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1 Section 27, Problem 8

8. Suppose that temperatures  in a solid hemisphere » < 1,0 < 6 < /2 are independent
of the spherical coordinate ¢, so that u = u(r, 8), and that the base of the hemisphere
is insulated (Fig. 23). Use transformation (13), Sec. 25, which relates spherical and
cylindrical coordinates, to show that

l|||'
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FIGURE 23

Thus show that u must satisfy the boundary condition

Figure 1: Problem statement

Solution

The cylindrical and spherical coordinates are defined as given in the textbook figures shown
below

? P(p, b, 2)

FIGURE 16

Figure 2: Cylinderical coordinates



IIGURE 17

Figure 3: Spherical coordinates

The relation between these is given by (13) in the book

z=rcos0 1)
p=rsin0 (2)
=09 3)

To obtain the required formula, we will use the chain rule. Since in spherical we have
u = u(r,0) and in cylindrical we have u = u (p, z) then by chain rule

du 8u8p Ju dz
26 &p&@ 9296

But from (2) % = rcos 6 and from (1) % = —rsin 6, hence the above becomes

Ju du du
50 = 8 (rcos9)+—( rsin 0)
But 7 cos 0 = z and —-rsin 0 = p, hence the above simplifies to
du &u du
70 8p Pz )
Which is the result required to show. Now we need to show that (9_2 evaluated at boundary
r=1,0 = = is zero. But 6 = E implies that z = 0, since z = r cos 0. Hence (4) now reduces
to
du Ju
96~ Pas (4)
Since 0 = g, then % is the directional derivative normal to the base surface. But we are

d
told it is insulated. This implies that —u = 0, since by definition this is what insulated means.

Therefore :;—Z =Q0atr=1,0= wh1ch is what we are asked to show.



2 Section 28, Problem 1

|| A stretched string, with its ends fixed at the points 0 and 2¢ on the x axis, hangs at rest
under its own weight. The y axis is directed vertically upward. Point out how it follows
{yom the nonhomogeneous wave equation (6), Sec. 28, that the static displacements
y(x) of points on the string must satisfy the differential equation

O H
ay'(x) =g G

on the interval 0 < x < 2¢, in addition to the boundary conditions
y(©) =0, y(2c) = 0.

I}y solving this boundary value problem, show that the string hangs in the parabolic

ure

2 2
(x—c)2=2—a—(y+gc) O=x=<29
g

2a?

and that the depth of the vertex of the arc varies directly with ¢? and é and inversely
with H.

Figure 4: Problem statement

Eq (6) in section 28 is

]/tt (xl t) = ﬂzyxx (x/ t) - g

At static displacement, by definition, there is no time dependency, hence y;; = 0 and the
above becomes

0= azyxx (x/ t) -8

Therefore now this becomes an ODE instead of a PDE since it does not depend on time,
and we can write the above as

%y’ (x) =g (1)
The boundary conditions y (0, t) = 0 and y (2x,t) = 0 now become vy (0) = 0,y (2x) = 0. Now
we need to solve (1) with these boundary conditions. This is an boundary value ODE.

_ 8
y// (x) — a_z
The RHS is constant. The solution to the homogeneous ODE y” = 0 is y;, = Ax + B. Let
the particular solution be y, = C3x?, then Yp = 2C3x and y, = 2C3. Substituting this in the
above ODE gives

_ 8
=8

242



Hence y, (x) = x Therefore the general solution is

Y=Yntlyp
8 .2
=Ax+B+ @x (2)
Now we will use the boundary conditions to find A, B above. At x = 0, (2) becomes
0=B
Hence solution (2) reduces to

y(x) = Ax + %xz

At x = 2c, the second boundary condition gives

3)

0= 2cA+2g (4c)

_ s ()
2a%2 2c
_ &€

Hence the solution (3) becomes

(4)
To get the result needed, we can manipulate this more as follows. From (4)
2a%y = gx? — 2gcx
=g (x2 - ZCx)
= g(x—0)* - gc?

