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1 Section 5, Problem 3

Problem Find (a) the Fourier cosine series and (b) the Fourier sine series on the interval
0 < 𝑥 < 𝜋 for 𝑓 (𝑥) = 𝑥2

Solution

1.1 Part a

The function 𝑥2 over 0 < 𝑥 < 𝜋 is

In[ ]:= f[x_] := x^2;

Plot[f[x], {x, 0, Pi}, PlotStyle → Red, GridLines → Automatic,

GridLinesStyle → LightGray, Ticks → {Range[0, Pi, 1/ 4 Pi], Automatic}]

Out[ ]=
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Figure 1: Original function

The first step is to do an even extension of 𝑥2 from 0 < 𝑥 < 𝜋 to −𝜋 < 𝑥 < 𝜋 which means
its period becomes 𝑇 = 2𝜋. The even extension of 𝑓 (𝑥) is given by

𝑓𝑒 (𝑥) =
⎧⎪⎨
⎪⎩
𝑓 (𝑥) 𝑥 > 0
𝑓 (−𝑥) 𝑥 < 0

In[ ]:= f[x_] := x^2;

Show[Plot[f[x], {x, 0, Pi}, PlotStyle → Red],

Plot[f[x], {x, -Pi, 0}, PlotStyle → {Red, Dashed}],

PlotRange → {{-Pi, Pi}, Automatic}, Ticks → {Range[-Pi, Pi, 1/ 4 Pi], Automatic},

GridLines → Automatic, GridLinesStyle → LightGray]

Out[ ]=
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Figure 2: Even extension of original function
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The next step is to make the above function periodic with period 𝑇 = 2𝜋 by repeating it
each 2𝜋 as shown below

In[ ]:= Clear[f];

f[x_ /; -Pi ≤ x < Pi] := x^2

f[x_ /; x ≥ Pi] := f[x - 2 Pi];

f[x_ /; x < -Pi] := f[x + 2 Pi];

Plot[f[x], {x, -4 Pi, 4 Pi}, Ticks → {Range[-4 Pi, 4 Pi, Pi], Automatic},

GridLines → Automatic, GridLinesStyle → LightGray, PlotStyle → Red]

Out[ ]=
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Figure 3: Even extension of original function

Now that we have a periodic function above with period 𝑇 = 2𝜋 then we can find its Fourier
cosine series. Which is just the cosine series part of its Fourier series given by

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
2𝜋
𝑇
𝑛𝑥�

Since 𝑇 = 2𝜋, the above becomes

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝑥) (1)

Where

𝑎0 =
1

�𝑇
2
�
�

𝑇
2

−𝑇
2

𝑓 (𝑥) 𝑑𝑥

=
2
2𝜋 �

2𝜋
2

− 2𝜋
2

𝑓 (𝑥) 𝑑𝑥

=
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) 𝑑𝑥

Because 𝑓 (𝑥) is an even function (we did an even extension to force this), then the above
can be written as

𝑎0 =
2
𝜋 �

𝜋

0
𝑓 (𝑥) 𝑑𝑥 =

2
𝜋 �

𝜋

0
𝑥2𝑑𝑥 =

2
𝜋 �

𝑥3

3 �
𝜋

0
=
2
𝜋 �

𝜋3

3 �
=
2
3
𝜋2 (2)
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And for 𝑛 > 0 then

𝑎𝑛 =
1

�𝑇
2
�
�

𝑇
2

−𝑇
2

𝑓 (𝑥) cos �
2𝜋
𝑇
𝑛𝑥� 𝑑𝑥

But 𝑇 = 2𝜋 and the above becomes

𝑎𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) cos (𝑛𝑥) 𝑑𝑥

But 𝑓 (𝑥) is even functiuon and cos is even, hence the product is even and the above simplifies
to

𝑎𝑛 =
2
𝜋 �

𝜋

0
𝑥2 cos (𝑛𝑥) 𝑑𝑥

Integration by parts. 𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢. Let 𝑢 = 𝑥2, 𝑑𝑣 = cos 𝑛𝑥, therefore 𝑑𝑢 = 2𝑥, 𝑣 = sin 𝑛𝑥
𝑛 .

