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1 Section 27, Problem 8

Figure 1: Problem statement

Solution

The cylindrical and spherical coordinates are defined as given in the textbook figures shown
below

Figure 2: Cylinderical coordinates
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Figure 3: Spherical coordinates

The relation between these is given by (13) in the book

𝑧 = 𝑟 cos𝜃 (1)

𝜌 = 𝑟 sin𝜃 (2)

𝜙 = 𝜙 (3)

To obtain the required formula, we will use the chain rule. Since in spherical we have
𝑢 ≡ 𝑢 (𝑟, 𝜃) and in cylindrical we have 𝑢 ≡ 𝑢 �𝜌, 𝑧�, then by chain rule

𝜕𝑢
𝜕𝜃

=
𝜕𝑢
𝜕𝜌

𝜕𝜌
𝜕𝜃

+
𝜕𝑢
𝜕𝑧

𝜕𝑧
𝜕𝜃

But from (2)
𝜕𝜌
𝜕𝜃 = 𝑟 cos𝜃 and from (1)

𝜕𝑧
𝜕𝜃 = −𝑟 sin𝜃, hence the above becomes

𝜕𝑢
𝜕𝜃

=
𝜕𝑢
𝜕𝜌

(𝑟 cos𝜃) +
𝜕𝑢
𝜕𝑧

(−𝑟 sin𝜃)

But 𝑟 cos𝜃 = 𝑧 and −𝑟 sin𝜃 = 𝜌, hence the above simplifies to

𝜕𝑢
𝜕𝜃

= 𝑧
𝜕𝑢
𝜕𝜌

− 𝜌
𝜕𝑢
𝜕𝑧

(4)

Which is the result required to show. Now we need to show that
𝜕𝑢
𝜕𝜃 evaluated at boundary

𝑟 = 1, 𝜃 = 𝜋
2 is zero. But 𝜃 = 𝜋

2 implies that 𝑧 = 0, since 𝑧 = 𝑟 cos𝜃. Hence (4) now reduces
to

𝜕𝑢
𝜕𝜃

= −𝜌
𝜕𝑢
𝜕𝑧

(4)

Since 𝜃 = 𝜋
2 , then

𝜕𝑢
𝜕𝑧 is the directional derivative normal to the base surface. But we are

told it is insulated. This implies that
𝜕𝑢
𝜕𝑧 = 0, since by definition this is what insulated means.

Therefore
𝜕𝑢
𝜕𝜃 = 0 at 𝑟 = 1, 𝜃 =

𝜋
2 , which is what we are asked to show.
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2 Section 28, Problem 1

Figure 4: Problem statement

Eq (6) in section 28 is

𝑦𝑡𝑡 (𝑥, 𝑡) = 𝑎2𝑦𝑥𝑥 (𝑥, 𝑡) − 𝑔
At static displacement, by definition, there is no time dependency, hence 𝑦𝑡𝑡 = 0 and the
above becomes

0 = 𝑎2𝑦𝑥𝑥 (𝑥, 𝑡) − 𝑔
Therefore now this becomes an ODE instead of a PDE since it does not depend on time,
and we can write the above as

𝑎2𝑦′′ (𝑥) = 𝑔 (1)

The boundary conditions 𝑦 (0, 𝑡) = 0 and 𝑦 (2𝑥, 𝑡) = 0 now become 𝑦 (0) = 0, 𝑦 (2𝑥) = 0. Now
we need to solve (1) with these boundary conditions. This is an boundary value ODE.

𝑦′′ (𝑥) =
𝑔
𝑎2

The RHS is constant. The solution to the homogeneous ODE 𝑦′′ = 0 is 𝑦ℎ = 𝐴𝑥 + 𝐵. Let
the particular solution be 𝑦𝑝 = 𝐶3𝑥2, then 𝑦′𝑝 = 2𝐶3𝑥 and 𝑦′′𝑝 = 2𝐶3. Substituting this in the
above ODE gives

2𝐶3 =
𝑔
𝑎2

𝐶3 =
𝑔
2𝑎2



5

Hence 𝑦𝑝 (𝑥) =
𝑔
2𝑎2𝑥

2. Therefore the general solution is

𝑦 = 𝑦ℎ + 𝑦𝑝

= 𝐴𝑥 + 𝐵 +
𝑔
2𝑎2

𝑥2 (2)

