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1 Section 20, Problem 1

1ﬂ Show that the function

J

Foh £ 0 when —7 <x <0,
T S when O<x<ux

satisfies all the conditions in the theorem in Sec. 17. Then, with the aid of the Weierstrass
M-test in Sec. 17, verify that the Fourier series

1SS ¢ 2 O~ cos2nx
;‘i‘islﬂx—]—z— m (-*.7{<X<7TJ
n=1
for £, found in Problem 7, Sec. 7, converges uniformly on the interval —m < x < 7, as
the theorem in Sec. 17 tells us. Also, state why this series is differentiable in the interval
—1m <X <, except at the point x = 0, and describe graphically the function that is
represented by the differentiated series for all x.

Figure 1: Problem statement

The function f (x) is

f[x_] :=Piecewise[{{0@, -Pi< x < @}, {Sin[x], @ < x < Pi}}]
Plot[f[x], {x, -Pi, Pi}, PlotStyle - Red, GridLines - Automatic, GridLinesStyle - LightGray,
Ticks -» {Range[-Pi, Pi, 1/2Pi], Automatic}]

Figure 2: Plot of f(x)

The function f (x) is continuous on -7t < x < 7. Also f (-n) = f () = 0. We now need to
show that f’ (x) is piecewise continuous. But

f’(x)={ 0 n<x<0 1)
cos X O<x<m

Therefore f’ (x) exist and is piecewise continuous on -7t < x < 7. From the above, we see
that f (x) meets the 3 conditions in theorem of section 17, hence we know that the Fourier
series of f (x) is absolutely and uniformly convergent. (Here we need to use the M test to
confirm this).



The Fourier series of f (x) is

a 1 2 < cos (2nx)

0 .
2 T2 7'(”2::1 a7 -1

Now, to apply the M test, consider the two series
fn M,

—_—~
— Cos (2nx) «— 1

;1 4n? -1 ';4712—1

To show Fourier series is uniformly convergent to f (x), using the M test, then we need to
show that | fn| < M, for each n. The series M,, qualifies to use for the Weierstrass series,
since each term in it is positive constant and it is convergent series. To show that M,

. . o 1 . 1 o 1 .

is convergent, we can compare it to 3} —- Since each term —— < — and ) — is
. 1 . A .

convergent since any E:’:l = for s > 1 is convergent (we can show this if needed using the

integral test). Hence we can go ahead and use M), series. Now we just need to show that
cos (2nx) 1

4n?2 -1 |~ 4n? -1

For each n. But cos (2nx) <1 for each n. Hence the above is true for each 7 and it follows
that the above Fourier series is indeed uniformly convergent to f (x).

From (1), At x = 0 we have

ﬂ“(o):xli%wz lim Sin_(x)zl

x—0* X

And

/ = 1 = 1 _ =
f- )= lim o, =0

Since f% (0) # f’ (0) then f (x) is not differentiable at x = 0. This is plot of f’ (x) and we
see graphically that due to jump discontinuity, that f’ (x) is not differentiable at x = 0

f(x) - £(0) 0
X

f[x_] :=Piecewise[{{0@, -Pi< x <0}, {Cos[x], @< x<Pi}}]
Plot[f[x], {x, -Pi, Pi}, PlotStyle - Red, GridLines - Automatic, GridLinesStyle - LightGray,
Ticks -» {Range[-Pi, Pi, 1/2Pi], Automatic}]
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Figure 3: Plot of f’(x) shown for one period



Clear[f];
flx_/; -Pi<x<Pi] := Piecewise[{{0, -Pi < x <@}, {Cos[x], @< x<Pi}}]
flx_ /; x>Pi] :=f[x-2Pi];
flx_ /3 x<-Pi] :=f[x+2Pi];
Plot[f[x], {x, -4Pi, 4Pi}, PlotStyle » {Thick, Red}, Mesh - None,
GridLines - Automatic, GridLinesStyle -» LightGray,
Ticks -» {Range[-4Pi, 4Pi, Pi], Automatic},
Exclusions - {x == -3Pi, X == -2Pi, x == -Pi, X == @, x == Pi, X = 2Pi, x == 3Pi},
Mesh - None, ExclusionsStyle - Dashed]
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Figure 4: Plot of f’(x) for all x, shown for 3 periods




2 Section 20, Problem 2

/j‘:Z—j-We know frorﬁ Example 1, Sec. 3, that the series

—

G i cos(2n — 1)x
Dk 1 2n — 1)2

h=
is the Fourier cosine series for the function f(x) = x on the interval 0 < x < . Differ
entiate this series term by term to obtain a representation for the derivative f'(x) = |

on that interval. State why the procedure is reliable here.

