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1 Section 27, Problem 8

8. Suppose that temperatures v in a solid hemispherer < 1,0 < 6 < w/2 are independent
of the spherical coordinate ¢, so that u = u(r, 6), and that the base of the hemisphere
is insulated (Fig. 23). Use transformation (13), Sec. 25, which relates spherical and
cylindrical coordinates, to show that

FIGURE 23

Thus show that u must satisfy the boundary condition
wfr 5) =0
Figure 1: Problem statement
Solution

The cylindrical and spherical coordinates are defined as given in the textbook figures
shown below

? P(p, b, 2)

FIGURE 16

Figure 2: Cylinderical coordinates

P(r, ¢, 0)

IFIGURE 17

Figure 3: Spherical coordinates



The relation between these is given by (13) in the book

z=rcosB 1)
p=rsin0 (2)
=09 (3)

To obtain the required formula, we will use the chain rule. Since in spherical we have
u = u(r,0) and in cylindrical we have u = u (p, Z), then by chain rule

du 8u&p Ju dz
20 8p&9 9296

But from (2) j—g = rcos 6 and from (1) (9—9 = —rsin 6, hence the above becomes

gg (9 (rcos9)+8—( —rsin 0)
But 7 cos 0 = z and —rsin 0 = p, hence the above simplifies to
du &u du
20 “9p Poz )
Which is the result required to show. Now we need to show that j—g evaluated at boundary
=1,0 = Z is zero. But 6 = > implies that z = 0, since z = r cos 6. Hence (4) now reduces
to
du du
90~ Pas (4)

. du . . ..
Since 0 = g, then a—: is the directional derivative normal to the base surface. But we are

told it is insulated. This implies that % = 0, since by definition this is what insulated

Ju
means. Therefore %6 = OQatr=1,0= wh1ch is what we are asked to show.



2 Section 28, Problem 1

| | A stretched string, with its ends fixed at the points 0 and 2¢ on the x axis, han.gs at rest
under its own weight. The y axis is directed vertically upward. Point out how it follows
{tum the nonhomogeneous wave equation (6), Sec. 28, that the static displacements
y(x) of points on the string must satisfy the differential equation

5 H
ayica=ig Colmhiry

on the interval 0 < x < 2¢, in addition to the boundary conditions
y© =0 yQ2c)=0.

I3y solving this boundary value problem, show that the string hangs in the parabolic

nre
2112 ng
gl Gt Ot O =<lxi="7¢c)
x=c) T (y+2a2 (

and that the depth of the vertex of the arc varies directly with ¢? and é and inversely
with H.

Figure 4: Problem statement

Eq (6) in section 28 is
ytt (x/ t) = ﬂzyxx (.X', t) - g

At static displacement, by definition, there is no time dependency, hence y; = 0 and the
above becomes

0=0a%y,(x,t)—g
Therefore now this becomes an ODE instead of a PDE since it does not depend on time,
and we can write the above as

a?y"’ (x) =g (1)
The boundary conditions v (0,¢) = 0 and y (2x,t) = 0 now become y(0) = 0,y (2x) = 0.
Now we need to solve (1) with these boundary conditions. This is an boundary value ODE.

g
" (x) = &
y )=
The RHS is constant. The solution to the homogeneous ODE y” =0 is i, = Ax + B. Let
the particular solution be y, = C3x?, then Yp = 2C3x and y, = 2C3. Substituting this in
the above ODE gives

_ 8
g
Cy= =2
37 p2

Hence y, (x) = %xz. Therefore the general solution is

Y=Yntlyp
8 2
=Ax+ B+ =x 2
Y (2)
Now we will use the boundary conditions to find A, B above. At x = 0, (2) becomes
0=B
Hence solution (2) reduces to

8
y(x) = Ax + 2_112x2 (3)



At x = 2c, the second boundary condition gives

0=2cA+ % (4c2)

_-g (4c2)

2a%2 2c
_ 8¢

Hence the solution (3) becomes

(4)
To get the result needed, we can manipulate this more as follows. From (4)
2a%y = gx? — 2gcx
=g (x2 — Zcx)
= g (x —c)* - gc?
Hence

g (x — ¢)* = 202y + gc?