Hence
gx—c) = 2a2y + gc2
(-0 =20,
8

2a gc
8 (y ' 26!2)



Now since a? = % then the above becomes
8 ooy 5S
2a 242

We see now that y is directly proportional to 6 and ¢? and inversely proportional to H.



3 Section 28, Problem 5

5.\ A strand of wire 1 ft long, stretched between the origin and the point 1 on the x axis,
weighs 0.0321b (8g = 0.032,g = 32 ft/s?) and H = 101b. At the instant? = 0,‘the strand
lies along the x axis but has a velocity of 1 ft/s in the direction of the y axis, perhz'aps
because the supports were in motion and were brought to rest at that instant. Assuming ;
that no external forces act along the wire, state why the displacements y(x, ¢) should
satisfy this boundary value problem:

il 0= 100y, 1) (0= i =l O
y(0,0)=p@,ey=0, " yE0=0"" yx0=1

Figure 5: Problem statement

solution

The wave PDE in 1D is given by

Yu (x, 1) = azyxx (x, ) (1)
Where
H
2 _ 1
TS
Where H is the tension in the strand and 0 is the mass per unit length of the strand. But
weight = (mass) g. hence 6 = ek We are given that weight = 0.032 lb, and that g = 32
ft/s?. This implies that
5= 0032 1
© 32 1000
Hence
10
Elz = = 104
1000
Therefore (1) becomes
Y (6, 1) = 10%yx (x, ) )

Since at t = 0 we are told that strand lies along the x — axis, then y (x,0) = 0 and problem
says 1; (x,0) = 1. For boundary conditions, since strand fixed at x = 0 and x = 1, then this



implies y (0,f) = 0 and y (1, ¢) = 0. Therefore the PDE is
Yy (x, 1) = 10%y,, (x, 1) O<x<1,t>0
y(x,0)=0
yr(x,0) =1
y(0,t)=0
y(1,t)=0



4 Section 30, Problem 3

,“”‘h—‘ A o s B
3. i

3 &i&c}};}(i; Q[t;iiizsigtatrgnsszse dlspljacements in a long stretched string one end of
b S ;:tlgt E,H c;m shdeT along the v axis. The other end is so far out
b v ‘ .1‘ma)'/. e considered to be infinitely far from the origin, ‘Ihe
Whgjn : ;) ’y al the origin andilslhcn moved along the y axis (Fig. 27) so that y o [(()
”W”n‘l\‘ S ‘lulm‘ r (twhcu fis a prcsrrilml continuous function and £(0) « (. We
at the string is initially at rest on the x axis; thus v(x,4) —» 0 a8 & —+ o0, The

boundary value problem for y(x, ) is
Yu(X, 1) = ﬂz)/xx(X, £)
)’(x» 0)‘__—0’ yt(x’o) =0 (x Zo)v
y0,0) = f® (t =0).

(x>0,t>0),

1 (@

[t

| ,
(@] mat X

FIGURE 27

(a) Apply the first two of these boundary conditions to the general soh‘ltion (Sec. 30)

y(x, t) = ¢(x +at) + ¥(x —at)

of the one-dimensional wave equation to show that there is a constant C such that

o(x)=C and Px)=-C x = 0),
Then apply the third boundary condition y(0, £) = f(¢) to show that
ven=f(E)-c =0,

where C is the same constant.
(b) With the aid of the results in part (a), derive the solution

0 when x > at,
y(x, t) = f(t_z) when x < at.

art of the string to the right of the point x = at on the x axis is

Note that the p
o time ¢, as shown in Fig. 27.

unaffected by the movement of the ring prior t

Figure 6: Problem statement



41 Parta
Applying the first initial conditions y (x,0) = 0 to the solution
y(x,t) = (x+at)+ ¢ (x—at)
Gives
0=¢@)+¢PH)
But y; = ap’ — ay’. Hence the second initial conditions at t = 0 gives
0 =ag¢’ (x)—ay’ (x)
Taking derivative of (2) and multiplying the resulting equation by a gives
0 =ag’ (x) + ay’ (x)

