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1 Section 73, Problem 8

8. }‘iFind the Fourier constants ¢, for the function f(x) = x (1 <x < b) with respect to the
normalized eigenfunctions in Problem 6, Sec. 72, and reduce those constants to the
form

_ s— nr[l+4 (=1 2k
Cp = 2Inb W (n—l,Z,)

Suggestion: The integration formula

2
o o R e*(sinax — acos ax)y
1+ a2

derived in calculus, is useful here.

Figure 1: Problem statement

Solution

= (F ), ¢ ()
b
= f1 p () f () pp (x) dx

But p(x) = - and O, (x) = w/ % sin (a, Inx) and f (x) = x therefore the above becomes

C, —f w/—sm(a In x) dx
1 ln
=\/Ef1 sin (a,, In x) dx

C, _ﬁln fsm mlnx)dx

In d 1
Lets—rcl b,h nceﬁ—%— When x =1 — s = 0 and when x = b — s = 7. The above

becomes
2 T In(b
fol :‘,_f sin (ns) n )xd
lnb 0 TC

Inb
But Inx = % Inb, hence x = ¢° 7 , and the above becomes

A /2 111 f lnb

But a,, = %, therefore

¢’ sin (ns)ds 1)

n

Using
ax

. € .
f e sin (bx) ds = P (asinbx — b cos bx)

. _ Inb _ . .
Where in our case 2 = — and b = n. Applying the above gives

Tt

Inb
T lnb e Inb
f e n sin(ns)ds = | ———— | —sinnx —ncosnx
0 (lnb) 2 Tt
—| +n
T 0

1 Wb (Inb
:fen —sinnmt —ncosnm|— (0 —n)
=)t



But sinn7t = 0 since 7 integer, giving

f e’ n sin(ns)ds = ————[-bncosnm +n]
—) +n
TC

712

T (D) + m2n?
n? (bn (1) + n)

T (Inb)® + 22

[-bn (-1)" +n]

Hence (1) becomes

VZIn @) nm? (1+(-1)"" b)

T bR+ ()

e (b)nrc (1+1""p)

(Inb)? + (mn)?

Where n =1,2,3, -+, which is the result required to show.



2 Section 73, Problem 10

10.| Suppose that a function f, defined on the interval 0 < x < ¢, is piecewise smooth there.
(a) Use the normalized eigenfunctions (Problem 7, Sec. 72)

Pn(x) = \/gsinanx (=120 )

where
o @n—- D
i ST 2C ’
to show formally that
f(x):ZB”sinoz,,x (O <x < 6}
n=1
where
(i :
B,,:E/f(x)smoznxdx (=525 )
0

(h) Note that according to Problem 6, Sec. 15, the series in part (@) is actually a Fourier
sine series for an extension of f on the interval O <x < 2c. Then, with the aid of
Theorem 2 in Sec. 15, state why the representation in part (a) is valid for each
point x (0 < x < ¢) at which f is continuous.

Figure 2: Problem statement

Solution

2.1 Part (a)

2
\/jsin (a,x) n=1,2,3,-
c

2n-1
2x

Since ¢,, (x) are complete, then we can represent f (x) using ¢, (x) as generalized Fourier
series using

P (x)

a, =T

f(x)=§:Bnqbn(x) O<x<c
n=1
To find B,;, since ¢,, (x) are orthonormal eigenfunctions then
By ={f (), ¢, ()
= | P f @ ot

But problem (7) section 72 is X"’ + AX = 0 which implies that p (x) = 1. Hence the above
becomes

B, = fo F) %sin(anx)dx

_ \/g j; £ (x) sin (a, %) dx

Which is the result required to show.

2.2 Part (b)

Theorem 2 section 15 gives the conditions on f (x) for it to have a Fourier sine series which
converges to f (x) where f (x) is continuous and converges to mean value of f (x) where
f (x) have a jump discontinuity.