22
(x—c)zz—ay+c2

242 2
(5
g 2a

. H
Now since a? = 5 then the above becomes

We see now that y is directly proportional to 6 and ¢® and inversely proportional to H.



3 Section 28, Problem 5

5.\ A strand of wire 1 ft long, stretched between the origin and the point 1 on the x axis,
weighs 0.032Ib (8g = 0.032, g = 32 ft/s?) and H = 101b. At the instantt = O,Athe strand
lies along the x axis but has a velocity of 1 ft/s in the direction of tl.le y axis, perhz'xps
because the supports were in motion and were brought to rest at that instant. Assuming
that no external forces act along the wire, state why the displacements y(x, t) should
satisfy this boundary value problem:

o, B = 10Ty 00, 1) O =iz =< IN=10),
y©0,8) =yA,y=0, yx0=0  yE0=L1

Figure 5: Problem statement

solution

The wave PDE in 1D is given by

i (x, 1) = azyxx (x, 1) (1)
Where
H
a? = —
o
Where H is the tension in the strand and 6 is the mass per unit length of the strand. But
weight = (mass) g. hence 0 = waght. We are given that weight = 0.032 Ib, and that g = 32
ft/s?. This implies that
5= 0032 1
© 321000
Hence
10
(12 = = 104
1000
Therefore (1) becomes
i (x, 1) = 104yxx (x, ) (2)

Since at t = 0 we are told that strand lies along the x — axis, then y (x,0) = 0 and problem
says 1; (x,0) = 1. For boundary conditions, since strand fixed at x = 0 and x =1, then this
implies v (0,f) = 0 and y (1,¢) = 0. Therefore the PDE is

Yy (x, 1) = 10%y,, (3, 1) 0<x<1,t>0

y(x,0) =0
yt(xlo) =1
y(O,t) =0

y(1,t)=0



4 Section 30, Problem 3

i S mmttm e —m eas b aaaa asva v

f
|

ring is initially at the origin and is then moved along the v axis (Fig. 27) so that y = [(1)
when x = 0 and ¢ = 0, where f is a prescribed continuous function and f(0) = 0, We
assume that the steing is initially at rest on the v axis; thus vy, i) - Oasy = oo The
boundary value problem for y(x, ) is
Yur(x, 1) = 0% yex (%, 1) (x> 0,1 >0),
Y0, 0) =0, (e 0) =0 (x 2 0),
>
y©0,8) = f(® (¢ = 0).
g
1 (-
[
R . 1
at x
0
VIGURE 27

(a) Apply the first two of these boundary conditions to the general soh‘ltion (Sec. 30)
y(x, ) = ¢(x +at) + ¥ (x —at) ‘
of the one-dimensional wave equation to show that there is a constant C such that
0t) =€ and Px)=—-C (x = 0),
Then apply the third boundary condition y(0, £) = f(¢) to show that

ven=f(E)-c @20

where C is the same constant. . :
(h) With the aid of the results in part (a), derive the solution

0 when x > at,
y(x, 1) = f(t e f) when x < at.
a

Note that the part of the string to the right of the point x = at on the x axis I8

unaffected by the movement of the ring prior to time ¢, as shown in Fig. 27.

Figure 6: Problem statement

41 Parta

Applying the first initial conditions v (x,0) = O to the solution
y(x,t) = (x+at)+ ¢ (x—at)
Gives
0= () +p X
But y; = a¢’ — ay’. Hence the second initial conditions at t = 0 gives
0 =a¢’ (x)—ay’ (x)
Taking derivative of (2) and multiplying the resulting equation by a gives
0 =ag¢’ (x) + ay’ (x)
Adding (3,2A) gives
2a¢’ (x) =0
P (x)=0

e ; ;
13.) Let y(x,t) represent transverse displacements in a long stretched string one end of
which is attached to a ring that can slide along the y axis. The other end is so far out
on the positive x axis that it may be considered to be infinitely far from the origin, ‘The