Now we will use the boundary conditions to find 𝐴,𝐵 above. At 𝑥 = 0, (2) becomes

0 = 𝐵
Hence solution (2) reduces to

𝑦 (𝑥) = 𝐴𝑥 +
𝑔
2𝑎2

𝑥2 (3)

At 𝑥 = 2𝑐, the second boundary condition gives

0 = 2𝑐𝐴 +
𝑔
2𝑎2

�4𝑐2�

𝐴 =
−𝑔
2𝑎2

�4𝑐2�
2𝑐

=
−𝑔𝑐
𝑎2

Hence the solution (3) becomes

𝑦 =
−𝑔𝑐
𝑎2
𝑥 +

𝑔
2𝑎2

𝑥2

𝑦 =
𝑔𝑥2 − 2𝑔𝑐𝑥

2𝑎2
(4)

To get the result needed, we can manipulate this more as follows. From (4)

2𝑎2𝑦 = 𝑔𝑥2 − 2𝑔𝑐𝑥
= 𝑔 �𝑥2 − 2𝑐𝑥�

= 𝑔 (𝑥 − 𝑐)2 − 𝑔𝑐2

Hence

𝑔 (𝑥 − 𝑐)2 = 2𝑎2𝑦 + 𝑔𝑐2

(𝑥 − 𝑐)2 =
2𝑎2𝑦
𝑔

+ 𝑐2

=
2𝑎2

𝑔 �𝑦 +
𝑔𝑐2

2𝑎2 �
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Now since 𝑎2 = 𝐻
𝛿 then the above becomes

𝑔
2𝑎2

(𝑥 − 𝑐)2 = 𝑦 +
𝑔𝑐2

2𝑎2

𝑦 =
1
2𝑎2

�𝑔 (𝑥 − 𝑐)2 − 𝑔𝑐2�

=
𝑔
2𝐻𝛿

�(𝑥 − 𝑐)2 − 𝑐2�

=
𝛿
𝐻
𝑔
2
�(𝑥 − 𝑐)2 − 𝑐2�

We see now that 𝑦 is directly proportional to 𝛿 and 𝑐2 and inversely proportional to 𝐻.
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3 Section 28, Problem 5

Figure 5: Problem statement

solution

The wave PDE in 1D is given by

𝑦𝑡𝑡 (𝑥, 𝑡) = 𝑎2𝑦𝑥𝑥 (𝑥, 𝑡) (1)

Where

𝑎2 =
𝐻
𝛿

Where 𝐻 is the tension in the strand and 𝛿 is the mass per unit length of the strand. But

𝑤𝑒𝑖𝑔ℎ𝑡 = (𝑚𝑎𝑠𝑠) 𝑔. hence 𝛿 = 𝑤𝑒𝑖𝑔ℎ𝑡
𝑔 . We are given that 𝑤𝑒𝑖𝑔ℎ𝑡 = 0.032 lb, and that 𝑔 = 32

ft/s2. This implies that

𝛿 =
0.032
32

=
1

1000
Hence

𝑎2 =
10
1

1000

= 104

Therefore (1) becomes

𝑦𝑡𝑡 (𝑥, 𝑡) = 104𝑦𝑥𝑥 (𝑥, 𝑡) (2)

Since at 𝑡 = 0 we are told that strand lies along the 𝑥 − 𝑎𝑥𝑖𝑠, then 𝑦 (𝑥, 0) = 0 and problem
says 𝑦𝑡 (𝑥, 0) = 1. For boundary conditions, since strand fixed at 𝑥 = 0 and 𝑥 = 1, then this
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implies 𝑦 (0, 𝑡) = 0 and 𝑦 (1, 𝑡) = 0. Therefore the PDE is

𝑦𝑡𝑡 (𝑥, 𝑡) = 104𝑦𝑥𝑥 (𝑥, 𝑡) 0 < 𝑥 < 1, 𝑡 > 0
𝑦 (𝑥, 0) = 0
𝑦𝑡 (𝑥, 0) = 1
𝑦 (0, 𝑡) = 0
𝑦 (1, 𝑡) = 0
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4 Section 30, Problem 3

Figure 6: Problem statement
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4.1 Part a

Applying the first initial conditions 𝑦 (𝑥, 0) = 0 to the solution

𝑦 (𝑥, 𝑡) = 𝜙 (𝑥 + 𝑎𝑡) + 𝜓 (𝑥 − 𝑎𝑡) (1)