Adding (3,2A) gives

2a¢’ (x) =0

¢ (x) =0
Therefore
p(x)=C

Where C is an arbitrary constant. Substituting the above result back in (2) gives

0=C+¢y(x)

P ) =-C

From (4,5) we see that

¢(x)=C

P () =-C
Now applying boundary condition y (0,t) = f (t) to (1) gives

f(®) = ¢ (at) + ¢ (-at)

But 4 is the speed of the wave given by a = % ort= g. Hence the above becomes
X
() =o@+yn
X
Y= f(2)-o@

Since ¢ (x) = C from equation (4), then the final result is obtained

yb(—x):f(g)—c x>0

4.2 Partb

Since the part to the right of x = at is unaffected by the movement of the right, then

y(x,t)=0 x > at

10

(1)

(2)

(3)

(2A)

(4)

(5)

(6)

(1)
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So now we need to find the solution for x < at and x > 0. From
y(x,t) = (x+at)+ ¢ (x—at)
. . _ —(x-at))
And using (6) in part (a), we see that i (x —at) = f(—a ) C. Therefore the above

becomes

Y (x, 1) :¢(x+at)+f(ﬂ)—C

a

But also from part (a) ¢ (x + at) = C. Hence the above simplifies to

-x +at
-f(=)
:f(t—g) x < at (2)
Combining (1) and (2) shows that
0 X > at

y(x,t) :{
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5 Section 30, Problem 4

1. Use the solution obtained in Problem 3 to show that if the ring at the left-hand end of
the string in that problem is moved according to the function

sin mt when 0 <t <1,
f(t):{o when f—il

then
0 when x <a(t —1)orx = at,
(e 1) - : X
y ) sin|mw(t — — when alt —1) < x <at.
a
Observe that the ring is lifted up 1 unit and then returned to the origin, where il
remains after time ¢ = 1. The expression for y(x,t) here shows that when ¢ = 1, the
string coincides with the x axis except on an interval of length a, where it forms one
arch of a sine curve (Fig. 28). Furthermore, as ¢ increases, the arch moves to the right

with speed a

y|@>1)

a1 R - O

a(t—1) at X

FIGURE 28

Figure 7: Problem statement

Thls requires just substitution of the function f (t) given into the solution found above which
is

0 x > at

y(x't):{f(t—g) x < at @)

But

_ | sinmt 0<t<l1
f(t)—{ 0 ‘51 (2)

Substituting (2) into (1) gives, after replacing each f in (2) by ¢ - g the result needed

0 x> at
/t = X u
y 0ol {sm(n(t_;)) a(t-1) <x < at



6 Section 31, Problem 2

13

ﬁj Consider the partial differential equation
~

Aysx + By + Cyuy =0 (A0,C #(

where A, B, and C are constants, and assume that itis hyperbolic, so that B> — 4 AC >
(a) Use the transformation

U= -, v=x+ Bt (o #

to obtain the new differential equation

(b) Show that when o and g have the values

2 ey Ll e
i G SR G )

respectively, the differential equation in part (a) reduces to y,, = 0.

(¢) Conclude from the result in part (b) that the general solution of the original d
ferential equation is :

y = ¢ + aot) + ¥(x + ob),

where ¢ and 1 are arbitrary functions that are twice differentiable. Then show h
the general solution (7), Sec. 30, of the wave equation

{

_az}’xx +y: =0

follows as a special case.

(A+ Ba + Co?)yu + [2A+ B(@ + B) + 2CaBlyuw + (A+ B + CB) yuu = 0o

Figure 8: Problem Statement

6.1 Part a

We want to do the transformation from y (x, t) to y (1, v). Therefore
o oo
dx  Jdudx Jdvdx
du

d
But Fe 1 and a—z =1, hence the above becomes

W _, %

ox  ou 9o



14

And
Py d (dy
ax2 Ox (&x)
dJ (&y . Qy)
~ox\du " v
_d 8y d dy
" Jx du &x%
*ydu 9%y dv *ydv 9%y du
(&u-’- ot a—a—) + (ﬁ&_ + a_a_)
But % =1, % =1, hence the above becomes
%y J%y 282]/ s %y
dx2  Ju? T Jduv IV
Yox = Yuu T Yoo T Zyuv (1)
Similarly,

dy _ dydu L% dy dv
It Judt Juot

J J
But 8—? =a and a—j = B, hence the above becomes

W _ oY
ot~ You ‘880
And
Py _ 2 (3
2 I\ dt
B
= 2t \“ou 'go"U
d (dy d (dy
&t(&u)+ﬁ&t(z9 )