(1)

(2)

(3)

(2A)



Therefore

Px)=C (4)
Where C is an arbitrary constant. Substituting the above result back in (2) gives

0=C+¢y(x)

) =-C (5)

From (4,5) we see that

p(x)=C

P () =-C

Now applying boundary condition y (0,t) = f (t) to (1) gives
f(®) = ¢ (at) + ¢ (-at)
But a4 is the speed of the wave given by a = % ort= g. Hence the above becomes

() =o@+yn
Y= f(2)-o@

Since ¢ (x) = C from equation (4), then the final result is obtained

X
pe=f(3)-C  xz0 (©)
4.2 Partb
Since the part to the right of x = at is unaffected by the movement of the right, then
y(x,t)=0 x > at (1)

So now we need to find the solution for x < at and x > 0. From

y(x,t) =@ (x +at) + P (x —at)

—(x—at)
a

And using (6) in part (a), we see that ¢ (x —at) = f(

becomes

) — C. Therefore the above

y(x,t):qb(x+at)+f(ﬂ)—C

a

But also from part (a) ¢ (x + at) = C. Hence the above simplifies to

y(x,t):c+f(_(xT_at))—C

:f(—x+at)
:f(t—%) x < at (2)

Combining (1) and (2) shows that

0 x > at

y(x't):{f(t—g) x < at



5 Section 30, Problem 4

1. Use the solution obtained in Problem 3 to show that if the ring at the left-hand end of
{hie string in that problem is moved according to the function

= {sin Tl when =t

0 when il
then
0 when x <a(t —1)orx = at,
YO(u sin[n([ - f)] when a(t —1) < x < at.
a

Observe that the ring is lifted up 1 unit and then returned to the origin, where it
remains after time ¢ = 1. The expression for y(x, 1) here shows that when ¢ = 1, the
string coincides with the x axis except on an interval of length @, where it forms one
arch of o sine curve (Fig, 28). Furthermore, as ( increases, the arch moves to the right
with speed a

Y| @>1)

o4y AR

a(z-1) at g

FIGURE 28

Figure 7: Problem statement

This requires just substitution of the function f (f) given into the solution found above

which is
0 x> at
(-x/t = X B
yh {f(t—;) x < at @)
But

_ | sinmt 0<t<1
f(f)—{ 0 o1 (2)

Substituting (2) into (1) gives, after replacing each t in (2) by ¢ - g the result needed

_ 0 x> at
v { sin(r(t-2))  a(t-1)<x<at



6 Section 31, Problem 2

10

ﬁ? Consider the partial differential equation
Ayyx + Byy + Cyu =0 (A#0,C Al
where A, B, and C are constants, and assume thatitis hyperbolic, sothat B> —4AC >

(a) Use the transformation

to obtain the new differential equation
(A+ Bo + Co)yu + [2A+ B@ + B) + 2CaBly + (A+ Bp + CF*)yw = 0:
(b) Show that when « and g have the values

L mpeye B
i 7 el 2C :

respectively, the differential equation in part (@) reduces to y,, = 0.

(¢) Conclude from the result in part (b) that the general solution of the original d
ferential equation is '

¥ = ¢(x + aot) + ¥r(x + fot),

where ¢ and 1 are arbitrary functions that are twice differentiable. Then show ho!
the general solution (7), Sec. 30, of the wave equation A

—a* Y+ yu =0

follows as a special case.

U=, v =x+ Bt (o4

Figure 8: Problem Statement

6.1 Part a
We want to do the transformation from y (x,t) to y (1, v). Therefore

Py _ oy dyde
dx Jdudx Jvox

But % =1 and % =1, hence the above becomes
dy _dy 9y
ox Ju ' do
And
%y 9 (dy
_9 (ﬁ N ﬂ)
dx\du Jdv
_99y 99y
dxdu dxdv
A’y du J*ydv\ (d*ydv %y du
- (a_a_ + a_a_) + (a_a_ + a_a_)
But % =1, % =1, hence the above becomes
%y d¥y _d*y d%y
ox2  Ju2 T ouvw " dv?
Yox = Yuu T Yoo + Zyuv
Similarly,

dy _dydu dydo
ot Judt Jvot

(1)