Gives

0 = 𝜙 (𝑥) + 𝜓 (𝑥) (2)

But 𝑦𝑡 = 𝑎𝜙′ − 𝑎𝜓′. Hence the second initial conditions at 𝑡 = 0 gives
0 = 𝑎𝜙′ (𝑥) − 𝑎𝜓′ (𝑥) (3)

Taking derivative of (2) and multiplying the resulting equation by 𝑎 gives
0 = 𝑎𝜙′ (𝑥) + 𝑎𝜓′ (𝑥) (2A)

Adding (3,2A) gives

2𝑎𝜙′ (𝑥) = 0
𝜙′ (𝑥) = 0

Therefore

𝜙 (𝑥) = 𝐶 (4)

Where 𝐶 is an arbitrary constant. Substituting the above result back in (2) gives

0 = 𝐶 + 𝜓 (𝑥)
𝜓 (𝑥) = −𝐶 (5)

From (4,5) we see that

𝜙 (𝑥) = 𝐶
𝜓 (𝑥) = −𝐶

Now applying boundary condition 𝑦 (0, 𝑡) = 𝑓 (𝑡) to (1) gives

𝑓 (𝑡) = 𝜙 (𝑎𝑡) + 𝜓 (−𝑎𝑡)

But 𝑎 is the speed of the wave given by 𝑎 = 𝑥
𝑡 or 𝑡 =

𝑥
𝑎 . Hence the above becomes

𝑓 �
𝑥
𝑎
� = 𝜙 (𝑥) + 𝜓 (−𝑥)

𝜓 (−𝑥) = 𝑓 �
𝑥
𝑎
� − 𝜙 (𝑥)

Since 𝜙 (𝑥) = 𝐶 from equation (4), then the final result is obtained

𝜓 (−𝑥) = 𝑓 �
𝑥
𝑎
� − 𝐶 𝑥 ≥ 0 (6)

4.2 Part b

Since the part to the right of 𝑥 = 𝑎𝑡 is una�ected by the movement of the right, then

𝑦 (𝑥, 𝑡) = 0 𝑥 ≥ 𝑎𝑡 (1)
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So now we need to find the solution for 𝑥 < 𝑎𝑡 and 𝑥 ≥ 0. From
𝑦 (𝑥, 𝑡) = 𝜙 (𝑥 + 𝑎𝑡) + 𝜓 (𝑥 − 𝑎𝑡)

And using (6) in part (a), we see that 𝜓 (𝑥 − 𝑎𝑡) = 𝑓 �−(𝑥−𝑎𝑡)𝑎
� − 𝐶. Therefore the above

becomes

𝑦 (𝑥, 𝑡) = 𝜙 (𝑥 + 𝑎𝑡) + 𝑓 �
− (𝑥 − 𝑎𝑡)

𝑎 � − 𝐶

But also from part (a) 𝜙 (𝑥 + 𝑎𝑡) = 𝐶. Hence the above simplifies to

𝑦 (𝑥, 𝑡) = 𝑐 + 𝑓 �
− (𝑥 − 𝑎𝑡)

𝑎 � − 𝐶

= 𝑓 �
−𝑥 + 𝑎𝑡
𝑎

�

= 𝑓 �𝑡 −
𝑥
𝑎
� 𝑥 < 𝑎𝑡 (2)

Combining (1) and (2) shows that

𝑦 (𝑥, 𝑡) =
⎧⎪⎨
⎪⎩

0 𝑥 ≥ 𝑎𝑡
𝑓 �𝑡 − 𝑥

𝑎
� 𝑥 < 𝑎𝑡
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5 Section 30, Problem 4

Figure 7: Problem statement

This requires just substitution of the function 𝑓 (𝑡) given into the solution found above which
is

𝑦 (𝑥, 𝑡) =
⎧⎪⎨
⎪⎩

0 𝑥 ≥ 𝑎𝑡
𝑓 �𝑡 − 𝑥

𝑎
� 𝑥 < 𝑎𝑡

(1)

But

𝑓 (𝑡) =
⎧⎪⎨
⎪⎩

sin𝜋𝑡 0 ≤ 𝑡 ≤ 1
0 𝑡 > 1

(2)

Substituting (2) into (1) gives, after replacing each 𝑡 in (2) by 𝑡 − 𝑥
𝑎 the result needed

