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1 Section 40, Problem 1

1 Ihe initial temperature of a slab 0 < x < 7 is zero throughout, and the face x = 0 is
heptat that temperature. Heat is supplied through the face x = = at a constant rate
(A > 0) per unit area, so that Ku,(w, f) = A(see Sec. 26). Write

ulx,t) = U(x, ) + &(x)

and use the solution of the problem in Example 2, Sec. 40, to derive the expression

A 8 o~ (=1) @n=1%1 . @n-1
u(x,t) = % {x+ = E n 1) exp [———4—1} sin 5 X

n=1

for the temperatures in this slab.

Figure 1: Problem statement

Solution

The PDE to solve is

Up = Kilyy
With boundary conditions
u(0,t)=0 (1)
Ku, (r,t) = A
And initial conditions
u(x,0)=0
The solution to example 2 section 40 is
) 2
Ux,t) = ngl By,_1exp (Wt} sin @) (2)

With

Tt

B, =2 fo ") sm(@ dx

Now, in this problem, we start by writing
u(x, t)=U(x,t) +D(x) (3)
The function @ (x) needs to satisfy the nonhomogeneous B.C. (1). Let
D (x) =cix+cy
When x = 0 this gives 0 = ¢,. Hence @ (x) = c;x. Taking derivative gives @’ (x) = ¢;. But
from (1) K&’ (r) = A. Hence ¢y = % Therefore

A
D(x)=—
() =
Substituting the above back into (3) gives
A
u(x,t)y=U(x,t) + Kx

But U (x, t) is given by (2), hence the above becomes
A —en-1%k)  [(@n-1)x
u(x,t) = Kx + ,;1 B,,_1 exp (Tt) sin (T (4)

At t = 0, the initial conditions is 0. Hence the above becomes

A — ((@n-1)x
—Kx = ;BZn—l sin (T)



. . . . A
Hence B,,,_; is the Fourier sine series of —2 X given by

2 M A 2n -1
s = 2 [~ 252 ax
TTJp K 2

2A (™ ((Zn—l)x)
=— | xsin|————|dx
K 0 2

(2n-1)x

Integration by parts. Let u = x,dv = sin( ), hence du =1andv = —(an_l) Ccos ((2n;1)x)

and the above becomes

24 2x Cn-Dx\T" ~ 2 2n-1)x
By,_1 =% “_(271—1) cos( > )L +j; -1 cos (—2 )dx)

24 2 [xcos((zn_l)x)r+ 4 [Sin((Zn—l)x)]n
- nK| @2n-1) 2 . (@n-1y 2 S

ZA( 2n ((Zn—l)n) 4 _ ((271—1)7'())
=—1- cos + S
nK\ 2n-1) 2 2n -1)° 2

Since 2n —1 is odd, then the cosine terms above vanish and the above simplifies to
A 8(=1)"!

7K (20— 1)

~ A 8(_1)n+2

T K (2n-1)?

A 8(-1)

T K (2n-1)

By =-

Substituting the above in (4) gives

A QA S —@n-1%k)  (@n-1)x
u(x,t) = Ex + Z X 2 - 1)2 exp( 1 t) sin (T)

A 8. (-1)" ~—@n-1°%k) . (@n-1)x
= E {x + E E 2 1)2 exp( 1 t] sin (—2 )}

n=1

Which is the result required.



2 Section 40, Problem 3

Let v(x,t) denote temperatures in a slender wire lying along the x axis. Variations of
" the temperature over each cross section are to be neglected. At the lateral surface, the
linear law of surface heat transfer between the wire and its surroundings is assumed to
apply (see Problem 6, Sec. 27). Let the surroundings be at temperature zero; then

ve(x, 1) = kv (x, £) — bu(x, £),

where b is a positive constant. The ends x = 0 and x = ¢ of the wire are insulated
(Fig. 34), and the initial temperature distribution is f (x) Solve the boundary value
problem for v by separation of variables. Then show that

v(x,t) = u(x,f) e

where u is the temperature function found in Sec. 36.

R

Figure 2: Problem statement

Solution
The PDE is
vy = kv, — bo
With boundary conditions
v, (0,6)=0
v, (c,t) =0
And initial conditions
v(x,0) = f(x)
Let v (x,t) = X (x) T (t). Substituting into the PDE gives
T'X =kX"T - bXT
Dividing by XT # 0 gives

TI X//
- = k— -b
T
T/ X//
—+b= k—
T
T/ b Xl/
— =-A
kT k- X
Where A is the separation constant. We obtain the boundary value eigenvalue ODE as
X"+AX=0 (1)
X' (0) =
X' (c) =
And the time ODE as
T’ N b 1
KT~k

T + ZkT = -AkT

T’+ZkT+AkT=O
T+ T(b+ Ak) =

Now we solve the space ODE (1) in order to determine the eigenvalues A.



