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1 Section 45, Problem 4
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4.’ A string, stretched between the points 0 and 7 on the x axis and initially at rest, (4
released from the position y = f(x). Its motion is opposed by air resistance, which I
proportional to the velocity at each point (Sec. 28). Let the unit of time be chosen 4
that the equation of motion becomes

Ve (X, 1) = Yer(x,£) — 2 By (x, 1) O<x<mt=0)

where B is a positive constant. Assuming that 0 < 8 < 1, derive the expression

- p
yx, 1) =e Z B, (cos oyt 4+ — sin cv,,f) Sin n,

¥y
el

where

2 %
a, = +/n*— p?, B,;=;/ f(x)sinnx dx (=M1 2
’ 0

for the transverse displacements.

Figure 1: Problem statement

Solution

Solve for y (x, t) in

Yu :yxx_zﬁ]/t (t>0,0<x<m) (1)
Boundary conditions
y(0,)=0
y(m,t)=0

Initial conditions
y(x,0) = f(x)
yi(x,0)=0
Let y = XT. Substituting in (1) gives
T"X =X"T -2T'X



Dividing by XT # 0
TII XI/ TI
T X T
T—”+Zﬁz = X" =-A
T T X

Where A is separation constant. Due to nature of boundary conditions being both homoge-
neous, then we know A > 0 is only possible case from earlier HW’s. The eigenvalue problem
is
X"+AX =0
Which we know has eigenvalues A = n? for n = 1,2, -+ with corresponding eigenfunctions
X, = sin (nx) 1)

Now we solve the time ODE using these eigenvalues.

T
T + 28T +n?T =0

This is standard second order ODE with positive damping 8 and since 1 is positive. The
characteristic equation is
12 +28r+n?=0

The roots are

2a 2a
28 1

e A T
y ToVA—An

Hence the solution is
T, (t) = A"t + B,e"2!
_ ; 2_p2 _R_q 2_p2
— Ane( p+iync—p )t +Bn€( p—in=—p )t

_ Pt ( Aneimt n Bne_i‘/mt)

But the above can be rewritten using Euler relation as (the constants A,, B,, will be different,
but kept them the same names for simplicity)

T,(t) =cP (An oS (1/112 - ,th) + B, sin (,/nz - ﬁzt))

Let a,, = \/n% — p2, then the above becomes
T, (t) = e P (A, cos (a,t) + B, sin (a,,t)) (2)



Since the PDE is linear and homogenous, then by superposition we obtain the final solution
as

y(x/ t) = i X, T,

n=1

= Y e (A, cos (a,t) + B sin (a,t) sin (nx) (3)
n=1
Now initial conditions are applied to determine A,,B,,. At =0

f(x) =] Aysin (nx)
n=1
Hence A, are the Fourier sine coefficient of the representation of f (x) which implies
2 T
A, == f F () sin () dx 4)
Tt Jo
Taking time derivative of (3) gives

Y (%, 1) = f} [-Be Pt (A, cos (at) + By sin (ayt)) + e P! (—a, A, sin (@, b) + @, B, cos (ayt)) | sin (x)

n=1
At t = 0 the above becomes (since released from rest)
0= Z (—,BAH + aan) sin (nx)
n=1
Therefore
-BA, +a,B, =0
BAn

Hence B,, = —. Therefore (3) becomes

y(x,t) = ge‘ﬁt (An cos (a,t) + ﬁ::” sin (oznt)) sin (nx)

=P Z A, (cos (a,t) + ﬁ sin (ant)) sin (nx)
n=1 Ay
Where A, = % KT f (x) sin (nx) dx and a,, = 4/n? — f?. Which is the result required to show

(Book used B in place A, but it is the same thing, just different name for a constant).



2 Section 46, Problem 2

(a)

(b)

2.) Let a, b, and o denote nonzero constants. The general solution of the ordinary diffes
ential equation

- T T —

¢ ]

Y'(t) + a’y(t) = bsin wt

is of the form y = y, + Yp,» Where y. is the general solution of the complementary
equation y”(¢) + a’y(t) = 0 and y, is any particular solution of the original nonhomao:
geneous equation.’