𝑦 (𝑥, 𝑡) =
⎧⎪⎨
⎪⎩

0 𝑥 ≥ 𝑎𝑡
sin �𝜋 �𝑡 − 𝑥

𝑎
�� 𝑎 (𝑡 − 1) < 𝑥 < 𝑎𝑡
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6 Section 31, Problem 2

Figure 8: Problem Statement

6.1 Part a

We want to do the transformation from 𝑦 (𝑥, 𝑡) to 𝑦 (𝑢, 𝑣). Therefore
𝜕𝑦
𝜕𝑥

=
𝜕𝑦
𝜕𝑢

𝜕𝑢
𝜕𝑥

+
𝜕𝑦
𝜕𝑣
𝜕𝑣
𝜕𝑥

But
𝜕𝑢
𝜕𝑥 = 1 and

𝜕𝑣
𝜕𝑥 = 1, hence the above becomes

𝜕𝑦
𝜕𝑥

=
𝜕𝑦
𝜕𝑢

+
𝜕𝑦
𝜕𝑣
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And
𝜕2𝑦
𝜕𝑥2

=
𝜕
𝜕𝑥 �

𝜕𝑦
𝜕𝑥�

=
𝜕
𝜕𝑥 �

𝜕𝑦
𝜕𝑢

+
𝜕𝑦
𝜕𝑣�

=
𝜕
𝜕𝑥

𝜕𝑦
𝜕𝑢

+
𝜕
𝜕𝑥
𝜕𝑦
𝜕𝑣

= �
𝜕2𝑦
𝜕𝑢2

𝜕𝑢
𝜕𝑥

+
𝜕2𝑦
𝜕𝑢𝑣

𝜕𝑣
𝜕𝑥�

+ �
𝜕2𝑦
𝜕𝑣2

𝜕𝑣
𝜕𝑥

+
𝜕2𝑦
𝜕𝑣𝑢

𝜕𝑢
𝜕𝑥�

But
𝜕𝑢
𝜕𝑥 = 1,

𝜕𝑣
𝜕𝑥 = 1, hence the above becomes

𝜕2𝑦
𝜕𝑥2

=
𝜕2𝑦
𝜕𝑢2

+ 2
𝜕2𝑦
𝜕𝑢𝑣

+
𝜕2𝑦
𝜕𝑣2

𝑦𝑥𝑥 = 𝑦𝑢𝑢 + 𝑦𝑣𝑣 + 2𝑦𝑢𝑣 (1)