The above becomes

𝑎𝑛 =
2
𝜋
�[𝑢𝑣] −�𝑣𝑑𝑢�

=
2
𝜋 ��

𝑥2
sin 𝑛𝑥
𝑛 �

𝜋

0
−�

𝜋

0
2𝑥

sin 𝑛𝑥
𝑛

𝑑𝑥�

Since 𝑛 is integer, the term �𝑥2 sin 𝑛𝑥
𝑛
�
𝜋

0
→ 0 and the above simplifies to

𝑎𝑛 =
2
𝜋 �

−
2
𝑛 �

𝜋

0
𝑥 sin 𝑛𝑥𝑑𝑥�

=
−4
𝑛𝜋 �

𝜋

0
𝑥 sin 𝑛𝑥𝑑𝑥

The integral ∫
𝜋

0
𝑥 sin 𝑛𝑥𝑑𝑥 is evaluated by parts again. Let 𝑢 = 𝑥, 𝑑𝑣 = sin 𝑛𝑥 → 𝑑𝑢 = 1, 𝑣 =

−cos 𝑛𝑥
𝑛 and the above becomes

𝑎𝑛 =
−4
𝑛𝜋

�[𝑢𝑣] −�𝑣𝑑𝑢�

=
−4
𝑛𝜋 �

− �𝑥
cos 𝑛𝑥
𝑛 �

𝜋

0
+
1
𝑛 �

𝜋

0
cos 𝑛𝑥𝑑𝑥�

=
−4
𝑛𝜋

⎛
⎜⎜⎜⎜⎜⎜⎝−
1
𝑛
𝜋 cos (𝑛𝜋) +

1
𝑛2

0

�����������[sin 𝑛𝑥]𝜋0

⎞
⎟⎟⎟⎟⎟⎟⎠

=
4
𝑛2

cos (𝑛𝜋)

=
4
𝑛2
(−1)𝑛 (3)
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Substituting (2,3) into (1) gives

𝑓 (𝑥) ∼
2
3𝜋

2

2
+

∞
�
𝑛=1

4
𝑛2
(−1)𝑛 cos (𝑛𝑥)

=
𝜋2

3
+ 4

∞
�
𝑛=1

(−1)𝑛

𝑛2
cos (𝑛𝑥)

The convergence is fast due to the term
1
𝑛2 . This plot show the approximation as the number

of terms increases. After only 4 terms we see the approximation is very close to original
function 𝑥2 shown in dashed lines in the plot below.

In[ ]:= fApprox[x_, nTerms_] :=
π2

3
+ 4 Sum

(-1)n

n2
Cos[n x], {n, 1, nTerms};

Grid@

Partition[

Table[Plot[{x^2, fApprox[x, n]}, {x, -Pi, Pi}, PlotStyle → {Dashed, Red},

PlotLabel → Row[{"Using ", n, " terms"}]], {n, 1, 4}], 2]

Out[ ]=
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Figure 4: Fourier approximation as more terms are added

1.2 Part b

Because we want to find the Fourier sine series now, then the first step is to do an odd
extension of 𝑥2 from 0 < 𝑥 < 𝜋 to −𝜋 < 𝑥 < 𝜋 which means its period is 𝑇 = 2𝜋. Odd
extension of 𝑓 (𝑥) is given by

𝑓𝑜 (𝑥) =
⎧⎪⎨
⎪⎩

𝑓 (𝑥) 𝑥 > 0
−𝑓 (−𝑥) 𝑥 < 0
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In[ ]:= f[x_] := x^2;

Show[Plot[f[x], {x, 0, Pi}, PlotStyle → Red],

Plot[-f[-x], {x, -Pi, 0}, PlotStyle → {Red, Dashed}],

PlotRange → {{-Pi, Pi}, {-10, 10}}, Ticks → {Range[-Pi, Pi, 1/ 4 Pi], Automatic},

GridLines → Automatic, GridLinesStyle → LightGray]

Out[ ]=
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Figure 5: Odd extension of 𝑥2

The next step is to make the function function periodic with period 𝑇 = 2𝜋 by repeating it
each 2𝜋 as follows

In[ ]:= Clear[f];

f[x_ /; -Pi < x < Pi] := If[x < 0, -x^2, x^2];

f[x_ /; x > Pi] := f[x - 2 Pi];

f[x_ /; x < -Pi] := f[x + 2 Pi];

Plot[f[x], {x, -4 Pi, 4 Pi}, Ticks → {Range[-4 Pi, 4 Pi, Pi], Automatic},

PlotStyle → Red, Exclusions → {x ⩵ -3 Pi, x ⩵ -Pi, x ⩵ Pi, x ⩵ 3 Pi}, Mesh → None,

GridLines → Automatic, GridLinesStyle → LightGray]

Out[ ]=
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Figure 6: Making the odd extension periodic

Now that we have a periodic function with period 𝑇 = 2𝜋 we can find its Fourier sine series,
which is just the sin part of its Fourier series, given by

𝑓 (𝑥) ∼
∞
�
𝑛=1

𝑏𝑛 sin �
2𝜋
𝑇
𝑛𝑥�

But 𝑇 = 2𝜋, and the above becomes

𝑓 (𝑥) ∼
∞
�
𝑛=1

𝑏𝑛 sin (𝑛𝑥) (1)
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Where

𝑏𝑛 =
1

�𝑇
2
�
�

𝑇
2

−𝑇
2

𝑓 (𝑥) sin �
2𝜋
𝑇
𝑛𝑥� 𝑑𝑥

But 𝑇 = 2𝜋, and the above becomes

𝑏𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) sin (𝑛𝑥) 𝑑𝑥

But now 𝑓 (𝑥) is odd function (we did an odd extension) and sin is odd. Hence product is
even. Therefore the above simplifies to

𝑏𝑛 =
2
𝜋 �

𝜋

0
𝑓 (𝑥) sin (𝑛𝑥) 𝑑𝑥

=
2
𝜋 �

𝜋

0
𝑥2 sin (𝑛𝑥) 𝑑𝑥

Integration by parts. 𝑢𝑑𝑣 = 𝑢𝑣−∫𝑣𝑑𝑢. Let 𝑢 = 𝑥2, 𝑑𝑣 = sin 𝑛𝑥, therefore 𝑑𝑢 = 2𝑥, 𝑣 = − cos 𝑛𝑥
𝑛 .