Case A <0

The solution to (1) becomes
X (x) = Acosh (V—Ax) + Bsinh (V—/\x)
X’ = AV-Asinh (V—/\x) + BV—-A cosh (V—/\x)

Satisfying X’ (0) = 0 gives
0=BvV-A

Hence B = 0 and the solution becomes X (x) = A cosh (\/—Ax). Therefore X’ = AV—-Asinh (\/—Ax).
Satisfying X’ (c) = 0 gives

0 = AVA sinh (ﬂc)

But sinh is zero only when its argument is zero, which is not the case here since A # 0.
This implies A = 0, leading to trivial solution. Therefore A < 0 is not possible.

Case A =0

The solution to (1) becomes

X(x)=Ax+B
X' =A
Satisfying X’ (0) = 0 gives
0=A
And the solution becomes X (x) = B. Therefore X’ = 0. Satisfying X’ (c) = 0 gives
0=0

Which is valid for any B. Hence choosing B =1 shows that A = 0 is valid eigenvalue with
corresponding eigenfunction Xj (x) = 1.

Case A >0

The solution to (1) becomes

X (x) = Acos (\/Xx) + Bsin (\/Xx)
X’ = -AVAsin (\/Xx) + BV cos (\/Xx)

Satisfying X’ (0) = 0 gives
0=BVA

Hence B = 0 and the solution becomes X (x) = A cos (\/Xx) Therefore X’ = —A\/X sin (\/Xx)
Satisfying X’ (c) = 0 gives
0= -AVAsin (\/Xc)
For nontrivial solution we want
sin (\/Kc) =0
\/Xc:nn n=12,3,--

- (2

And the corresponding eigenfunctions
X, (x) = cos (\//\—nx) (3)
Now that we found A,,, we can solve the time ODE T’ + T (b + Ak) = 0. The solution is
Tn (t) — e—(b+/1nk)t (4)



Hence the fundamental solution is
Uy (X, t) = Xn (X) Tn (t)

= cos (\//\_nx) e~ (At

And the general solution is the superposition of all these solutions

0 (x, t) = AOXOTO + i Aan (.X') Tn (t)

n=1
= Age™ + Z A, cos (\//\_nx) e~ (b+Auk)t
n=1

Which can be written as
v(x,t) =u(x,t)el

Where u (x, t) is
u(x,t) = Ay + Z A, cos (\/)\_nx) e Ankt
n=1

Which is the same as given in section 36, page 106. In the above
/\0 =0

n\2
An:(T) n=1,2,3,



3 Section 41, Problem 3

\'3‘ A hollow sphere 1 < r < 2is initially at temperature zero. The interior surface is kept
— at that temperature, and the outer one is maintained at a constant temperature . Set
up the boundary value problem for the temperatures

u=u(,t) 1<r<2,t>0)

and follow these steps to solve it:

(a) Write v(r,t) = ru(r, 1) to obtain a new boundary value problem for v(r, £). ‘Then
puts = r — 1to obtain the problem

v, = KUs, O<s<1l1>0),
v=0whens =0, v =2up whens =1,

v=C0whent=0.

(b) Use the result in Problem 2, Sec. 40, to write a solution of the boundary value
problem reached in part (a). Then show how it follows from the substitutions

made in part (@) that
' 2 A (1) _
u(r,t) =2ug |1 — % =+ - 2} (—n—)—e‘”z”z’“ sinnz(r-11.
Figure 3: Problem statement

Solution

The heat PDE in spherical coordinates, assuming no dependency on ¢ nor on 0 is given

by
u, = kVau 1)
1
= k; (ru),,
Where 1 < 7 <2 and t > 0. With the boundary conditions
ul,t)=0
u (2, O) = Uy
And initial conditions
u(r,0)=0

3.1 Part (a)

1
Let v (r,t) = ru(r,t). Hence v; = ru; and - (ru) = %vrr. Substituting these in(1), the PDE
simplifies to

vy = ko, (2)
And the boundary conditions u (1,¢) = 0 becomes v (1,f) = 0 and u(2,0) = 1y becomes

v(2,t) = 2uy. And initial conditions u(r,0) = 0 becomes v(r,0) = 0. Hence the new
boundary conditions

v(l,t)=0
v(2,t) =2uy
And new initial conditions

v(r,00=0



Now let s = r — 1. Since g =1, then the PDE becomes v; = kv,,. When ¥ =1, then s =0
and the boundary conditions v (1,t) = 0 becomes v (0,t) = 0 and the boundary conditions
v(2,t) = 2ug becomes v (1,t) = 2uy. And initial conditions do not change. Hence the new
problem is to solve for v (s, t) in

0 = kg (3)
v(1,t)=0
v(1,t) =2uy
v(s,0)=0

With 0 <s<1andt?>0.