Similarly,

𝜕𝑦
𝜕𝑡

=
𝜕𝑦
𝜕𝑢

𝜕𝑢
𝜕𝑡

+
𝜕𝑦
𝜕𝑣
𝜕𝑣
𝜕𝑡

But
𝜕𝑢
𝜕𝑡 = 𝛼 and

𝜕𝑣
𝜕𝑡 = 𝛽, hence the above becomes

𝜕𝑦
𝜕𝑡

= 𝛼
𝜕𝑦
𝜕𝑢

+ 𝛽
𝜕𝑦
𝜕𝑣

And

𝜕2𝑦
𝜕𝑡2

=
𝜕
𝜕𝑡 �

𝜕𝑦
𝜕𝑡 �

=
𝜕
𝜕𝑡 �

𝛼
𝜕𝑦
𝜕𝑢

+ 𝛽
𝜕𝑦
𝜕𝑣�

= 𝛼
𝜕
𝜕𝑡 �

𝜕𝑦
𝜕𝑢�

+ 𝛽
𝜕
𝜕𝑡 �

𝜕𝑦
𝜕𝑣�

= 𝛼 �
𝜕2𝑦
𝜕𝑢2

𝜕𝑢
𝜕𝑡

+
𝜕2𝑦
𝜕𝑢𝑣

𝜕𝑣
𝜕𝑡 �

+ 𝛽 �
𝜕2𝑦
𝜕𝑣2

𝜕𝑣
𝜕𝑡

+
𝜕2𝑦
𝜕𝑢𝑣

𝜕𝑢
𝜕𝑡 �

But
𝜕𝑢
𝜕𝑡 = 𝛼 and

𝜕𝑣
𝜕𝑡 = 𝛽, hence the above becomes

𝜕2𝑦
𝜕𝑡2

= 𝛼 �𝛼
𝜕2𝑦
𝜕𝑢2

+ 𝛽
𝜕2𝑦
𝜕𝑢𝑣�

+ 𝛽 �𝛽
𝜕2𝑦
𝜕𝑣2

+ 𝛼
𝜕2𝑦
𝜕𝑢𝑣�

= 𝛼2
𝜕2𝑦
𝜕𝑢2

+ 𝛼𝛽
𝜕2𝑦
𝜕𝑢𝑣

+ 𝛽2
𝜕2𝑦
𝜕𝑣2

+ 𝛼𝛽
𝜕2𝑦
𝜕𝑢𝑣

𝑦𝑡𝑡 = 𝛼2𝑦𝑢𝑢 + 𝛽2𝑦𝑣𝑣 + 2𝛼𝛽𝑦𝑢𝑣 (2)
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And to obtain 𝑦𝑥𝑡, then starting from above result obtained

𝜕𝑦
𝜕𝑡

= 𝛼
𝜕𝑦
𝜕𝑢

+ 𝛽
𝜕𝑦
𝜕𝑣

Now taking partial derivative w.r.t. 𝑥 gives
𝜕
𝜕𝑥 �

𝜕𝑦
𝜕𝑡 �

=
𝜕
𝜕𝑥 �

𝛼
𝜕𝑦
𝜕𝑢

+ 𝛽
𝜕𝑦
𝜕𝑣�

= 𝛼
𝜕
𝜕𝑥 �

𝜕𝑦
𝜕𝑢�

+ 𝛽
𝜕
𝜕𝑥 �

𝜕𝑦
𝜕𝑣�

= 𝛼 �
𝜕2𝑦
𝜕𝑢2

𝜕𝑢
𝜕𝑥

+
𝜕2𝑦
𝜕𝑢𝑣

𝜕𝑣
𝜕𝑥�

+ 𝛽 �
𝜕2𝑦
𝜕𝑣2

𝜕𝑣
𝜕𝑥

+
𝜕2𝑦
𝜕𝑢𝑣

𝜕𝑢
𝜕𝑥�

But
𝜕𝑢
𝜕𝑥 = 1,

𝜕𝑣
𝜕𝑥 = 1, hence the above becomes

𝜕
𝜕𝑥 �

𝜕𝑦
𝜕𝑡 �

= 𝛼 �
𝜕2𝑦
𝜕𝑢2

+
𝜕2𝑦
𝜕𝑢𝑣�

+ 𝛽 �
𝜕2𝑦
𝜕𝑣2

+
𝜕2𝑦
𝜕𝑢𝑣�

𝑦𝑥𝑡 = 𝛼𝑦𝑢𝑢 + �𝛼 + 𝛽� 𝑦𝑣𝑢 + 𝛽𝑦𝑣𝑣 (3)

Substituting (1,2,3) into 𝐴𝑦𝑥𝑥 + 𝐵𝑦𝑥𝑡 + 𝐶𝑦𝑡𝑡 = 0 results in

𝐴�𝑦𝑢𝑢 + 𝑦𝑣𝑣 + 2𝑦𝑢𝑣� + 𝐵 �𝛼𝑦𝑢𝑢 + �𝛼 + 𝛽� 𝑦𝑣𝑢 + 𝛽𝑦𝑣𝑣� + 𝐶 �𝛼2𝑦𝑢𝑢 + 𝛽2𝑦𝑣𝑣 + 2𝛼𝛽𝑦𝑢𝑣� = 0
Or

𝑦𝑢𝑢 �𝐴 + 𝐵𝛼 + 𝐶𝛼2� + 𝑦𝑢𝑣 �2𝐴 + 𝐵 �𝛼 + 𝛽� + 2𝐶𝛼𝛽� + 𝑦𝑣𝑣 �𝐴 + 𝐵𝛽 + 𝐶𝛽2� = 0

6.2 Part b

Looking at the term above for 𝑦𝑢𝑢 we see it is 𝐴 + 𝐵𝛼 + 𝐶𝛼2 which has the root

𝛼 = −
𝑏
2𝑎
±
1
2𝑎
√𝑏2 − 4𝑎𝑐

= −
𝐵
2𝐶

±
1
2𝐶
√𝐵2 − 4𝐴𝐶

Hence if we pick the root 𝛼 = 𝛼0 = −
𝐵
2𝐶+

1
2𝐶√𝐵

2 − 4𝐴𝐶 then the term 𝑦𝑢𝑢 vanishes. Similarly

for the term multiplied by 𝑦𝑣𝑣 which is 𝐴 + 𝐵𝛽 + 𝐶𝛽2. The root is

𝛽 = −
𝐵
2𝐶

±
1
2𝐶
√𝐵2 − 4𝐴𝐶

And if we pick 𝛽 = 𝛽0 = − 𝐵
2𝐶 −

1
2𝐶√𝐵

2 − 4𝐴𝐶 then the term 𝑦𝑣𝑣 vanishes also in the PDE
obtained in part (a), and now the PDE becomes