The above becomes

𝑏𝑛 =
2
𝜋
�[𝑢𝑣] −�𝑣𝑑𝑢�

=
2
𝜋 �

− �𝑥2
cos 𝑛𝑥
𝑛 �

𝜋

0
+�

𝜋

0
2𝑥

cos 𝑛𝑥
𝑛

𝑑𝑥�

=
2
𝜋 �

−
1
𝑛
�𝜋2 cos 𝑛𝜋� +

2
𝑛 �

𝜋

0
𝑥 cos 𝑛𝑥𝑑𝑥�

= −
2𝜋
𝑛

cos 𝑛𝜋 +
4
𝑛𝜋 �

𝜋

0
𝑥 cos 𝑛𝑥𝑑𝑥

The integral ∫
𝜋

0
𝑥 cos 𝑛𝑥𝑑𝑥 is evaluated by parts again. Let 𝑢 = 𝑥, 𝑑𝑣 = cos 𝑛𝑥 → 𝑑𝑢 = 1, 𝑣 =
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sin 𝑛𝑥
𝑛 and the above becomes

𝑏𝑛 = −
2𝜋
𝑛

cos 𝑛𝜋 +
4
𝑛𝜋

�[𝑢𝑣] −�𝑣𝑑𝑢�

= −
2𝜋
𝑛

cos 𝑛𝜋 +
4
𝑛𝜋

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

�������������
�𝑥

sin 𝑛𝑥
𝑛 �

𝜋

0
−�

sin 𝑛𝑥
𝑛

𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −
2𝜋
𝑛

cos 𝑛𝜋 −
4
𝑛2𝜋 �

sin 𝑛𝑥𝑑𝑥

= −
2𝜋
𝑛

cos 𝑛𝜋 −
4
𝑛2𝜋 �

− cos 𝑛𝑥
𝑛 �

𝜋

0

= −
2𝜋
𝑛

cos 𝑛𝜋 +
4
𝑛3𝜋

[cos 𝑛𝑥]𝜋0

= −
2𝜋
𝑛

cos 𝑛𝜋 +
4
𝑛3𝜋

[cos 𝑛𝜋 − 1]

= −
2𝜋
𝑛
(−1)𝑛 +

4
𝑛3𝜋

�(−1)𝑛 − 1�

= −
2𝜋
𝑛
(−1)𝑛 −

4
𝑛3𝜋

�1 − (−1)𝑛�

=
2𝜋
𝑛
(−1)𝑛+1 −

4
𝑛3𝜋

�1 − (−1)𝑛� (2)

Substituting (2) into (1) gives

𝑓 (𝑥) ∼
∞
�
𝑛=1

�
2𝜋
𝑛
(−1)𝑛+1 −

4
𝑛3𝜋

�1 − (−1)𝑛�� sin (𝑛𝑥)

= 2𝜋2
∞
�
𝑛=1

�
1
𝑛𝜋

(−1)𝑛+1 −
2

(𝑛𝜋)3
�1 − (−1)𝑛�� sin (𝑛𝑥)

In this case, we needed more terms to obtain good convergence. Because the periodic
extension is now discontinuous at 𝑥 = 𝑛𝜋 where 𝑛 is odd. In part (a), the periodic extension
was continuous over the whole domain. The following plot shows we needed more terms
compared to part (a) to start seeing good convergence. This shows the result for one period
from −𝜋 to 𝜋. The blue color is for the original odd extended function and the red color is
its Fourier seriesapproximation.
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Out[ ]=
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Figure 7: Fourier approximation of odd extension of 𝑥2 over one period
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In[ ]:= fApprox[x_, nTerms_] :=

2 π
2 Sum

1

n π
(-1)n+1

-
2

(n π)3
1 - (-1)n

 Sin[n x], {n, 1, nTerms};

f[x_] := If[x < 0, -x^2, x^2];

Grid@

Partition[

Table[Plot[{f[x], fApprox[x, n]}, {x, -Pi, Pi}, PlotStyle → {Blue, Red},

PlotLabel → Row[{"Using ", n, " terms"}]], {n, 1, 10}], 2]

Figure 8: Code used to draw Fourier approximation for odd extension for one period

Due to discontinuous in the periodic extended function, there will be a Gibbs e�ect at the
points of discontinuities 𝑥 = 𝑛𝜋 where 𝑛 is odd, where the approximation converges to the
average of the function at those point. To see this, here is a plot showing the result for the
case of 16 terms over 3 periods instead of one period as the above plot showed.