11

J d
But a—? =a and (9—1: = 3, hence the above becomes

And

Py _ 9 (%
o2 It \ ot

I
—z(m*ﬁ%)

_d (dy dy
‘“at(&u) ﬁ&t(&v)

8u2 9t duv ot dv?2 dt  Jduv It

J J
But a—btl —qand £ = B, hence the above becomes

at
92 92 92 92 92
(9_15 - ( (%LZ +‘88uZ) ‘B(‘B(QUZ T 81,52)
02 02 &2 02
8_uz+a‘8c9_u]z/1+‘32802 5(%5]
Yit = Y + B0 + 20BY o (2)
And to obtain y,,, then starting from above result obtained
dy o"y
ot~ “ou ’8 80

Now taking partial derivative w.r.t. x gives

d (dy i 8]/ dy

ax\at) ~ ax\"au ’880
_d (dy d (dy
_a8_x(8_u)+’88_x(&_v)

_ &Zy&u_i_&zy&v . 8_2]/@4_82]/&1
~N\ou29x T duvox Jdv? dx  Juv dx

But g—z =1, Z—Z =1, hence the above becomes
d (dy %y 82y 82]/ 82y
Jx (&t) a(&uz " o tF 902 " Juv
Yt = AYyy t+ (a + ﬁ) You T ,Byvv 3)

Substituting (1,2,3) into Ay,, + By + Cy = 0 results in

A (yuu + Yoo + Zyuv) +B (ayuu + ((x + ﬁ) You + ﬁyw) +C (azyuu + B2y + 2aﬁyuv) =0
Or
Yuu (A +Ba + Ca?) + y,, (24 + B(a + ) + 2Cap) + yor (A + Bp + C2) = 0

6.2 Partb

Looking at the term above for y,,, we see it is A + Ba + Ca? which has the root



12

Hence if we pick the root @ = ap = —% + %\/B2 —4AC then the term y,, vanishes.
Similarly for the term multiplied by v,, which is A + BB + CS2. The root is
B

1
_ . \B_A
P=—2c*t3c Vb ¢

And if we pick g =y = —% - %VBZ —4AC then the term v, vanishes also in the PDE
obtained in part (a), and now the PDE becomes
Yuo (2A+ B(a + ) + 2Cap) =

Substituting the above selected roots ¢, fy into the above in place of ¢, § since these are
the values we picked, then the above becomes

B 1
yuv(2A+B(——+— B _4AC- - — B _2AC )+2Caﬁ)

2C 2C 2C 2C
2

2B
Yuo ZA—T +2C0(ﬁ =0

And again replacing aff above with «ay, fy results in

2A - 2B2+2C B + 1 B2 —4AC B 1 B2-4AC||=0
Yuo 2C 2C " 2C 2C~ 2C -
2A - 2B° +2C B o (B2 4Ac) =0
Yuo 2C ac? T a2 -
2A - 2BZ+ Bz ! (32 4Ac) =0
Yuo 2C "2c T 2C -
2B2 B2 B2
2A—-—+ —+—-2A]|=
y“”( 2c " 2¢ T 2C 0
BZ
E;‘/uv
Since B # 0, C # 0 then the above simplifies to
Yo = 0
6.3 Partc
Since
Yo = 0
Or
Jd (dy
—(X]1=0
dv (z%t)
The implies that
dy
J_o
u @)

Integrating w.r.t. u gives

y(w,0) = [ ®@du+ )
Where 1 (v) is the constant of integration which is a function.
Let fCD (u)du = ¢ (u) then the above can be written as
y(u,0)=¢ )+ (v)
Or in terms of x, t, since u = x + at and v = x + Bt the above solution becomes

y(xt) = ¢ (x+ab) + 1 (x+ )
Where ¢, 1 are arbitrary functions twice differentiable. When « = +4, = —a, then the
above becomes

y(x,t) = (x+at)+ ¢ (x—at)
Which is the general solution (7) in section (30). QED
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7 Section 31, Problem 3

‘3‘ Show that under ;he transformation
=8, v=ox+ pt (8 # 0%
the given differential equation in Problem 2 becomes
AYuu + QAa + BB)yuy + (Ad® + Bap + CB*)yu = 0.