Since f (x) is piecewise continuous in this problem, then for those regions where f (x) is
continuous between 0 < x < ¢, the series found in part(a) converges to f (x) and is valid
Fourier sine series representation of f (x) there.



3 Section 74, Problem 1

 the solution (6)—(7) there reduces to

sin a,

iFT (b + sin’a,)

where tana, = h/a, (o, > 0).

-
'%ﬂ Show that when f(x) =1 (0 < x < 1) in the boundary value problem (1)—(2) in Sec. 74,

u(x,t) =2h Z —_— exp(-—aﬁkl) COS ¢,,X,

Figure 3: Problem statement

Solution

Solution (6) is given by

u(x,t) = i A, exp (—a%kt) cos (a,,x)

n=1
Where
2h 1
A, = —f x) cos (a,,x) dx
" h+sin2an of() (@)
But f (x) =1 which reduces the above to
2h 1
n = —zf cos (a,x) dx
h +sin® a, Yo
2h . 1
= ——— [sin(a,x
h+sin2an[ (@ly
2h _
= ——sin(a
h + sin’ a, (@)
Hence (6) becomes
— sin(a,) )
u(x,t)=2h Yy, ————exp (—askt)cos (o, x
(x,t) ;:j‘lh+sin2an xp (—a2kt) cos (a,x)

(6)

h .
But from example 1, section 72 we are given that tan (a,c) = —. But ¢ =1 in this problem,

hence
tan (a,) = —

Which is what required to show.



4 Section 74, Problem 4

R .
4. (a) Give a physical interpretation of the boundary value problem

U (x4 )/ = Kz (%, 1) O<x<1
w0, ) =0, w158y = <hu(l, t). u(x,0) = f(x),

where k4 is a positive constant. Then derive the solution

u(x,t) = Z B, exp(—lxikt) sin o, x,
n=1

where tan o, = —a,/h (a, > 0) and
: ‘ 2h ;
B,=—— i
8 Py Eorm /0 f(x)sinw,xdx (n=1

(b) Use an argument similar to the one at the end of Sec. 74 to show that the §
found in part (a) formally satisfies the boundary value problem (8)-(10)
section when the function f there is odd, or when

/f(“x)=—f(x) (==lfS

Figure 4: Problem statement

Solution

4.1 Part (a)

u(0,t) = 0 means that the left surface is kept at fixed temperature which is zero. And
u, (1,t)+hu(1,t) = 0 means that the surface heat transfer takes place at face x =1 into the
medium at temperature zero. To solve the PDE, we first check the boundary conditions
by writing them as

a1u (0,t) + apu, (0,t) =0

biu(1,t) + bou, (1,t) =0
Then a; = 0,a, = 0. Hence a;a, = 0. And b; = 1,b, = h. Then since it is assumed that
h > 0 per section 26, then b1b, > 0. And since g (x) = 0 from the PDE itself, then we know
that eigenvalues are A > 0.

Let u = X (x) T (t) then the PDE becomes

I'X=X"T
TI 3 XII 3
T -x "
Hence the Sturm Liouville problem is
X"+ AX =0
X(0)=0

X' 1)+hX@1)=0
Where p (x) = 1.
Case A =0

Solution is

Atx =0



Hence solution becomes

X (x) = Ax
At x =1 the second boundary conditions gives
A+hA=0
A(l+h) =0

For non trivial solution 1 + 7 = 0 or & = —1. But we assumed that # > 0. Therefore A = 0
is not eigenvalue.