Gibbs effect

converges to

average at x=1

Gibbs effect

-5 5

-10

-5

5

10

Using 16 terms

Figure 9: Fourier approximation of odd extension of 𝑥2 over 3 periods to see Gibbs e�ect
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In[ ]:= fApprox[x_, nTerms_] := 2 π
2 Sum

1

n π
(-1)n+1

-
2

(n π)3
1 - (-1)n

 Sin[n x], {n, 1, nTerms};

Clear[f];

f[x_ /; -Pi < x < Pi] := If[x < 0, -x^2, x^2];

f[x_ /; x > Pi] := f[x - 2 Pi];

f[x_ /; x < -Pi] := f[x + 2 Pi];

Plot[{f[x], fApprox[x, 16]}, {x, -3 Pi, 3 Pi}, PlotStyle → {Blue, Red},

PlotLabel → Row[{"Using ", 16, " terms"}], Exclusions → {x ⩵ -3 Pi, x ⩵ -Pi, x ⩵ Pi, x ⩵ 3 Pi}]

Figure 10: Code used to draw the above plot
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2 Section 5, Problem 5

Problem By referring to the sine series for 𝑥 in example 1 and one found for 𝑥2 in above
problem show that

𝑥 (𝜋 − 𝑥) ∼
8
𝜋

∞
�
𝑛=1

sin (2𝑛 − 1) 𝑥
(2𝑛 − 1)3

0 < 𝑥 < 𝜋

Solution

From example 1, the Fourier sine series for 𝑥 defined on 0 < 𝑥 < 𝜋, was found to be

𝑥 ∼ 2
∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin 𝑥 0 < 𝑥 < 𝜋

By writing 𝑥 (𝜋 − 𝑥) = 𝜋𝑥 − 𝑥2 then we see that

𝜋𝑥 − 𝑥2 ∼ 𝜋
⎛
⎜⎜⎜⎝2

∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin 𝑥

⎞
⎟⎟⎟⎠ − �2𝜋2

∞
�
𝑛=1

�
1
𝑛𝜋

(−1)𝑛+1 −
2

(𝑛𝜋)3
�1 − (−1)𝑛�� sin (𝑛𝑥)�

=
∞
�
𝑛=1

2𝜋
(−1)𝑛+1

𝑛
sin 𝑥 −

∞
�
𝑛=1

2𝜋2 �
1
𝑛𝜋

(−1)𝑛+1 −
2

(𝑛𝜋)3
�1 − (−1)𝑛�� sin (𝑛𝑥)

=
∞
�
𝑛=1

⎡
⎢⎢⎢⎣2𝜋

(−1)𝑛+1

𝑛
− 2𝜋2 �

1
𝑛𝜋

(−1)𝑛+1 −
2

(𝑛𝜋)3
�1 − (−1)𝑛��

⎤
⎥⎥⎥⎦ sin (𝑛𝑥)

=
∞
�
𝑛=1

⎡
⎢⎢⎢⎣2𝜋

(−1)𝑛+1

𝑛
−
2𝜋
𝑛
(−1)𝑛+1 +

4
𝑛3𝜋

�1 − (−1)𝑛�
⎤
⎥⎥⎥⎦ sin (𝑛𝑥)

=
∞
�
𝑛=1

4
𝑛3𝜋

�1 − (−1)𝑛� sin (𝑛𝑥)

Now when 𝑛 = 2, 4, 6,⋯ then �1 − (−1)𝑛� = 0 and when 𝑛 = 1, 3, 5,⋯ then �1 − (−1)𝑛� = 2.
Hence the above sum becomes

𝜋𝑥 − 𝑥2 ∼
∞
�

𝑛=1,3,5,⋯

8
𝑛3𝜋

sin (𝑛𝑥)

∼
8
𝜋

∞
�

𝑛=1,3,5,⋯

1
𝑛3

sin (𝑛𝑥)

Let 𝑛 = 2𝑚 − 1. Then when 𝑛 = 1 → 𝑚 = 1, 𝑛 = 3 → 𝑚 = 2, 𝑛 = 5 → 𝑚 = 3 and so on.
Hence the above sum can be written using 𝑚 as summation index as follows

𝜋𝑥 − 𝑥2 ∼
8
𝜋

∞
�
𝑚=1

1
(2𝑚 − 1)3

sin ((2𝑚 − 1) 𝑥)

Since summation index can be named anything, then renaming summation index from 𝑚
back to 𝑛 gives the form required

𝜋𝑥 − 𝑥2 ∼
8
𝜋

∞
�
𝑛=1

1
(2𝑛 − 1)3

sin ((2𝑛 − 1) 𝑥)
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3 Section 7, Problem 1