Then show that this new equation reduces to
(@) Yuu + Yoo = 0 when the original equation is elliptic (B> — 4AC < 0) and Y

/) 2A
* T AACE B0 40 (JARO= B

(b) yux = 0 when the original equation is parabolic (B> — 4AC = 0) and
o — =B =24

Figure 9: Problem Statement

The differential equation in problem 2 is
AYyx + By + Cyy =0
We want to do the transformation from y (x, f) to y (4, v) with
u==Xx
v=ax+pt

Now
dy dydu N dy dv
dx  Jdudx Jvdx

Jd d
But = =1 and 2 = @, hence the above becomes

ox ox
dy dy dy
ox  au %0
And
oy _dyou dyde
ot Jdudt Jvdt
But % =0and % = 3, hence the above becomes
o _ o
Jt _ﬁBv
Therefore
%y 9 (dy
dx2  dx \dx
_d (dy  dy
=ox\ou* “a—v)
3 d (dy d (dy
= 5) rag (a_)

(Pyou Py, (Pyow Py
“\Ju? dx  Jduvdx “ 0v?2 dx  Jdou dx

%y %y %y J%y
= (w+a—)+a(aﬁ+—)

Juv Jdou
Py Py L,y Py
- Ju? +a8uv ta dv? +a8vu

Yex = Yuu + azyvv + zayuv (1)



Similarly,

a2 9x\ ot

_ 9 (g%
'%@%)

p(Zyte P
Jdv? dt  dou Jt
92
A2
Y = ,Bzyvv
And to obtain y,,, then starting from above result obtained
9y 58y
dt dv

Now taking partial derivative w.r.t. x gives

d (dy\ d [ dy
a(z)-x(%)

(82]/ Jv %y &u)

Py 9 (&y)

02 dx * ou dou dx
= 4/a 82y 82y
(902 Juu
Yt = aBYoo + BYou
Substituting (1,2,3) into Ay,, + By + Cy;; = 0 results in
A (Y + 0% + 20Y) + B (@B + Bou) + C (B*Yo0) = 0
Or
AYyu + Yo (2400 + BB) + o (Aa? + Bap + Cp2) = 0
Which is what asked to show.

71 Parta
. 2A .
Setting o = m B = m n (4) above results in

-B 2A
A wu T Yuo Al —|+B|—|| + o Aa2+Ba +C 2) =
/ / ( (V4AC—B2) (V4AC—B2)) Y ( P P )

AYyy + Yo (A? + Bap + Cp2) =

And the above now becomes

oA g+ ) ()< )
e 4AC - B2 VaAC - B2/ \W1AC - B2 4AC - B?
A + Yo ( AB? ~ 2B%A s 4CA?
AAC-B2 4AC-B?  4AC-B?
AB? —2B?A + 4CA?
( 4AC - B2
Ayuu + AyUU (_B2 " 4CA
4AC - B2
Ay + AYoo

(yuu + yvv)

AYyy + Yo

Therefore, since A # 0 the above becomes

Yuu + Yo =0

14

(2)

(3)

(4)

=0



7.2 Partb
Setting @ = —B, f = 2A in (4) above results in
AYyu + Yo (<2AB + 2AB) + Yy, (AB? — 2B2A + 4CA?)
AYyy + Yo (ACA? - B2A)
AYuus = Ay (B>~ 4CA)
But B? — 4CA = 0, therefore the above becomes

yuu:O

0
0
0

15



	Section 27, Problem 8
	Section 28, Problem 1
	Section 28, Problem 5  
	Section 30, Problem 3
	Part a
	Part b

	Section 30, Problem 4
	Section 31, Problem 2
	Part  a
	Part b
	Part c

	Section 31, Problem 3
	Part a
	Part b