Case A >0

Let A = a2, a > 0. Hence solution is
X (x) = Acos (ax) + Bsin (ax)
At X(0)=0
0=A
The solution becomes
X (x) = Bsin (ax)
At x =1 the second boundary conditions gives
Ba cos () + hBsin () = 0
acos(a)+ hsin(a) =0
a
tan (o) = 2
Therefore the eigenvalues are given by solution to

a
tan(an):—f n=1,2,3,-

And eigenfunctions are
X, (x) = sin (a,,x)
The normalized eigenfunctions are

X )
on () = I

But
1
X, 0l = X2 (x)d
1X, Ol fo p () X2 (x) dx

1
_ f sin? (t, x) dx
0

1 1
== f 1 — cos (2a,,x) dx
2 0

= (1 - Zizn [sin (Zanx)](l))



sin(a,)
cos(ay,)’
1 2 sin &, cos &,

therefore the above becomes

But sin (2a,,) = 2sina,, cos,, and a,, = —h

X, @I =

cos(ay,)
1 cos?a,
27 2
h + cos? a,,

2h

Hence
X, (%)

h+cos? a,,
2h

2h i ()
= |———sin(a
h + cos? a, S

¢n (x) =

Now we use generalized Fourier series to find the solution. Let
1 (x,t) = 33 By (H) gy () (1)
n=1
Substituting this back into the PDE gives
2B (¢ () =k DBy (1) (1)
n=1 n=1
But ¢/ (x) = -A,¢, (x) = —oc%¢n (x). The above becomes
2 Bi (B (1) = =k Y} By (1) aip, (v)
n=1 n=1
B (t) + ka?B,, (t) = 0
The solution is
By (t) = B, (0) e
Hence (1) becomes
u(xt) = Y By (0) e e, (x)
n=1

At t = 0 the above becomes

x) = Y, B, (0) ¢, (x)
n=1

Therefore
B, (0) = {f (%), ¢, (x))
1
=prﬂw@mw
h 1
= 4 /—h - (32082 " L f (x) sin (a,,x) dx
Therefore

B, (1) = B, (0) e <t

2h 1
) (\/% f f (%) sin (a,,x) de kot
nvo

and solution (1) becomes

2h
ka2t .
u(x,t) = E It o, (f f (x) sin (a,,x) dx)e ol sin (a,x)
2
A C:SZ a0, ( f f (x) sin (@, x) dx)e kalt sin (a,x)
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Which is what required to show.

4.2 Part (b)

We need to show that the solution found in part (a) also satisfies the PDE when -1 < x <1
Uy = ki, -1<x<1,t>0

With boundary conditions (9)

u, (-1,t) = hu(-1,t)

u,(1,t) =-hu(l,t)
And initial conditions (10)
u(x,0) = f(x)

When f (x) is odd.
The solution found in a already satisfies the above PDE with the second boundary con-

ditions in (9). Since sine is odd then the solution in part(a) is also odd. Then its partial
derivative is even in x, hence the first boundary conditions in (9) is also satisfied

u, (-1,8) = hu(-1,t) = —u, (1,t) = hu(1,t)

Finally we know that u (x,0) = f (x) for 0 < x < 1. Furthermore when -1 < x < 0 the fact
that u and f (x) are odd enables us to write

u(=x,0)=-u(x,0) = f(=x) = —f (x)
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5 Section 77, Problem 2

an

n=1

whore o, = (0 = 1)x/2 Qofaslab0 < x <lintoa medium a
at the surface x = U0 7 t (Sec. 26)
2'\‘\ iy take:ciilrcging to the linear law of surface heat transfer, s0 that (
temperature Zero, ey

u.(0,t) = hu(0, t)
1,and the unit of time is chosen

as indicated in Fig. 6 ve the temperature

The other boundary coRe L areBY proceeding as in Sec. 77, der

so that k = 1in the heat equation.

formula

® | sinap(1—%) 1 i
=hx+1 —2h§ ;__;,T—)exp( olt),
UEOIT T * o, (h +cOS™Cn
where tan o, = o/ h oy > 0).

0° ur0)=0 [u=1

FIGURE 61

Suggestion: In sim

? plifying the expressi i . e
is useful to note that g pression for the Fourier constants that arise, it

s hsin ¥n  COSa,

a2 IR
Figure 5: Problem statement

Solution

Solve

Up = Uy O<x<1,t>0
With boundary conditions
u, (0,t) —hu(0,t) =0
u(l,t)=1
With / > 0. And initial conditions u (x,0) = f (x).