Problem Find the Fourier series on interval −𝜋 < 𝑥 < 𝜋 that corresponds to

𝑓 (𝑥) =
⎧⎪⎨
⎪⎩
−𝜋
2 −𝜋 < 𝑥 < 0
𝜋
2 0 < 𝑥 < 𝜋

Solution

A plot of the function 𝑓 (𝑥) over −𝜋 < 𝑥 < 𝜋 is

ClearAll[f, x];

f[x_] := Piecewise[{{-Pi/ 2, -Pi < x < 0}, {Pi/ 2, 0 < x < Pi}}]

Plot[f[x], {x, -Pi, Pi}, PlotStyle → Red, GridLines → Automatic,

GridLinesStyle → LightGray,

Ticks → {Range[-Pi, Pi, 1/ 2 Pi], Range[-Pi/ 2, Pi/ 2, 1/ 4 Pi]}]

Out[ ]=

-π -π

2

π

2
π

-π

2

-π

4

π

4

π

2

Figure 11: Plot of 𝑓(𝑥) for problem section 7.1

The periodic extension (with period 𝑇 = 2𝜋) becomes (shown for −3𝜋 < 𝑥 < 3𝜋)

Clear[f];

f[x_ /; -Pi < x < Pi] := If[x < 0, -Pi/ 2, Pi/ 2];

f[x_ /; x > Pi] := f[x - 2 Pi];

f[x_ /; x < -Pi] := f[x + 2 Pi];

Plot[f[x], {x, -3 Pi, 3 Pi}, Ticks → {Range[-4 Pi, 4 Pi, Pi], Automatic},

PlotStyle → Red,

Exclusions → {x ⩵ -Pi, x ⩵ -2 Pi, x ⩵ -3 Pi, x ⩵ 0, x ⩵ Pi, x ⩵ 2 Pi, x ⩵ 3 Pi},

ExclusionsStyle → Dashed, Mesh → None, GridLines → Automatic,

GridLinesStyle → LightGray]

Out[ ]=

-3 π -2 π -π π 2 π 3 π

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 12: Plot of 𝑓(𝑥) for problem section 7.1 after periodic extension
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Since the function 𝑓 (𝑥) is now periodic then its Fourier series is given by

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
2𝑛𝜋
𝑇
𝑥� + 𝑏𝑛 sin �

2𝑛𝜋
𝑇
𝑥�

Where 𝑇 is the period of the function being approximated which is 𝑇 = 2𝜋 in this case.
Hence the above simplifies to

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝑥) + 𝑏𝑛 sin (𝑛𝑥)

Since the function 𝑓 (𝑥) is an odd function then only 𝑏𝑛 terms exist and the above reduces
to

𝑓 (𝑥) ∼
∞
�
𝑛=1

𝑏𝑛 sin (𝑛𝑥) (1)

Where

𝑏𝑛 =
1

�𝑇
2
�
�

𝑇
2

−𝑇
2

𝑓 (𝑥) sin �
2𝑛𝜋
𝑇
𝑥� 𝑑𝑥

=
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) sin (𝑛𝑥) 𝑑𝑥

Since 𝑓 (𝑥) is odd and sin is odd, then the product is even, and the above simplifies to the
Fourier sine series

𝑏𝑛 =
2
𝜋 �

𝜋

0
𝑓 (𝑥) sin (𝑛𝑥) 𝑑𝑥

=
2
𝜋 �

𝜋

0
�
𝜋
2
� sin (𝑛𝑥) 𝑑𝑥

= �
𝜋

0
sin (𝑛𝑥) 𝑑𝑥

= �
− cos 𝑛𝑥

𝑛 �
𝜋

0

= −
1
𝑛
[cos 𝑛𝜋 − 1]

=
1
𝑛
�1 + (−1)𝑛+1�

Therefore (1) becomes

𝑓 (𝑥) ∼
∞
�
𝑛=1

�
1
𝑛
�1 + (−1)𝑛+1�� sin (𝑛𝑥)

When 𝑛 = 2, 4, 6,⋯ then 𝑏𝑛 = 0 and when 𝑛 = 1, 3, 5,⋯ then 𝑏𝑛 =
2
𝑛 . Therefore the above

can be written as

𝑓 (𝑥) ∼
∞
�

𝑛=1,3,5,⋯

2
𝑛

sin (𝑛𝑥)

Let 𝑛 = 2𝑚 − 1. Then when 𝑛 = 1 → 𝑚 = 1, 𝑛 = 3 → 𝑚 = 2, 𝑛 = 5 → 𝑚 = 3 and so on.
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Hence the above sum can be written using 𝑚 as summation index as follows

𝑓 (𝑥) ∼
∞
�
𝑚=1

2
2𝑚 − 1

sin ((2𝑚 − 1) 𝑥)

Since summation index can be named anything, then renaming summation index from 𝑚
to 𝑛 gives

𝑓 (𝑥) ∼
∞
�
𝑛=1

2
2𝑛 − 1

sin ((2𝑛 − 1) 𝑥)

Since the periodic extension of the original function 𝑓 (𝑥) is discontinuous at points 𝑥 = 𝑛𝜋,
then the Fourier approximation will converge to the average of 𝑓 (𝑥) at these points and
Gibbs e�ect will result at these points as well. The following plot shows the result