3.2 Part (b)

The PDE (3) in part(a) is now the same as result of problem 2 section 40. Hence we can
use that solution for (3) which gives

v(s,t) =2uy|x + E i ﬂe‘”znzkt sin (n7s)
’ 0 n& on

Replacing s by r —1 in the above gives

o (r, b) = 2ug [(r -1+ %2 %ﬂznzkt sin (7 (r - 1))]

But v (r,t) = ru(r,t), hence u (r,t) = ; and therefore

(r-1)

+ % f} %e-ﬂzﬂzkf sin (n7 (r — 1))]

n=1

u(r,t) = 2ug [

= 2uy [(1 - %) + % i ﬂe‘”znzkt sin (n7 (r — 1))]

n
n=1
Which is the result required.



4 Section 42, Problem 4

4. A bar, with its lateral surface insuiated, is initially at temperature zero, and its ends
x = 0 and x = c¢are kept at that temperature. Because of internally generated heat,
the temperatures in the bar satisfy the differential equation

ut(x7t):kuxx(X,l)+LI(xaz) (O<X<C,t>0).

Use the method of variation of parameters to derive the temperature formula
2w nmx
u(x,t) = . zl: L) sin — v

where 1,(t) denotes the iterated integrals

t 2, 2 C
L) =/ exp{ nr (t*r)} / q(x, r)sinﬂ?—dxdr n=1,2,..).
0 0

Suggestion: Write

= 2 [ . nmx
g{x,t) = Zb,,(t) sin ? where b, (t) = A /0 q(x, )sin - ax.

n=1

Figure 4: Problem statement

Solution

Using method of eigenfunction expansion (or method of variation of parameters as the
book calls it), we start by assuming the solution to the PDE u; = ku,, + g (x, t) is given by

u(x,t) = Z a, (t) @, (x) (1)

Where @, (x) are the eigenfunctions assoc1ated with the homogeneous PDE u; = ku,, with
the homogeneous boundary conditions # (0,#) = 0 and u (c,t) = 0. But we solved this
homogeneous PDE before. It has eigenvalues and corresponding eigenfunctions

2
Anz(%n) n=1,2,3,

®,, (x) = sin (\/A_nx)

Substituting (1) into the original PDE u; = kuxx + g (x, t) results in

Zan(t)q) (x) = k Zan(t)q) (x) + g (x, 1)

Z a, () P, (x) =k E a, (£) @y (x) + ¢ (x, 1)
n=1 n=1

But from the Sturm-Liouville ODE, we know that @,/ (x) + A,,®,, (x) = 0. Hence @,/ (x) =
-A,,@,, (x) and the above reduces to

D@ ()P, (x) = =k Y a, () 1, P, (x) + g (%, £) (2)
n=1 n=1
Since the eigenfunctions @, (x) are complete, we can expand g (x, ) using them. Therefore

q (x/ t) = 2 bn (t) q)n (X)
n=1

Substituting the above back in (2) gives

2a ) D, (x) ——kZan(t)A @, (x)+2b ) D, (x)

n=1
Since @,, (x) are never zero, we can 51mp11fy the above to

ay (t) = —kay () Ay + by (1)
ay (£) + ka, () Ay = by, (£)
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The above is first order ODE in I, (¢). It is linear ODE. The integrating factor is y =

el KAt = okt Multiplying the above ODE by this integrating factor gives

d
= (an () ek/\nt) =b, () ot
Integrating both sides

t
a, (f) Kt = f b, (v) Mitdr
0

t
a, () = f b, (1) e tMlt-0)dr
0

Now that we found 4,, (), we substitute it back into (1) which gives

00 t
NEAEDD ( fo b, (1) e_kA"(t_T)dT) @, (x)
n=1

(3)