Suppose that @ # a. After substituting
Yp = Acoswt + Bsinwt,

where Aand B are constants, into the given differential equation, determine values
of Aand B such that y, is a solution. Thus, derive the general solution

y() = Cycosat + G sinat + sin wi

R

of that equation.
Suppose that w = a and find constants A and B such that

Yp = At coswt + Bt sin wt

s a particular solution of the given differential equation. Thus obtain the general
solution

b
y(@) = Cycosat + C, sinat — 2—tcosm.
a

Solution

Figure 2: Problem statement

2.1 Parta

suppose @ # 4. Let

Then

Yy = A coswt + Bsin wt

= —Awsin wt + Bw cos wt

=
!

y;,' = —Aw? cos wt — Bw? sin wt

(1)



Substituting the above back into the given ODE gives
yy (1) + a%y, (t) = bsin wt
(—Acuz cos wt — Bw? sin a)t) + a% (A cos wt + Bsin wt) = bsin wt
cos wt (—Aa)2 + azA) + sin wt (—Ba)2 + azB) = bsin wt
By comparing coefficients, we see that
—Aw? +a*A=0
A (az - a)z) =0
Since w # a then this implies that A = 0. And from (2), we see that
-Bw?+a’B=b

Therefore (1) becomes

Now we need to find the complementary solution to
yd +aty =0
Since a? > 0, then the solution is the standard one given by
Y. (t) = Cycosat + Cysinat
Adding (3,4) gives the general solution

b
y(t) = Cycosat + Cysinat + —— sinwt

22 — 2
2.2 Part (b)
Let
Yy = At coswt + Bt sinwt
Then

yl’g = Acoswt — Atw sin wt + Bsin wt + Btw cos wt

Yy = —Awsinwt - (Aa) sin wt + Atw? cos a)t) + Bw cos wt + (Ba) cos wt — Btw? sin a)t)

= (—Ata)2 + 2Ba)) cos wt + (—2Aa) - Bta)z) sin wt
Substituting the above back into the given ODE gives

yy () + a%y, (t) = bsin wt
((—Ata)2 + ZBa)) coswt + (—2Aa) - Bta)z) sin a)t) + a? (At cos wt + Bt sin wt) = bsin wt

(2)

(3)

(4)

(1)

cos wt (—Atw2 +2Bw + azAt) + sinwt (—2Aw — Btw? + ath) = bsinwt (2)



By comparing coefficients, we see that
—Atw? + 2Bw + a*At =0
At (-w? +a2) + B(2w) =0 (3)
And from (2), we see also that
—2Aw - Btw? + a?Bt = b
A(-2w) + Bt (~w? +a2) = b (4)

But since w = a, then (3) becomes

BQw)=0
And (4) becomes
A(-2w) =D
_ b
"~ 2a
Substituting these values we found for A, B, in (1) gives
Yp = it cos wt
But w = a, therefore
Yp = ;—at cos at (5)

The complementary solution do not change from part (a). Hence the general solution is

b
y(t) = Cycosat + Cysinat — 2—tcos at
a

Which is the result required to show.



3 Section 46, Problem 3

|3, Use the general solutions derived in Problem 2 to obtain the following solutions of the
initial value problem

y'(t) + a’y(t) = bsinwt, y(©0) =0, y'(0)=0:

w . :
b > (— sinat — smwt) when w # a,

w:—a*\ a

y() =
bl ale i ; 1
— | —sinat —tcosat when w = a.
2a \ a

Figure 3: Problem statement

Solution
The general solution from problem 2 is

. b .
Cicosat + Cysinat + —sinwt w #a
ac—w

y(t) =

. b
Cqcosat + Cysinat — Stcosat  w=a

We need to find Cq, C, when initial conditions are y(0) = 0,y (0) = O for each of the above
cases.

case W # a
y(0) =0 gives

0=C
Hence solution now becomes

o b
y(t) = Cysinat + m sin wt
Taking time derivative gives
wb
Yy (t) = aCycosat + PR cos wt
At t = 0 the above gives

0=aCy+ 55—
27 2,2

1 wb
R



Using Cq, C, found above, the solution becomes

1 wb b )
y(t) = P sinat + T2 sin wt
= ﬁ (% sin at — sin a)t) 1)
case w =4
y(0) = 0 gives
0=C;

Hence solution now becomes
. b
y(t) = Cysinat — Zt cos at
Taking time derivative gives
Yy (t) = aCycosat — (ﬁ cosat — E1,‘2 sin at)
2a 2a

At t = 0 the above gives

0 C b
=a _—
2 2a
10
Cy=—-——
2 a2a

Using Cq, C, found above, the solution becomes

(t) in at b t cos at
= ——SIndar— —1cosa
y ala 2a

b (1
= — | —-sinat —tcosat (2)
2a \a

From (1,2) we see that

# (% sinat—sina)t) w #a
y(t) = b (1 .
> -sinat — tcosat w=4a

a

Which is the result required to show.