𝑦𝑢𝑣 �2𝐴 + 𝐵 �𝛼 + 𝛽� + 2𝐶𝛼𝛽� = 0



16

Substituting the above selected roots 𝛼0, 𝛽0 into the above in place of 𝛼, 𝛽 since these are
the values we picked, then the above becomes

𝑦𝑢𝑣 �2𝐴 + 𝐵 �−
𝐵
2𝐶

+
1
2𝐶
√𝐵2 − 4𝐴𝐶 −

𝐵
2𝐶

−
1
2𝐶
√𝐵2 − 4𝐴𝐶� + 2𝐶𝛼𝛽� = 0

𝑦𝑢𝑣 �2𝐴 −
2𝐵2

2𝐶
+ 2𝐶𝛼𝛽� = 0

And again replacing 𝛼𝛽 above with 𝛼0, 𝛽0 results in

𝑦𝑢𝑣 �2𝐴 −
2𝐵2

2𝐶
+ 2𝐶 �−

𝐵
2𝐶

+
1
2𝐶
√𝐵2 − 4𝐴𝐶� �−

𝐵
2𝐶

−
1
2𝐶
√𝐵2 − 4𝐴𝐶�� = 0

𝑦𝑢𝑣 �2𝐴 −
2𝐵2

2𝐶
+ 2𝐶 �

𝐵2

4𝐶2 +
1
4𝐶2 �𝐵

2 − 4𝐴𝐶��� = 0

𝑦𝑢𝑣 �2𝐴 −
2𝐵2

2𝐶
+
𝐵2

2𝐶
+

1
2𝐶

�𝐵2 − 4𝐴𝐶�� = 0

𝑦𝑢𝑣 �2𝐴 −
2𝐵2

2𝐶
+
𝐵2

2𝐶
+
𝐵2

2𝐶
− 2𝐴� = 0

𝐵2

2𝐶
𝑦𝑢𝑣 = 0

Since 𝐵 ≠ 0, 𝐶 ≠ 0 then the above simplifies to

𝑦𝑢𝑣 = 0

6.3 Part c

Since

𝑦𝑢𝑣 = 0
Or

𝜕
𝜕𝑣 �

𝜕𝑦
𝜕𝑢�

= 0

The implies that

𝜕𝑦
𝜕𝑢

= Φ (𝑢)

Integrating w.r.t. 𝑢 gives

𝑦 (𝑢, 𝑣) = �Φ (𝑢) 𝑑𝑢 + 𝜓 (𝑣)

Where 𝜓 (𝑣) is the constant of integration which is a function.

Let ∫Φ (𝑢) 𝑑𝑢 = 𝜙 (𝑢) then the above can be written as

𝑦 (𝑢, 𝑣) = 𝜙 (𝑢) + 𝜓 (𝑣)
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Or in terms of 𝑥, 𝑡, since 𝑢 = 𝑥 + 𝛼𝑡 and 𝑣 = 𝑥 + 𝛽𝑡 the above solution becomes

𝑦 (𝑥, 𝑡) = 𝜙 (𝑥 + 𝛼𝑡) + 𝜓 �𝑥 + 𝛽𝑡�
Where 𝜙,𝜓 are arbitrary functions twice di�erentiable. When 𝛼 = +𝑎, 𝛽 = −𝑎, then the
above becomes

𝑦 (𝑥, 𝑡) = 𝜙 (𝑥 + 𝑎𝑡) + 𝜓 (𝑥 − 𝑎𝑡)
Which is the general solution (7) in section (30). QED
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7 Section 31, Problem 3

Figure 9: Problem Statement

The di�erential equation in problem 2 is

𝐴𝑦𝑥𝑥 + 𝐵𝑦𝑥𝑡 + 𝐶𝑦𝑡𝑡 = 0
We want to do the transformation from 𝑦 (𝑥, 𝑡) to 𝑦 (𝑢, 𝑣) with