What is left is to find b, (t). Since g (x,t) = Z:’:l b, (t) @, (x), then by orthogonality we

obtain

[(ano,wdr= [ 30,000, @d
0

0 n=1

=Y 0.0 [ @, @, (ax
n=1 0

=pb Cqﬂ d
m(t>f0 2 (x)dx

= by, (t)%

Hence
2 C
bn(t):zf g6, £ D, (x) dx
0

Substituting this back into (3) gives

1 (x, b) = f] f ' k2 ( fo "0 (6, 1) Dy, (1) dx) dT) D, (x)

C

t C
( f ¢ KAnt=0) ( f 4 (x,7) ®,, (x) dx) dT) O, (x)
0 0

L,(t) = fot e KAn(t=1) (j:q(x, 7) D, (x) dx) dt

If we let

Then (4) becomes
2 oo
u(x,t) = E Z L, (£) @, (x)
n=1
Since ®,, (x) = sin (%x) then the above is
2 & nm
H==N1,(t)sin[—
0 (x, 1) C; n()sm( - x)

Which is what required to show.

(4)
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5 Section 42, Problem 5

5. Bywriting ¢ = 1, k= 1, and g(x, r} = x p(¢) in the solution found in Problem 4, obtain
the solution already found in Problem 1.

Figure 5: Problem statement

Solution

The solution in problem 4 above us

(x, 1) = — ZI (t) sm(n(jT ) (1)

t g nm
— —kA,(t—-1) :
L, () fo e (jo‘ g (x, T)sin ( . x) dx) dt

2
And A, = (?) .Letc=1,k=1and q(x,t) = xp(t), then the above becomes

L, () = fot e (t=7) (j(;l xp (1) sin (n7x) dx) dt

Substituting this in (1), using ¢ =1, then (1) becomes

1
=2 ~nPr(t=1) in dx |drt|sin
u(x,t) Z(f (j; xp (7) sin (nmx) x) ’L’)S (n7tx)
1
=2 2 (t=1) sin dx|dt|sin 2
E(LP(T)E (j; x sin (n7x) x) T) (nmx) (2)

1
But £ xsin (nmx)dx can now be integrated by parts. Let u = x,dv = sin(nmx), hence

du=1,0=-

Where

cos(nmx)

and therefore

1 1 1 1
f x sin (nmx) dx = —— [x cos (nrcx)](l) + —f cos (nmx) dx
0 nrt nm Jy

1
1 Tsi

= -——cos(nm) + — Ml

nm nm

1 " _
=——1(-1) + [sin (n77)]

nm n2m?
onm

Substituting this back in (2) gives

) n+1
u(x, ) =2 Z (ftP(T ~ntn(t) ((_i)n )df) sin (nmx)
n+1
= E D sin (n7x) (ftp(’[) e‘”znz(t_f)df)
0

Which is the solution for problem 1.




6 Section 42, Problem 8

12

DIV Ta

8./ Using a series of the form

(o9
uCe, 1) = Ao®) + Y Ay(t) cos =

n=1

and the expansion (see Example 1 in Sec. 8)

o0
G e (-1
o — > cos
3 b4 . n c
n=

nTx

0O <x <o),

solve the following temperature problem for a slab 0 < x < ¢ with insulated faces:

u (x, £) = ko (x, t) + ax? O <x<c,t >O),
u.(0,1) =0, v (er)i= 0 (5 0) =0

where a is a constant. Thus, show that

1) =ac? t+4c2 - (D" 1—ex _n2n2kt cos 2
ulx, 1) = ac 3wtk n4 p e c |

n=1

Figure 6: Problem statement

Solution

The PDE to solve is

Uy = Kty + ax?

With boundary conditions

u, (0,t) =0

u,(c,t)=0
And initial conditions

u(x,00=0

Using method of eigenfunction expansion, we start by assuming the solution to the PDE

u; = ki, + ax? is given by

wf = Y a, (0D, ()
n=0

(1)

Where @, (x) are the eigenfunctions associated with the homogeneous PDE u; = ku,, with
the homogeneous boundary conditions u, (0,f) = 0 and u, (c,t) = 0. But we solved this

homogeneous PDE before. It has eigenvalues and corresponding eigenfunctions

A():O
q)o(.X') =1
n?m?
An:—z 1’121,2,3,"'
C

D, (x) = cos (nTnx)

Substituting (1) into the original PDE u; = ku,, + ax? results in
& 00 82 00
E Zoan ) D, (x) = kﬁ Zoan () D, (x) + ax*
n= n=