Section 52, Problem 3

10

| %] Assume that a function f(x) has the Fourier integral representation (8), Sec. 50, which
can be written

f(x) = lim / [A(@) cos ax + B(x) sinax] da.
c—>0Q 0

Use the exponential forms (compare with Problem 8, Sec. 15)

el 4 =10 A
: sinf = :
2 2i
of the cosine and sine functions to show formally that

cosf =

f(x) = lim / C(a) ¢ da,
where
Ale) —2 iB(a)’ Gl = Ala) —;iB(oz)

I'hen use expressions (9), Sec. 50, for A(x) and B(x) to obtain the single formula®

Cla) =

C(a) = / fiyen = ax (—0 < a < X).

(a > 0).

Figure 4: Problem statement

Solution

fx) = (A (a) cos (ax) + B () sin (ax)) da

J
_ foo (A ( zax —lax) B (a) (ezax _ e—lax)) da
0 2
A (a) iB(a) A(a) +iB(a)
[ s R Sy | 6
0

iaxA(“) ZB @, f _mA(a)HB @ .,

I
=3
N

:f A(a) zB (a) f A(a)+zB (a)
0

N A(a) zB(a) . A(a)+zB((x)
_ fo e f

= f C (@) e*da
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Where
A(a)-iB(a)
2

A(a)+iB(a)
2

C(a) = a>0

Expression (9) section (5) is

, C(-a) =

A) = %j:mf(x)cos(ax)dx
B(a) = %f_oof(x)sin(ax)dx

Substituting the above in C (a) = A(@)-iB(a)

gives
C(a) = %(% f_if(x) cos (ax) dx — i% jj:f(x) sin (ax) dx)

_ zl_n(f_mf(x)cos(ax)dx—f_mf(x)isin(ax)dx)
_ % f " F () (cos (ax) — isin (ax)) dx

But using Euler relation cos (ax) — isin (ax) = ¢ then the above reduces to

1 > .
C(a)=ﬂf_wf(x)emdx —0 <<

Which is what required to show.
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5 Section 53, Problem 4

f ) Lo u 3 C U

i 4
? iéb{Use the theorem in Sec. 53 to show that if

)= 0 when x <0 or x > 7,
sinx when 0 <x <7,
then

00
B _1_ / COS ax + cos a(m — x)
T 1—¢?
In particular, write x — /2 to show that

/m cos(am/2) 7
———da = —.
0 ledard 2

doy (-0 < x < odll

Figure 5: Problem statement

Solution

Since f (x) is piecewise continuous and absolutely integrable (sine function), then
XN+ fx) 1 o ™
M:—f f f(s)cos(a(s—x))ds)da
2 TTJp —o0
Substituting for f (s) inside the integral for the function given gives

BT = 2 7 s costos -y
0 0

Where we used £n only, since the function is zero everywhere else. Using 2sin AcosB =
sin (A + B) + sin (A — B) then the above can be written as
M = lfoo (lfnsin(s + as —ax) +sin (s — (as—ax))ds)da
2 TTJp 2 0
1
T 21

foo(fnsin(s+as—ax)+Sin(s—as+ax)ds)da 1)
0 0

But

s
—cos (s + as — ax)
1+a ]

T
f sin(s+as—ax)ds:l
0 0

1+

" (cos (1t + amt — ax) — cos (—ax))

Toa (cos (1t + a (11 — x)) — cos (ax))
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But cos (7 + a (1 — x)) = —cos (a (1t — x)), and the above becomes

fn sin (s + as — ax) ds = L (cos (a (1t — x)) + cos (ax)) (2)
0 1+a

Similarly

s
—cos (s — as + ax)

7T
f sin (s —as + ax)ds =
0 1-«a 0

(cos (T — amt + ax) — cos (ax))
1-«a

=1 (cos (1t — a (10 + x)) — cos (ax))
1

= 7= (~cos (=a (7 +x)) - cos (ax))

=7 1 (cos (a (11 + x)) + cos (ax)) (3)
-

Substituting (2,3) back in (1) gives
fE) )1 (-
2 27
1 0 1 1 1 1
= E\f(‘) cos (a (T(—X)) (m + g) + cos (ax) (m + T)) da

_Lfoo cos (a (1 - x))(l Za )+cos(ax)(1 _2a2))da

f cos (a (11 — x)) + cos (ax)
B 1-
= f (x) and the above becomes

(cos (a (1t — x)) + cos (ax)) + 1

1+a i - (cos (a (1t + x)) + cos (ax))) da

da

a2
F)+fe)
2
1 cos (a (1t — x)) + cos (ax)
ﬂ@—;ﬁ da

1-a2

But f (x) is continuous then

When x = g the above gives

s 1-a2

f(z) 1 fo‘” cos (@ (7 - 3)) + cos a3) "

do

1= foo COS (a%) + COS (ag)
0

1-a?



Therefore

14



	Section 45, Problem 4
	Section 46, Problem 2
	Part a
	Part (b)

	Section 46, Problem 3
	Section 52, Problem 3
	Section 53, Problem 4