Gibbs effect

Converges

to average at

discontinuity

-3 π -2 π -π π 2 π 3 π

-2

-1

1

2
Using 8 terms

Figure 13: Fourier approximations using 8 terms
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In[ ]:= fApprox[x_, nTerms_] := Sum
2

2 n - 1
Sin[(2 n - 1) x], {n, 1, nTerms};

Clear[f];

f[x_ /; -Pi < x < Pi] := If[x < 0, -Pi/ 2, Pi/ 2];

f[x_ /; x > Pi] := f[x - 2 Pi];

f[x_ /; x < -Pi] := f[x + 2 Pi];

Plot[{f[x], fApprox[x, 8]}, {x, -3 Pi, 3 Pi}, PlotStyle → {Blue, Red},

PlotLabel → Row[{"Using ", 8, " terms"}],

Exclusions → {x ⩵ -Pi, x ⩵ -2 Pi, x ⩵ -3 Pi, x ⩵ 0, x ⩵ Pi, x ⩵ 2 Pi, x ⩵ 3 Pi},

Ticks → {Range[-4 Pi, 4 Pi, Pi], Automatic}]

Figure 14: Code used to generate the above plot
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4 Chapter 1, Section 7, Problem 3

Problem Find the Fourier series on interval −𝜋 < 𝑥 < 𝜋 that corresponds to 𝑓 (𝑥) = 𝑥 + 1
4𝑥

2.

suggestions: Use the series for 𝑥 in example 2, section 7 and the one for 𝑥2 found above in
problem Section 5, Problem 3(a).

Solution

Since 𝑥 is odd, then we can from example 2 use the Fourier sine series for 𝑥 defined on
−𝜋 < 𝑥 < 𝜋

𝑥 ∼ 2
∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin (𝑛𝑥) (−𝜋 < 𝑥 < 𝜋) (1)

And since 𝑥2 is even, then we can use the Fourier cosine series found in problem Section 5,
Problem 3(a) solved above

𝑥2 ∼
𝜋2

3
+ 4

∞
�
𝑛=1

(−1)𝑛

𝑛2
cos (𝑛𝑥) (−𝜋 < 𝑥 < 𝜋) (2)

Using (1,2), then we can write 𝑥 + 1
4𝑥

2 Fourier series as

𝑥 +
1
4
𝑥2 ∼

⎛
⎜⎜⎜⎝2

∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin 𝑛𝑥

⎞
⎟⎟⎟⎠ +

1
4 �
𝜋2

3
+ 4

∞
�
𝑛=1

(−1)𝑛

𝑛2
cos (𝑛𝑥)�

∼
𝜋2

12
+

∞
�
𝑛=1

(−1)𝑛

𝑛2
cos (𝑛𝑥) +

2 (−1)𝑛+1

𝑛
sin 𝑛𝑥

∼
𝜋2

12
+

∞
�
𝑛=1

(−1)𝑛 �
cos (𝑛𝑥)
𝑛2

−
2 sin (𝑛𝑥)

𝑛 �
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5 Section 7, Problem 4

Problem Find the Fourier series on interval −𝜋 < 𝑥 < 𝜋 that corresponds to 𝑓 (𝑥) = 𝑒𝑎𝑥 where
𝑎 ≠ 0. suggestion: Use Euler’s formula 𝑒𝑖𝜃 = cos𝜃+𝑖 sin𝜃 to write 𝑎𝑛+𝑖𝑏𝑛 =

1
𝜋
∫𝜋

−𝜋
𝑓 (𝑥) 𝑒𝑖𝑛𝑥𝑑𝑥

for 𝑛 = 1, 2, 3,⋯. Then after evaluating this single integral, equate real and imaginary parts.

Solution

𝑒𝑎𝑥 ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
2𝜋
𝑇
𝑛𝑥� + 𝑏𝑛 sin �

2𝜋
𝑇
𝑛𝑥�

But 𝑇 = 2𝜋 and the above becomes

𝑒𝑎𝑥 ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝑥) + 𝑏𝑛 sin (𝑛𝑥)

Where

𝑎0 =
1
𝑇
2

�
𝑇
2

−𝑇
2

𝑓 (𝑥) 𝑑𝑥

=
1
𝜋 �

𝜋

−𝜋
𝑒𝑎𝑥𝑑𝑥

=
1
𝜋 �

𝑒𝑎𝑥

𝑎 �
𝜋

−𝜋

=
1
𝜋𝑎

(𝑒𝑎𝜋 − 𝑒−𝑎𝜋)

But
𝑒𝑎𝜋−𝑒−𝑎𝜋

2 = sinh (𝑎𝜋) hence the above simplifies to

𝑎0 =
2
𝜋𝑎

sinh (𝑎𝜋)

And for 𝑛 > 0

𝑎𝑛 =
1
𝑇
2

�
𝑇
2

−𝑇
2

𝑓 (𝑥) cos �
2𝜋
𝑇
𝑛𝑥� 𝑑𝑥

=
1
𝜋 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥 (1)

Let 𝐼 = ∫
𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥. Using integration by parts, ∫𝑢𝑑𝑣 = 𝑢𝑣−∫𝑣𝑑𝑢. Let 𝑢 = cos 𝑛𝑥, 𝑑𝑣 =
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𝑒𝑎𝑥 then 𝑣 = 𝑒𝑎𝑥

𝑎 , 𝑑𝑢 = −𝑛 sin (𝑛𝑥). Hence

𝐼 = 𝑢𝑣 −�𝑣𝑑𝑢

= �cos (𝑛𝑥)
𝑒𝑎𝑥

𝑎 �
𝜋

−𝜋
+
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

= �cos (𝑛𝜋)
𝑒𝑎𝜋

𝑎
− cos (𝑛𝜋)

𝑒−𝑎𝜋

𝑎 � +
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

= (−1)𝑛 �
𝑒𝑎𝜋 − 𝑒−𝑎𝜋

𝑎 � +
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

=
2 (−1)𝑛

𝑎 �
𝑒𝑎𝜋 − 𝑒−𝑎𝜋

2 � +
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

=
2 (−1)𝑛

𝑎
sinh (𝑎𝜋) +

𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

Applying integration by parts again on the integral above. Let 𝑢 = sin 𝑛𝑥, 𝑑𝑣 = 𝑒𝑎𝑥 then

𝑣 = 𝑒𝑎𝑥

𝑎 , 𝑑𝑢 = 𝑛 cos (𝑛𝑥) and the above becomes

𝐼 =
2 (−1)𝑛

𝑎
sinh (𝑎𝜋) +

𝑛
𝑎

⎛
⎜⎜⎜⎜⎝�sin 𝑛𝑥

𝑒𝑎𝑥

𝑎 �
𝜋

−𝜋
−
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎟⎠

=
2 (−1)𝑛

𝑎
sinh (𝑎𝜋) +

𝑛
𝑎

⎛
⎜⎜⎜⎜⎜⎝
1
𝑎

0

���������������������������������������(sin (𝑛𝜋) 𝑒𝑎𝜋 + sin (𝑛𝜋) 𝑒−𝑎𝜋) −
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎠

=
2 (−1)𝑛

𝑎
sinh (𝑎𝜋) −

𝑛2

𝑎2 �
𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

But ∫
𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥 = 𝐼, the original integral we are solving for. Hence solving for 𝐼 from

the above gives gives

𝐼 =
2 (−1)𝑛

𝑎
sinh (𝑎𝜋) −

𝑛2

𝑎2
𝐼

𝐼 +
𝑛2

𝑎2
𝐼 =

2 (−1)𝑛

𝑎
sinh (𝑎𝜋)

𝐼 �1 +
𝑛2

𝑎2 �
=
2 (−1)𝑛

𝑎
sinh (𝑎𝜋)

𝐼 =
2(−1)𝑛

𝑎 sinh (𝑎𝜋)

1 + 𝑛2

𝑎2

=
2𝑎 (−1)𝑛 sinh (𝑎𝜋)

𝑎2 + 𝑛2
(2)
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Using (2) in (1) gives

𝑎𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

=
𝑎
𝜋
2 (−1)𝑛 sinh (𝑎𝜋)

𝑎2 + 𝑛2
(3)

Now we will do the same to find 𝑏𝑛

𝑏𝑛 =
1
𝑇
2

�
𝑇
2

−𝑇
2

𝑓 (𝑥) sin �
2𝜋
𝑇
𝑛𝑥� 𝑑𝑥

=
1
𝜋 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥 (4)

Let 𝐼 = ∫
𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥. Using integration by parts,∫𝑢𝑑𝑣 = 𝑢𝑣−∫𝑣𝑑𝑢. Let 𝑢 = sin (𝑛𝑥) , 𝑑𝑣 =

𝑒𝑎𝑥 then 𝑣 = 𝑒𝑎𝑥

𝑎 , 𝑑𝑢 = 𝑛 cos (𝑛𝑥). Hence

𝐼 = 𝑢𝑣 −�𝑣𝑑𝑢

= �sin (𝑛𝑥)
𝑒𝑎𝑥

𝑎 �
𝜋

−𝜋
−
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

=

0

���������������������������������������
�sin (𝑛𝜋)

𝑒𝑎𝜋

𝑎
− sin (𝑛𝜋)

𝑒−𝑎𝜋

𝑎 � −
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

= −
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

Now we apply integration by parts again on the integral above. Let 𝑢 = cos 𝑛𝑥, 𝑑𝑣 = 𝑒𝑎𝑥 then
𝑣 = 𝑒𝑎𝑥

𝑎 , 𝑑𝑢 = −𝑛 sin (𝑛𝑥) and the above becomes

𝐼 = −
𝑛
𝑎

⎛
⎜⎜⎜⎜⎝�cos (𝑛𝑥)