P, (0, () = k Y0, (OO (1) + a2
n=0

n=0
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But from the Sturm-Liouville ODE, we know that @, (x) + A, ®,, (x) = 0. Hence @, (x) =
-A,,®,, (x) and the above reduces to

Z ay () D, (x) = -k Z a, (£) A, Dy, (x) + ax* (2)
7’120 n:O
Since the eigenfunctions @, (x) are complete, we can expand ax? using them. Therefore

ax? = i b, (x) D, (x)
n=0

Substituting the above back in (2) gives

i ay () ®, (x) = -k i ay (£) A, @y (x) + i by (x) @y, (x)
n=0 n=0 n=0

Since @,, (x) are never zero, we can simplify the above to
ay (t) = —kay (£) Ay + by, (x)
ay () + ka, () Ay = by (¥)
The above is first order ODE in I, (). It is linear ODE. The integrating factor is y =

ol FAudt — gkt Multiplying the above ODE by this integrating factor gives

d
= (an () ekA,,t) =b,(x) ohAnt

Integrating both sides

t
a, () &t = b (x) f Kty
0

ay (t) = by (x) fo t e M0 (3)

What is left is to find b, (x). Since ax? = Zzozo b, (x) ®, (x), and from example 1 section 8,
we found that

2
C
b =a—
0 (%) a3
4c? (-1)"
bn(x)za?T 7’121,2,3,"'

Hence when n = 0, then (3) becomes (since Ay = 0)
 t
H=a f d
ag(t) =a 3 J, T
ac?

= —t
3
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When 7 > 0 then (3) becomes

2 n?
(-1)" 4ac? fte—k(n—n)z(t Ddr
n? w? J,
2 nmy\2 t nm\2
(=1)” 4ac” )ffek(T) dt
2 0
27t
(1) 4ac? oty [ &)
2 2 ° 2
KT,

nrt 2
_ ()" 4ac? )

e

PR 2
_(-1)"4ac?1-e (%)t
= nz 7_[2 kn2;-[2

C

_ 1)" 4ac* (1_ k(ﬂ)zt)

Pr—y

Now that we found a,, (), we substitute it back into (1) which gives

wh = a0 )+ Y 4 (), ()
n=1

u(x ) = a_czt + i ﬂ% (1 - e_k<n7n)2t) cos (Ex)

3 A nt knt c

c2 4ac (- 1) k(T nm
S i)
_ t 402 & ( 1)" —k(”T”)Zt nm
I Yo R

Which is the result required to show.



Section 43, Problem 1

15

f]:.'EVThelfaces and edges x=0and x =x (0 < y <) of a square plate 0<x<#,0<y=<n
™ are msulated: The edges y=0and y=m 0<x <) are kept at temperatures 0 and
J(x), respectively. Let u(x, y) denote steady temperatures in the plate and derive the

expression

o)
ux,y) = Aoy + Z A, sinh ny cos nx,

n=1

where

Ay = —!— / 7Tf (x)dx and A, = 2 / ”f(x) cosnx d
72 [, "7 msinhnx o e ax
n=12..).

Find u(x, y) when f(x) = uy, where ug is a constant,

Figure 7: Problem statement

Solution

»
|

u(e, ™) = f(z)

ug(0,y) =0 Viu =0 Uy (m,y) =

'
8

u(z,0) =0 T

Figure 8: PDE and boundary conditions

Let u (x, y) =Xx)Y (y) The PDE becomes

X"Y+Y'X=0

X// ‘YII
—_ = —— = —/\
X Y
Hence the eigenvalue problem is
X"+AX=0
X" (0)=0
X' (m)=0
And the ODE for Y (y) is
Y”"-AY =0

We start by solving (1) to find the eigenvalues and eigenfunctions.

Case A < 0 The solution is

X = Acosh (\/jx) + Bsinh (\/qx)
X’ = AV-Asinh (ﬂx) + BV=A cosh (ﬂx)

(1)
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At x = 0 the above becomes
0=BV-A

Hence B = 0 and the solution becomes

X = Acosh (V—/\x)

X’ = AV-Asinh (V—/\x)
At x = 1t the above gives

0 = AV=Asinh (ﬂn)

For nontrivial solution sinh (\/—/\n) = 0 but this is not possible since sinh is zero only
when its argument is zero and this is not the case here. Hence A < 0 is not eigenvalue.

Case A = 0 The solution is

X=Ax+B
X' =A
At x = 0 the above becomes
0=A
Hence the solution becomes
X =B
X' =0
At x = 1 the above gives
0=0

Therefore A = 0 is eigenvalue with Xj (x) = 1.