Figure 5: Problem statement

Solution

After doing an even extension of f(x) =x on 0 < x < 7 to - < x < 7, we see that f (x)
satisfies the conditions of Theorem section 20 for differentiating the Fourier series term by
term. Since

1. f(x) is continuous on the interval -m < x <7
2. f(-n) = f(n)
3. f’(x) is piecewise continuous on -t < X < T

The only point that f (x) is not differentiable is x = 0 which implies f’ (x) is piecewise
continuous. But that is OK. It is f (x) which must be continuous. Hence differentiating the
series term by term to obtain representation of f (x) on 0 < x < 7 is reliable.



3 Section 20, Problem 5

] 5.} Integrate froms = 0tos = x (—m < x < 7) the Fourier series

17141
ZZ( — sin s

=l

in Example 1, Sec. 19, and the one
0.} 5 ) 1
Z sin(2n — 1)s
) sin( Moy, )s
2n—1
al il

appearing in Sec. 18, In each case, deseribe graphically the function that is represented
by the new series

Figure 6: Problem statement

31 Partl

00 n+1

Z

sin (ns)

The above is the Fourier sine series for f (x) =x, on 0 < x < 7. Integrating gives

X 00 (_1)n+1 00 X (_1)7’l+1
f (2 Z sin (ns)) ds =2 E f sin (ns) ds
0 n=1 n n=1v0 n

We did integration term by term, since that is always allowed (not like with differentiation

term by term, where we have to check). Hence the above becomes

00 x ( ~ 1)n+1
27§1f0 sm(ns)ds 22 - (fo sm(ns)ds)
n+1

T
0o +2
235

(cos ns)

But (—1)”Jr2 = (-1)" and the above becomes

2;]: (-

X 1
But £ sds = Exz. So the above is the Fourier series of Ex . A plot of the above is

(cos nx—1)

sin (ns)ds = 2 E



flx_1:

Nll—‘

Plot[f[x], {x, O, Pi}, PlotStyle - Red,
GridLines - Automatic,
GridLinesStyle - LightGray,
Ticks » {Range[0, Pi, 1/2Pi], Automatic}]

Figure 7: The function represented by the above series f(x) = -

3.2 Part 2
— sin ((2n —1)s)
5=p 3 (@ =1)s)
= 2n-1
The above is the Fourier sine series for f (x) = -, on 0 < x < 7. Integrating gives
X 00
2 Sln 2n-1)s)]|ds =2 f sm 2n-1)s)ds
. ( 2]1 S sin(@n-1) >) 2 (@1-1)3)

We did integration term by term, since that is always allowed (not like with differentiation
term by term, where we have to check). Hence the above becomes

2Zf

sin (21 - Deyds=23 1 f sin (21 1) s) ds

(— cos (2n — 1)5)
2n -1 2n-1) 0
(cos(@n-1)x)-1)
= @n-1)

ifl
=23

Since £ Zds = x then the above is the representation of this function. Here is a plot

to conﬁrm this, showmg the above series expansion as more terms are added, showing it
Tt
converges to >X
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Figure 8: The function represented by the above series f(x) = gx against its Fourier series

Cos[(2n-1) x] -1

fApprox[x_, nTerms_] :=2 Sum[— 2 e
n-

> {n, 1, nTerms}];

Clear[f];

flx_/;0<x<Pi] :=x*Pi/2;

Grid [Partition[Table[Plot [ {f[x], fApprox[x, n]}, {x, @, Pi},
PlotStyle » {Blue, Red},
PlotLabel - Style[Row[{"Using ", n, " terms"}], Bold],
ImageSize -» 250],
{n, 1, 10, 2}1, 2], Frame - All, FrameStyle - Gray]

Figure 9: Code used to plot the above



4 Section 27, Problem 1

f\ﬂ Letu(x) denote the steady-state temperatures in aslab bounded by the planes x = 0 and
x = ¢ when those faces are kept at fixed temperatures u = 0 and u = uy, respectively,
Set up the boundary value problem for u(x) and solve it to show that

ulx) = ! X and by =K -Lfg,
c c

where @ is the flux of heat to the left across each plane x = xy (0 < xy < c).

TSI

Figure 10: Problem statement

The heat PDE is u; = u,,. At steady state, u; = 0 leading to u,, = 0. So at steady state, the
solution depends on x only. This has the solution

u(x)=Ax+B 1)
With boundary conditions
u(0)=0
u(c) = ug

When x = 0 then 0 = B. Hence the solution becomes u (x) = Ax. To find A, we apply the
second boundary conditions. At x = ¢ this gives ug = cA or A = % Hence the solution (1)
now becomes

u
u(x) = Oy
c

Now the flux is defined as @y = KZ—Z at each edge surface. But Z—Z = % from above. Therefore

Up
O, = K—
0 c



5 Section 27, Problem 2

10

A : = =2 (c=x)
s nswer: u(x) X (c—x)

g: A slab occupies the region 0 < x < c. There is a constant flux of heat ®, into the slabv
through the face x = 0. The face x = c is kept at temperature u = 0. Set up and solve
the boundary value problem for the steady-state temperatures u(x) in the slab.

