) = foo (A (a) cos (ax) + B () sin (ax)) do
0
_ j:o (A ( zax —zax) B (a) (ezax _26—100()) i
B f°° (em (A (a) —iB (a)) (A (a) +iB (a)))
= . et f da
_ f‘x’ el.axA(a) zB (a) f _mxA(a) +iB (a)
0
_ f A(a) zB (a) f _ZaxA(a) + 1B (a)
0
3 A (a) zB (a) A (a) + zB (a)
-J, - wr [ e
= f C (a) eda
Where
C( ) _ A(a) le(a) ) C (—0() _ A(a)-;iB(a) a>0

Expression (9) section (5) is

A) = %foo F () cos (ax) dx
B(a) = %foof(x)sin(ax)dx



A(a)-iB(a)

Substituting the above in C (a) = gives

Cla) = 1(% foof(x) cos (ax)dx—i% foof(x) sin(ozx)dx)

1 [ (= w0
_ %( f F () cos (ax) dx - f_ F(®)isin (ax)dx)
_ % f " F () (cos (ax) — isin (ax)) dx

But using Euler relation cos (ax) — isin (ax) = ¢ then the above reduces to

1 e |
C(a):gﬁwf(x)elaxdx o< <o

Which is what required to show.
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5 Section 53, Problem 4

Vi) M e ] T

7 {4 Use the theorem in Sec. 53 to show that if

. fx) = 0 Whenx<00rx>n,
sin x when 0 <x <z,
then

fx) = l/m FoRar SRcesal - x)
\
T Tha do (=00 < x < ),

In particular, write x — 7 /2 to show that

* cos(amr/2) &l
ﬁ- do = —,
0 —a 2

Figure 5: Problem statement

Solution

Since f (x) is piecewise continuous and absolutely integrable (sine function), then
+ + — 1 00 (o]
M - %f (f f(s)cos(oz(s—x))ds)da
0 —00

Substituting for f (s) inside the integral for the function given gives

Jw = %j:o(fonsin(s)cos(as—ax)ds)d“

Where we used KT only, since the function is zero everywhere else. Using 2sin AcosB =
sin (A + B) + sin (A — B) then the above can be written as

e L P S AL
0 0

2 T
:%fm(fnsin(s+as—ax)+Sin(5—a5+0‘x)ds)d0‘ @D
0o \Yo
But
fnsin(s +as —ax)ds = [_COS(S il _(XX)]
0 1+a
= 1:_ - (cos (1 + amt — ax) — cos (—ax))
- :_la (cos (1 + a (1 — x)) — cos (ax))
But cos (11 + a (11 — x)) = — cos (a (1t — x)), and the above becomes
j;n sin (s + as — ax) ds = 1 _1F 2 (cos (a (1 = x)) + cos (ax)) (2)
Similarly
fnsin(s —as+ax)ds = —oos(s - as + ax)
0 1-a 0
= 1_—1a (cos (1 — am + ax) — cos (ax))
=1 (cos (1t — a (7 + x)) — cos (ax))
= % (= cos (—a (1t + x)) — cos (ax))
_ (cos (a (1 + x)) + cos (ax)) (3)

1-«
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Substituting (2,3) back in (1) gives
fO@)+fx) 1 f‘x’ 1
1+

- (cos (a (1t — x)) + cos (ax)) + 1 i - (cos (a (1T + x)) + cos (ax))) da

2 2n
1 > 1 1 1 1
= %j(; cos (a (T( - .')C)) (m + m) + Cos (OCX) (m + n)) da

)

= f (x) and the above becomes

—Lfoo cos (a (1t - x))( 20( )+cos(ax)(1

3 f cos (a (11 — x)) + cos (ax)
T 1-

da
2

Ft)+f00)
2
1 cos (a (1t — x)) + cos (ax)

ﬂw—;ﬁ da

1-a2

But f (x) is continuous then

When x = g the above gives

f(n) 1 fo‘” cos (@ (- 3)) + cos (“z)da

I 1-a?

do

0 COS (OCT[) + CcoSs (OCT[)
f 2 2
0

1-a?

Therefore
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