Case A > 0 The solution is

X = Acos (\/Xx) + Bsin (\/Xx)
X’ = —AVAsin (\/Xx) + BV cos (\/Xx)

At x = 0 the above becomes
0=BVA

Hence B = 0 and the solution becomes

X = Acos (\/Xx)
X’ = —AVAsin (\/Xx)

At x = 1 the above gives
0= -AVAsin (\/Xn)
For nontrivial solution
sin (\/Xn) =0
VAin=nn = n=1,23,-
A, = n?
And the corresponding eigenfunctions X, (x) = cos (nx). Therefore in summary we have

eigenvalue eigenfunction
AO =0 1
A, =n? n=1,23, cos(nx)
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Hence the Y (y) ode becomes

Y'"-A,Y=0

Y” -n?Y =0
The solution to the above is, when n =0

Yo = Aoy + By
When y = 0 the above gives 0 = By. Hence Y = Apy.

When 1 > 0
Y, (y) = B, cosh (ny) + A, sinh (ny)
When y = 0 the above gives 0 = B,, Hence

Y, (y) = A, sinh (ny)

Hence the fundamental solution is

u (x, y) =X,Y,

And the general solution is the superposition of these solutions
u(x,y) = AXoYo + D, A,Y, X,
Therefore "~
u (x, y) = Ay + i A, sinh (ny) cos (nx) (A)
What is left is to determine Ay and A,,. A”:}l/ = 7t the above gives
f(x)=Agm+ i A, sinh (n7) cos (nx)
n=1

Multiplying both sides by cos (mx) and integrating gives
f F () cos (mx) dx = f At cos (mx) dx + f 2 A, sinh (n77) cos (nx) cos (mx) dx (1)

fonf(x)dxsznAondx

fnf(x)dx — Ay
0
1 7T
A= | @ @

For m =0, (1) becomes

For m > 0, (1) becomes

f f (x) cos (mx) dx = f Z A,, sinh (n71) cos (nx) cos (mx) dx

f f (x) cos (mx) dx = A,, sinh (mmn) f cos? (nx) dx
0 0
= A,, sinh (mm) g
Hence
f F (%) cos (nx) dx 3)
When f (x) = uy a constant, then (2) becomes

1 7T
AO = — f Z/lodx
™ Jo

Up

~ msinh (rm

Tt



And (3) becomes

2 T
A, =———
"= smb () fo ug cos (nx) dx
2ug [sin (nx) ]n

~ Tsinh (nm) n
=0

Hence the solution (A) becomes

0

u (x,y) = uo%

18

This shows the final solution changes linearly in y. When y = 0 then u (x,0) = 0 and when

y = 7, then u (x, ™) = uy.
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8 Section 44, Problem 2

POPEpS -

‘t % Let the faces of a plate in the shape of a wedge 0 < p < a,0 < ¢ < « in the first quads

— rant (Fig 41) be insulated. Find the steady temperatures u(p, ¢) in the plate when u = ()
onthetworays¢ =0, =a(0 < p < a) andu = f(¢)onthearcp=a(0 < ¢ < a).
Assume that f is piecewise smooth and that u is bounded.

00 nm/e

2 o
Answer: u(p, ¢) = ; E (g) sin @/ f@) sin A dy.
0

a
n=1 &

FIGURE 41

Figure 9: Problem statement

Solution

The PDE V?2u (p, qb) = 0 in polar coordinates is
1 1

Upp + Eup + ?”@P =0

For 0 < p <aand 0 < ¢ < a. With boundary conditions
u (p, O) =0
u (p,a) =0

u(a,9) = £(9)

And since u is bounded, then we have an extra condition u (0, (p) < o0,
Let u (p, qb) =R (p) ) (qb) Substituting into the above PDE gives

1 1
R'® + —R'® + — "R =0
P p

R// + 1R/ + 1 (D//

R pR p2d
(D// 3 ZR/’ + R’ 3 A
o \PRTPR)T

Where A is the separation constant. The above gives the boundary values problem to solve
for A

Q7"+ AD =0 1)
®0)=0
O(a)=0
And
ZR_” + R_l =1
PRTPR™
p?R” + pR’—=AR =0 (2)
We start with (1) to find A then use the result to solve (2). The ODE (1) we solved before,



it has the eigenvalues
2
nm
/\n:(—) n=1,23,--
a

And corresponding eigenfunctions

D, ((j)) = sin (%—((t))

20

(3)