Figure 11: Problem statement

note: When looking for solution, assume it is a function of x only.

The heat PDE is u; = u,,. At steady state, u; = 0 leading to u,, = 0. So at steady state, the

solution depends on x only. This has the solution

u(x)y=Ax+B

d
Since there is constant flux at x = 0, then this means K Z

(1)

= —@,. The reason for the

xX=
minus sign, is that flux is always pointing to the outside of the surface. Hence on the left
surface, it will be in the negative x direction and on the right side, it will be on the positive

x direction.

Using this, the boundary conditions can be written as

du|l K
dx| 0
x=0
u()=0
Applying the left boundary condition gives
A= —KCDO

Hence the solution becomes u (x) = —-K®yx + B.

At x = c the second B.C. leads to 0 = —K®yc + B or
B = K®\c
Hence the solution (1) becomes
u (x) = —KPgx + Kdgc
= K®q (c — x)
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6 Section 27, Problem 3

,r3r Letaslab0 < x < cbe Is\ubjected to surface heat transfer, according to Newton’s law.

~ of cooling, at its faces x = 0 and x = ¢, the surface conductance H being the same o1l

each face. Show that if the medium x < 0 has temperature zero and the medium x > ¢

has the constant temperature 7, then the boundary value problem for steady-stat@
temperatures u(x) in the slab is

w(x)=0 O<x< c),-
Ku'(0) = Hu(0), Ku'(c) = H[T — u(c)],

where K is the thermal conductivity of the material in the slab. Write 4 = H/K and
derive the expression ;

i
M(X) = m (hx St 1)

for those temperatures.

Figure 12: Problem statement

We start with
D= H(Toutside - l/l) (1)

Where T is the temperature on the outside and u is the temperature on the surface and @
is the flux at the surface and H is surface conductance. Let us look at the left surface, at
x = 0. The flux there is negative, since it points to the negative x direction. Therefore

du
O =-K— (2)
dx|__
x=0
From (1,2) we obtain
du
-K d_ =H (Toutside —u (O))
x x=0
But T,yisige = O outside the left surface and the above becomes
d
K2 —HO-u©0)
dx|__
x=0
The minus signs cancel, giving
du H
s =—u(0
dx|.__ Ku( )
x=0

u’ (0) = hu (0) (3)



Now, let us look at the right side. There the flux is positive. Hence at x = ¢ we have

du
K— = H(Toutside —u (C))
dx|,_,
But T ysige = T on the right side. Hence the above reduces to
du H
2 = Z=(T-
o IR LG

u' () =h(T -u(c))

12

(4)

Now that we found the boundary conditions, we look at the solution. As before, at steady

state we have
u’(x)=0
u(x)=Ax+B
Hence 1’ (x) = A. Therefore
u' (0)=A=hu(0)
u()=A=h(T-u(c)
But we also know that, from (5) that

u(0) =B
u(c)=Ac+B
Substituting (8,9) into (6,7) in order to eliminate u (0),u (c) from (6,7) gives
A =hB

A =h(T - (Ac+ B))
Now from (6A,7A) we solve for A, B. Substituting (7A) into (6A) gives
hB = h(T — (hBc + B))
hB = hT — h?Bc — hB
2hB + h?Bc = hT

B hT
h(2 + he)
T
" 2+he
Hence
A=hB
hT

2+ hc

()

(6)
(7)

8)
9)

(6A)
(7A)



Now that we found A, B then since u (x) = Ax + B, then
hT T

2+hcx+2+hc
_th+T

2+ he
(1 + hx)

u(x) =

- 2+ he
Which is the result we are asked to show.

13



7 Section 27, Problem 7

14

6. A slender wire lies along the x axis, and surface heat transfer takes place along the
wire into the surrounding medium at a fixed temperature T. Modify the procedure in
Sec. 22 to show that if u = u(x, t) denotes temperatures in the wire, then

U = kuxx +b(T = u),

where b is a positive constant.
Suggestion: Let r denote the radius of the wire, and apply Newton’s law of

cooling to see that the quantity of heat entering the element in Fig. 22 through its
cylindrical surface per unit time is approximately H [T — u(x, 1] 2nr Ax.

s (i t
U o S ) o
t Z ¢ x+ Ax l ‘ ¥

TO
I'lGURE 22

7. |Show that the special case
u; = kuy, — bu

of the differential equation derived in Problem 6 can be transformed into the one-
dimensional heat equation (Sec. 22)

), =

with the substitution u(x, f) = e ?v(x. 1).

Figure 13: Problem statement

uy = kuy, —bu
Let u (x,1) = e Pv (x, t) then
u, = —be by + e7bty,
u,=e
Uyy =€ " Uxy
Substituting the above back into (1) gives

~be bty + e

v; = ke v, — be bty
Since e # 0, then the above simplifies to
—bv + v; = kv, — bo

U = kv,

1)



QED.
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