_ (d*ydu ) 9%y dv .\ d%y dv ) 9%y du
~ N2 9t T quwoar) T P\902 9t T Guo ot

d d
But a—L; =« and a—zt] = B, hence the above becomes

%y Ay  J%y %y %y
Fra —“(“W+ﬁ—)+ﬁ(ﬁa—zﬂ+“—)

Juv uv
%y %y d%y d%y
_ 2 2
AP +a‘88uv il dv? +aﬁo”uv

Yu = azyuu + ﬁzyvv + 20¢ﬁ}/uv (2)
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And to obtain y,;, then starting from above result obtained
dy _ Y 9
— =qg—= + ==
ot~ “ou P dv

Now taking partial derivative w.r.t. x gives

d (dy d 8y
ox\at) ~ ox 81,1 ’B&v

d (dy dy
8x(&u) ‘B8x(&0)

_ (d*ydu N 9%y dv N 9%y dv N d%y Ju
-a Ju? dx  Juv dx 002 dx  Juv dx
Ju dv

But == 1, — - = =1, hence the above becomes
d (dy P’y Py Py Py
Jx (81‘) a(&uz S th 902 " Juv
Yar = QY + (0( + ﬁ) You + ﬁyvv (3)

Substituting (1,2,3) into Ay,, + By + Cyy = 0 results in

A (yuu + Yoo + 2y,w) +B (ozyuu + (a + ﬁ) You + ﬁyw) +C (azyuu + B2y + Zaﬁyuv) =0
Or
Yuu (A+Ba+ Ca?) + Y, (2A + B (a + B) +2Cap) + yoo (A + BB+ CB2) = 0

6.2 Partb

Looking at the term above for y,,, we see it is A + Ba + Ca? which has the root

2a 2a

B 1
=-—+—VB2-4A

2C T 2C ¢

Hence if we pick the root a = ay = —% + %\/ B? — 4AC then the term y,,, vanishes. Similarly
for the term multiplied by y,, which is A + BB + CB2. The root is

1
B=-—+-—VB2-4AC

And if we pick f =y = —% - %VBZ —4AC then the term v, vanishes also in the PDE
obtained in part (a), and now the PDE becomes

Yuo (2A+ B (o + B) +2Cap) = 0
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Substituting the above selected roots ay, fy into the above in place of a, § since these are
the values we picked, then the above becomes

yuv(2A+B(——+— Bz -4A ———2—\/B2 4AC )+2Caﬁ):

2C 2C
2B2
Yuv ZA—E +2C0(ﬁ =0

And again replacing af above with g, fy results in

2A - 2Bz+2C B + ! B2 —4AC B ! B2 -4AC|| =0
Yuo 2C 2C " 2C 2C  2C -
2B? B? 1
2A-—+2C — (B2 -4AQ)|| =
y“v( 2c " (4C2 el )) 0
232 B> 1
Z 4~ (Rr2_ —
YVuo (2A R TR (B2-4AC)| =0
2A 2BZ+B2 +B2 2A1=0
Yuo 2c T2c T ac -
BZ
zyuv =0
Since B # 0, C # 0 then the above simplifies to
Yo = 0
6.3 Part c
Since
Yo = 0
Or
d (dy
0
Jv (8u)
The implies that
dy
2 —®
5 (1)

Integrating w.r.t. u gives
y(u,v) = fCD(u)du+1,b(v)
Where 1 (v) is the constant of integration which is a function.