Now (2) can be solved. This is a Euler ODE. Using R (p) = p" and substituting into (2)

gives
2
pzm(m—l)pm 2+pmpm 1_(%) pm =0
nm\2
m(m-1)p™ +mp (;) p" =0
nm\2
m (m 1)+m—(— =0
2
(2
a
Hence
nm
m=+t—
a

Therefore the solution to (2) is

Ry (P) = Anp% + Bnp%

—nT7

We immediately reject the solution p « since this blows up at origin where p — 0. Hence

the above becomes

R, (P) = Anp%n

(4)

Now that we found @, ((p) and R, (p), then we use superposition to obtain the general

solution

(p.) = R (o) 2, ()
= i Anp% sin (%—(qb)

n=1
Atp=a,u (a, qf)) =f ((p), hence the above becomes

£(0) = gAna% sin ()

By orthogonality we obtain

Laf(¢)sin( ) f ZA aa sm(a(i))sin(n;n(f))d(f)
— Ayas fo " in? 2 (22g) do

mi oy

—A g —

Solving for A,, from the above gives

AnzéaT 0 (qb)sin(n—n(p)dqb

a
Substituting the above in (5) gives the final solution

(o) = 3 (2% (0] ) ()

nr

25 (0 () [ e ()

(4)
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9 Section 49, Problem 2

2.\ Solve the boundary value problem
. w(x, 1) = kg (x, £) (~w <x<mit=>0),

u(—m,t) = u(m,t), U (=70, 1) = Uy (T, 1), u(x,0) = fx).

The solution u(x, t) represents, for example, temperatures in an .insx-llatgd wire of l'ength
2.7 that is bent into a unit circle and has a given temperature distribution along it. For

convenience, the wire is thought of as being cut at one point and laid on the x axis
bc?tween X = —m and x = 7. The variable x then measures the distance along the
wire, starting at the point x = —z; and the points x = —z and x = 7 denote the same
point on the circle. The first two boundary conditions in the problem state that the
temperatures and the flux must be the same for each of those values of x. This problem

was of considerable interest to Fourier himself, and the wire has come to be known ag
Fourier’s ring.

o0
Answer: u(x, t) = Ay + Z e_”zk’(A,, cosnx + B, sinnx),

n=1

where

1 m
Ay = Zf[” f(x)dx

and

1 L
A,,:;[nf(x)cosnxdx, Bn—_';/_ f @) sinnx dx =12 .

2 ST USSR e 4 P

Figure 10: Problem statement

Solution

Uy = kit
With -7t < x < 7,t > 0 and periodic boundary conditions
u(-m,t)=u(n,t)
Uy (=7, t) = uy (11, t)
And initial conditions
u(x,0) = f(x)
Normal process of separation of variables leads to eigenvalue problem
X"+AX=0 (1)
X (-m) = X(m)
X' (-n) = X' ()
And the time ODE
T"+ kAT =0 (2)

We start by solving (1) to find the eigenvalues and eigenfunctions.

Case A <0

Solution is

X (x) = Acosh (ﬂx) + Bsinh (\/jx)
X (x) = AV-Asinh (\/Ix) + BV-A cosh (\/jx)
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The boundary conditions X (—7t) = X (77) results in (using the fact that cosh is even and
sinh is odd)

A cosh (\/371) + Bsinh (\/371) = A cosh (\/371) — Bsinh (\/371)
Bsinh (ﬂn) = —Bsinh (ﬂn)
Bsinh (V=17) = 0 (3)

The boundary conditions X’ (—7t) = X’ (1) results in (using the fact that cosh is even and
sinh is odd)

AV=Asinh (\/371) + BV=A cosh (\/371) = —AV-Asinh (\/371) + BV-A cosh (\/371)
AV=Asinh (\/371) = —AV-Asinh (\/371)
Asinh (ﬂn) =0 (4)
So we obtain (3,4) equations, here they are again
Bsinh (ﬂn) =0
Asinh (ﬂn) =0

There are two possibility, either sinh (\/371) =0 or sinh (\/37'() # 0. If sinh (\/371) #0
then this leads to trivial solution, as it implies that both A = 0 and B = 0. On the other
hand, if sinh (\/37’() = 0 then this implies that V=Am = 0 since sinh is only zero when its
argument is zero which is not the case here. This implies that A < 0 is not possible.

Case A =0

The solution now becomes X (x) = Ax + B. Satisfying the boundary conditions X (-7) =
X (m) gives

An+B=-An+B
2An =0
A=0
Hence the solution becomes
X(x)=B
X' =0

Satisfying the boundary conditions X’ (—7) = X’ (1) gives 0 = 0. Hence A = 0 is possible
eigenvalue, with corresponding eigenfunction as constant, say 1.