Because the second B.C. is not zero, we need to introduce a reference function r (x) which
satisfies the nonhomogeneous boundary conditions.

Let 7 (x) = Ax + B. When x = 0 then the first BC gives
A-hB=0
And the second BC gives
A+B=1
From the first equation A = hB. Substituting in the second equation give hB+ B =1 or
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B(1+h)=1o0orB=-—.Hence A= Therefore

r(x):Ax+B
h 1

1+h +h
hx +1

- 1+h @

To verify. r, = 1% When x = 0 then r(0) = ﬁ Hence r, (0) — hr (0) = v hm =0

as expected. And when x =1 then 7 (1) =1 as expected. Now that we found 7 (x) then we
write

u(x,t)y=v(xt)+r(x)
Where v (x, t) is the solution to the homogenous PDE
UV = Uyy 0<x<1,t>0
With boundary conditions
0, (0,t)—hv(0,t) =0
v(,t)=0

We can now solve for v (x, t) using separation of variables since boundary conditions are
homogenous. Separation of variables gives

X"+ AX =0
X" (0) -hX(0) =
X1 =

Using problem 5 section 72, the eigenfunctions and eigenvalues for the above are

2h _

Pn (x) = msm(an(l—x)) n=12--
-a
tan (a,,) = h”
With a,, > 0. Hence the solution v (x, t) using generalized Fourier series is
0 (5, t) = 3 By (t) b (x) (2)
n=1

Substituting into the PDE v, = v, gives

S B (1) pn (¥) = ) B, () DY (%)
n=1 n=1
==Y, B, () %, (x)

n=1

Therefore the ODE is

B, () + a2B, (t) =0
The solution is

B, (t) = B, (0) ™"
Hence (2) becomes

v(x,t) = i B, (0) e_a%tqbn (x)

n=1
And since u (x,t) = v(x, t) + r (x) then

() = f} B, (0) e~ Btey, (x) + 1
n=1

1+h
Now we find B,, (0) from initial conditions. At t = 0 the above becomes
hx 1
0= ZB (0) ¢y () +

+h
hx+1 &
T = LB 06
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Hence
hx+1
fp 1+ h (x) dx
Lhx +1 2h
= — i 1-
o 1+h \/h+coszansm(an( X)) dx
1
_ 1+h‘/h+cos2a f(hx+1)s1n(0zn(1 X)) dx 3)
But

1 1

1
hx +1)sin(a, (1 —x))dx = in(a,1-x)dx+h in(a,(1-x))d
fo(x+)s(a(x))xfs(a(x))x+fxs(0z(x))x

0 0
1 . 1
_ [cos (a, 1 —x)) o [anx cos (a, (1 = x)) + sin (a,, (1 — x))

an a% 0
1 - cos(a h
_ Locoslan) — [ax cos (a, (1 - X)) + sin (a, (1 - )]
ai’l aTl
1 - cos(a h
= 1~ cos (@) + — [a, —sina,]
ai’l an
_a, —ay,cos(ay,) + ha, —hsina,
= 2
%ﬁ"; = —0;—” or hsin(w,) = —a, cos (a,) or —hsina, = «, cos(a,), hence the above
n

simplifies to

1 h
f (hx + 1) sin (a, (1 - %) dx = 2= 20
0 ay

_1+h

dy

B, (0) = 1 + h
1+ h h+ cos2 an
\/ h + cos? a,
Hence final solution becomes

EB (0) e ep,, ()

+
+ =
hx+1 & 1 o "
= + _— - _ Zt e 1_
1+h r; “n\/@e}{p( a”) I+ cos? a,, sin (ay, (1 - x))

_ hx +1 —Zhi sin (a,, (1 — x))
1+h =1 (h + cos? a,

Therefore (3) becomes

) exp (—a%t)

Which is what required to show.
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