𝑢 = 𝑥
𝑣 = 𝛼𝑥 + 𝛽𝑡

Now
𝜕𝑦
𝜕𝑥

=
𝜕𝑦
𝜕𝑢

𝜕𝑢
𝜕𝑥

+
𝜕𝑦
𝜕𝑣
𝜕𝑣
𝜕𝑥

But
𝜕𝑢
𝜕𝑥 = 1 and

𝜕𝑣
𝜕𝑥 = 𝛼, hence the above becomes

𝜕𝑦
𝜕𝑥

=
𝜕𝑦
𝜕𝑢

+ 𝛼
𝜕𝑦
𝜕𝑣

And
𝜕𝑦
𝜕𝑡

=
𝜕𝑦
𝜕𝑢

𝜕𝑢
𝜕𝑡

+
𝜕𝑦
𝜕𝑣
𝜕𝑣
𝜕𝑡

But
𝜕𝑢
𝜕𝑡 = 0 and

𝜕𝑣
𝜕𝑡 = 𝛽, hence the above becomes

𝜕𝑦
𝜕𝑡

= 𝛽
𝜕𝑦
𝜕𝑣
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Therefore
𝜕2𝑦
𝜕𝑥2

=
𝜕
𝜕𝑥 �

𝜕𝑦
𝜕𝑥�

=
𝜕
𝜕𝑥 �

𝜕𝑦
𝜕𝑢

+ 𝛼
𝜕𝑦
𝜕𝑣�

=
𝜕
𝜕𝑥 �

𝜕𝑦
𝜕𝑢�

+ 𝛼
𝜕
𝜕𝑥 �

𝜕𝑦
𝜕𝑣�

= �
𝜕2𝑦
𝜕𝑢2

𝜕𝑢
𝜕𝑥

+
𝜕2𝑦
𝜕𝑢𝑣

𝜕𝑣
𝜕𝑥�

+ 𝛼 �
𝜕2𝑦
𝜕𝑣2

𝜕𝑣
𝜕𝑥

+
𝜕2𝑦
𝜕𝑣𝑢

𝜕𝑢
𝜕𝑥�

= �
𝜕2𝑦
𝜕𝑢2

+ 𝛼
𝜕2𝑦
𝜕𝑢𝑣�

+ 𝛼 �𝛼
𝜕2𝑦
𝜕𝑣2

+
𝜕2𝑦
𝜕𝑣𝑢�

=
𝜕2𝑦
𝜕𝑢2

+ 𝛼
𝜕2𝑦
𝜕𝑢𝑣

+ 𝛼2
𝜕2𝑦
𝜕𝑣2

+ 𝛼
𝜕2𝑦
𝜕𝑣𝑢

𝑦𝑥𝑥 = 𝑦𝑢𝑢 + 𝛼2𝑦𝑣𝑣 + 2𝛼𝑦𝑢𝑣 (1)

Similarly,

𝜕2𝑦
𝜕𝑡2

=
𝜕
𝜕𝑥 �

𝜕𝑦
𝜕𝑡 �

=
𝜕
𝜕𝑥 �

𝛽
𝜕𝑦
𝜕𝑣�

= 𝛽 �
𝜕2𝑦
𝜕𝑣2

𝜕𝑣
𝜕𝑡

+
𝜕2𝑦
𝜕𝑣𝑢

𝜕𝑢
𝜕𝑡 �

= 𝛽 �𝛽
𝜕2𝑦
𝜕𝑣2 �

𝑦𝑡𝑡 = 𝛽2𝑦𝑣𝑣 (2)

And to obtain 𝑦𝑥𝑡, then starting from above result obtained

𝜕𝑦
𝜕𝑡

= 𝛽
𝜕𝑦
𝜕𝑣

Now taking partial derivative w.r.t. 𝑥 gives
𝜕
𝜕𝑥 �

𝜕𝑦
𝜕𝑡 �

=
𝜕
𝜕𝑥 �

𝛽
𝜕𝑦
𝜕𝑣�

= 𝛽 �
𝜕2𝑦
𝜕𝑣2

𝜕𝑣
𝜕𝑥

+
𝜕2𝑦
𝜕𝑣𝑢

𝜕𝑢
𝜕𝑥�

= 𝛽 �𝛼
𝜕2𝑦
𝜕𝑣2

+
𝜕2𝑦
𝜕𝑣𝑢�

𝑦𝑥𝑡 = 𝛼𝛽𝑦𝑣𝑣 + 𝛽𝑦𝑣𝑢 (3)
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Substituting (1,2,3) into 𝐴𝑦𝑥𝑥 + 𝐵𝑦𝑥𝑡 + 𝐶𝑦𝑡𝑡 = 0 results in