Let f(D (u)du = ¢ (u) then the above can be written as

y(u,0) =¢ W)+ ()
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Or in terms of x,t, since u = x + at and v = x + f§t the above solution becomes

y(x,t)=¢(x+at)+ I,D(x+ﬁt)
Where ¢, ¢ are arbitrary functions twice differentiable. When a = +a, = —a, then the
above becomes

y(x,t) = (x+at)+ ¢ (x—at)
Which is the general solution (7) in section (30). QED



7 Section 31, Problem 3
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A

;31 Show that under the transformation
u=x, v=ax+ Bt
the given differential equation in Problem 2 becomes
Ay + 2Ac + BB)yu, + (Ad® + Bap + CB%)y, = 0.

Then show that this new equation reduces to
(@) Yuu + yvu = 0 when the original equation is elliptic (B*> — 4AC < 0) and

4p 24
O RO 0) S A= B

(b) yuu = O when the original equation is parabolic (B> — 4AC = 0) and
a=-B, B=12A

Figure 9: Problem Statement

The differential equation in problem 2 is
AYyx + By + Cyy = 0
We want to do the transformation from y (x, t) to y (1, v) with
U=x
v =ax+pt
Now
oy _vou ayie
dx Judx Jdvdx

J d
But a—i =1and £ = a, hence the above becomes

Ix
dy _dy Iy
ox ~u 90
And
dy _ dydu N dy dv
ot Jdudt Jdvdt
But % =0 and % = B, hence the above becomes

dy dy
2 P
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Therefore

ax2 ~ Jx\ox

_ 9 (dy dy
-~ dx o"u+ac90)

_ d &y)+ d (o"y)

dx \d dx \dv
(e ) (75 * o)
- (52 +agt)+afast+22)
G raga g eagy

Yex = Yuu + azyvv + zayuv (1)

?y 9 Qy)

Similarly,

2~ 9x\ ot

_ 9 (9%
—5@%)

p(Zeze, Zu

Py 9 (83/)

v dt  Jdou It
%y
=p (ﬁﬁ)
Yit = BYoo (2)

And to obtain y,;, then starting from above result obtained

dy _ dy
ot ﬁo"v

Now taking partial derivative w.r.t. x gives

9y _ 9 (9

dx\ot]  ox ‘B&v
_p 82y8v 9%y du
8vz&x dou dx

_ (92]/ 82]/
=ple 802 dou

Yxt = aﬁyvv + ﬁyvu (3)
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Substituting (1,2,3) into Ay,, + By + Cy;; = 0 results in
A (yuu + a%yy, + Zayw) +B (aﬁyw + ﬁyw) +C (ﬁzyw) =0
Or
AYyu + Yo (2400 + B) + o (Aa? + Bap + Cp2) = 0 (4)
Which is what asked to show.

7.1 Parta

- g= 2A
vaac—p?’ V4AC-B2

Setting o = in (4) above results in

-B 2A
Ay + Yo |24 ———= | + B[ —=—=] + v, (Ac? + Bap + CB?) = 0
Juu Y ( (\/4AC—B2) (\/4AC—B2)) ¥oo B+ C)

AYy + Yoo (Aa® + Bap + Cp2) = 0

And the above now becomes

o4 )+ ) () * () =
4AC - B2 V4AC - B2/ \W4AC - B2 4AC - B2

Ay +y ( AB? ~ 2B%A N 4CA? 0

u T JW\4AC-B2 4AC-B2  4AC- B2
Ay +y (AB2 —2B?A + 4CA? _0

Uuu 00 4AC _ BZ

Ay, + Ay (—32 +4CA\ _

uu 00 4AC _ BZ

AYyy + AYy =0
A (Y + Yoo) = 0

Therefore, since A # 0 the above becomes

Yuu T Yoo = 0

7.2 Partb
Setting @ = —B, f = 2A in (4) above results in
AYyy + Yup (~2AB + 2AB) + y,,, (AB? - 2B2A + 4CA?)
AYyy + Yo (4CA2 - B2A)
AYuu = Aywo (B* ~ 4CA)
But B2 — 4CA = 0, therefore the above becomes
Yuu =0

0
0
0
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