Case A >0

Solution is

X (x) = Acos (\/Xx) + Bsin (\/Xx)
X (x) = ~AVA sin (\/Xx) + BV cos (\/Xx)

The boundary conditions X (-=7) = X (71) results in (using the fact that cos is even and sin
is odd)

Acos (\/Xn) + Bsin (\/Xn) = Acos (\/Xn) — Bsin (\/Xn)
Bsin (\/ch) = —Bsin (\/Kn)
Bsin (\/Kn) =0 (5)

The boundary conditions X’ (=) = X’ (71) results in (using the fact that cosh is even and
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sinh is odd)

~ AV sin (VAr) + BVA cos (Vi) = AV sin (VAr) + BV cos (Vin)
—~AVsin (\/Kn) = AVAsin (\/Xn)
Asin (\/Kn) =0 (6)
So we obtain (5,6) equations, here they are again
Bsin (ﬁn) =0
Asin (\/Xn) =0

There are two possibility, either sin (\/XT() = 0 or sin (\/XT() # 0. If sin (\/XTC) # 0 then
this leads to trivial solution, as it implies that both A =0 and B = 0. If sin (\/XT() = 0 then

this implies that \/Xn =nmn wheren =1,2,3,---. Hence A > 0 is possible with eigenvalues
and corresponding eigenfunctions given by

A, =n? n=1,273,-
X, (x) = A,, cos (nx) + B,, sin (nx)

Now that we solved the eigenvalue problem (1), we use the eigenvalues found to solve the
time ODE (2)

T+ kA, T =0
When A = 0, this becomes T’ = 0 or Ty (¢) is constant. When A > 0 the solution is
T, (t) = ¢~ kAnt

12
=eknt

Hence the fundamental solution is
uy (x, 1) = X, (x) T, (£)
And by superposition, the general solution is
u(x, 1) = AgXo (¥) To (£) + 3, (A, cos (nx) + B, sin (nx)) et

n=1

But X, (x) =1 and Ty (t) is constant. Hence the above simplifies to

u(x,) = Ag+ 3, (A, cos (nx) + B, sin (nx)) e ¥t
n=1

What is left is to find Ay, A,,, B,,. At t = 0 the above gives

fx)=Ag+ i A, cos (nx) + B, sin (nx) (7)
n=1

For n = 0, by orthogonality we obtain

f_nf(x)dx: f_ﬂ Agdx

[ Fede= a0

1 7T
Ay = ﬂf_ () dx

For n > 0. We start by multiplying both sides of (7) by cos (mx) and integrating both sides.
This gives

j:nf(x)cos(mx)dx: fn

Tt

= f: A, f i cos (nx) cos (mx) dx + i B, f i sin (nx) cos (mx) dx
n=1

-7 n=1 -7

(i A,, cos (nx) cos (mx) + B, sin (nx) cos (mx)) dx

n=1

But f " sin (nx) cos (mx)dx = 0 for all n,m. And f " cos (nx) cos (mx)dx = f " cos? (mx) dx
—Tt =TT =Tt
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and zero for all other nn # m. Hence the above simplifies to

f ’ f (x) cos (mx) dx = A, f " cos? (mx) dx

= AT
Therefore

A, = % f z F () cos (nx) dx

To find B,, we do the same, but now we multiply both sides of (7) by sin (mx) and this
leads to

f i f (x) sin (mx) dx = f i (i A, cos (nx) sin (mx) + B,, sin (nx) sin (mx)) dx
-n -1t \n=1

= Anno()in( )d+oannin()in( )d
ngl fCS?’l.X'S mx)ax Z fS nx)s mx)dax

-7 n=1 -7

But f " cos (nx) sin (mx)dx = 0 for all n,m. And f " sin (nx) sin (mx) dx = f " sin? (mx) dx
=T =T =T

and zero for all other 7 # m. Hence the above simplifies to

f " F(¥)sin (mx)dx = B,, f " sin? () dx
=B,

Therefore
1 T
B, = — f F () sin (1) dx
Y —Tt
This completes the solution. The final solution is

u(x,t) = Ay + E (A, cos (nx) + B, sin (nx)) e ¥t

n=1
= % f;f(x) dx + ge_ant [(% fn f (x) cos (nx) dx) cos (nx) + (% fn f (x) sin (nx) dx

=Tt =Tt

) sin (nx)]
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