𝐴�𝑦𝑢𝑢 + 𝛼2𝑦𝑣𝑣 + 2𝛼𝑦𝑢𝑣� + 𝐵 �𝛼𝛽𝑦𝑣𝑣 + 𝛽𝑦𝑣𝑢� + 𝐶 �𝛽2𝑦𝑣𝑣� = 0
Or

𝐴𝑦𝑢𝑢 + 𝑦𝑢𝑣 �2𝐴𝛼 + 𝐵𝛽� + 𝑦𝑣𝑣 �𝐴𝛼2 + 𝐵𝛼𝛽 + 𝐶𝛽2� = 0 (4)

Which is what asked to show.

7.1 Part a

Setting 𝛼 = −𝐵

√4𝐴𝐶−𝐵2
, 𝛽 = 2𝐴

√4𝐴𝐶−𝐵2
in (4) above results in

𝐴𝑦𝑢𝑢 + 𝑦𝑢𝑣 �2𝐴 �
−𝐵

√4𝐴𝐶 − 𝐵2
� + 𝐵 �

2𝐴

√4𝐴𝐶 − 𝐵2
�� + 𝑦𝑣𝑣 �𝐴𝛼2 + 𝐵𝛼𝛽 + 𝐶𝛽2� = 0

𝐴𝑦𝑢𝑢 + 𝑦𝑣𝑣 �𝐴𝛼2 + 𝐵𝛼𝛽 + 𝐶𝛽2� = 0
And the above now becomes

𝐴𝑦𝑢𝑢 + 𝑦𝑣𝑣

⎛
⎜⎜⎜⎜⎝𝐴 �

−𝐵

√4𝐴𝐶 − 𝐵2
�
2

+ 𝐵 �
−𝐵

√4𝐴𝐶 − 𝐵2
� �

2𝐴

√4𝐴𝐶 − 𝐵2
� + 𝐶 �

2𝐴

√4𝐴𝐶 − 𝐵2
�
2⎞⎟⎟⎟⎟⎠ = 0

𝐴𝑦𝑢𝑢 + 𝑦𝑣𝑣 �
𝐴𝐵2

4𝐴𝐶 − 𝐵2
−

2𝐵2𝐴
4𝐴𝐶 − 𝐵2

+
4𝐶𝐴2

4𝐴𝐶 − 𝐵2 �
= 0

𝐴𝑦𝑢𝑢 + 𝑦𝑣𝑣 �
𝐴𝐵2 − 2𝐵2𝐴 + 4𝐶𝐴2

4𝐴𝐶 − 𝐵2 � = 0

𝐴𝑦𝑢𝑢 + 𝐴𝑦𝑣𝑣 �
−𝐵2 + 4𝐶𝐴
4𝐴𝐶 − 𝐵2 �

= 0

𝐴𝑦𝑢𝑢 + 𝐴𝑦𝑣𝑣 = 0
𝐴 �𝑦𝑢𝑢 + 𝑦𝑣𝑣� = 0

Therefore, since 𝐴 ≠ 0 the above becomes

𝑦𝑢𝑢 + 𝑦𝑣𝑣 = 0

7.2 Part b

Setting 𝛼 = −𝐵, 𝛽 = 2𝐴 in (4) above results in

𝐴𝑦𝑢𝑢 + 𝑦𝑢𝑣 (−2𝐴𝐵 + 2𝐴𝐵) + 𝑦𝑣𝑣 �𝐴𝐵2 − 2𝐵2𝐴 + 4𝐶𝐴2� = 0

𝐴𝑦𝑢𝑢 + 𝑦𝑣𝑣 �4𝐶𝐴2 − 𝐵2𝐴� = 0

𝐴𝑦𝑢𝑢 − 𝐴𝑦𝑣𝑣 �𝐵2 − 4𝐶𝐴� = 0

But 𝐵2 − 4𝐶𝐴 = 0, therefore the above becomes

𝑦𝑢𝑢 = 0
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