𝑒𝑎𝑥

𝑎 �
𝜋

−𝜋
+
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎟⎠

= −
𝑛
𝑎 �

1
𝑎
(cos (𝑛𝜋) 𝑒𝑎𝜋 − cos (𝑛𝜋) 𝑒−𝑎𝜋) +

𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥�

= −
𝑛
𝑎 �

1
𝑎

cos (𝑛𝜋) (𝑒𝑎𝜋 − 𝑒−𝑎𝜋) +
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥�

= −
𝑛
𝑎 �
2
𝑎

cos (𝑛𝜋) �
𝑒𝑎𝜋 − 𝑒−𝑎𝜋

2 � +
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥�

= −
𝑛
𝑎 �
2
𝑎

cos (𝑛𝜋) sinh (𝑎𝜋) +
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥�

= −
2𝑛
𝑎2
(−1)𝑛 sinh (𝑎𝜋) −

𝑛2

𝑎2 �
𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥
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But ∫
𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥 = 𝐼. Hence solving for 𝐼 gives

𝐼 = −
2𝑛
𝑎2
(−1)𝑛 sinh (𝑎𝜋) −

𝑛2

𝑎2
𝐼

𝐼 +
𝑛2

𝑎2
𝐼 = −

2𝑛
𝑎2
(−1)𝑛 sinh (𝑎𝜋)

𝐼 �1 +
𝑛2

𝑎2 �
= −

2𝑛
𝑎2
(−1)𝑛 sinh (𝑎𝜋)

𝐼 = −
2𝑛
𝑎2
(−1)𝑛 sinh (𝑎𝜋)

1 + 𝑛2

𝑎2

𝐼 = −
2𝑛 (−1)𝑛

𝑎2 + 𝑛2
sinh (𝑎𝜋) (5)

Using (5) in (4) gives

𝑏𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

= −
1
𝜋
2𝑛 (−1)𝑛

𝑎2 + 𝑛2
sinh (𝑎𝜋)

Now that we found 𝑎0, 𝑎𝑛, 𝑏𝑛 then the Fourier series is

𝑒𝑎𝑥 ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝑥) + 𝑏𝑛 sin (𝑛𝑥)

∼
2
𝜋𝑎 sinh (𝑎𝜋)

2
+

∞
�
𝑛=1

𝑎
𝜋
2 (−1)𝑛 sinh (𝑎𝜋)

𝑎2 + 𝑛2
cos (𝑛𝑥) −

1
𝜋
2𝑛 (−1)𝑛

𝑎2 + 𝑛2
sinh (𝑎𝜋) sin (𝑛𝑥)

∼
sinh (𝑎𝜋)
𝜋𝑎

+
1
𝜋

sinh (𝑎𝜋)
∞
�
𝑛=1

2 (−1)𝑛

𝑎2 + 𝑛2
(𝑎 cos (𝑛𝑥) − 𝑛 sin (𝑛𝑥))

∼ sinh (𝑎𝜋) �
1
𝜋𝑎

+
1
𝜋

∞
�
𝑛=1

2 (−1)𝑛

𝑎2 + 𝑛2
(𝑎 cos (𝑛𝑥) − 𝑛 sin (𝑛𝑥))�

∼
2 sinh (𝑎𝜋)

𝜋 �
1
2𝑎
+

∞
�
𝑛=1

(−1)𝑛

𝑎2 + 𝑛2
(𝑎 cos (𝑛𝑥) − 𝑛 sin (𝑛𝑥))�

Which is what we are required to show.

The following plots shows the approximation as more terms are added. We also notice the
Gibbs e�ect at the points of discontinuities after the original function was periodic extended.
The value 𝑎 = 1 was used. Hence this is approximation of 𝑒𝑥 using −𝜋 < 𝑥 < 𝜋 as original
period.
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Out[ ]=

-4 π -3 π -2 π -π π 2 π 3 π 4 π

5

10
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20
Using 2 terms
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5

10

15

20
Using 4 terms
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10

15
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10

15

20
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Figure 15: Fourier approximations using with increasing terms

In[ ]:= a = 1;

fApprox[x_, nTerms_] :=
2 Sinh[a Pi]

π

1

2 a
+ Sum

(-1)n

a2 + n2
(a Cos[n x] - n Sin[n x]), {n, 1, nTerms} ;

Clear[f];

f[x_ /; -Pi < x < Pi] := Exp[a x];

f[x_ /; x > Pi] := f[x - 2 Pi];

f[x_ /; x < -Pi] := f[x + 2 Pi];

Grid@Partition[Table[

Plot[{f[x], fApprox[x, nTerms]}, {x, -4 Pi, 4 Pi}, PlotStyle → {Blue, Red},

PlotLabel → Row[{"Using ", nTerms, " terms"}],

Exclusions → {x ⩵ -Pi, x ⩵ -2 Pi, x ⩵ -3 Pi, x ⩵ 0, x ⩵ Pi, x ⩵ 2 Pi, x ⩵ 3 Pi},

Ticks → {Range[-4 Pi, 4 Pi, Pi], Automatic},

PlotRange → {Automatic, {-3, 20}}, ImageSize → 300], {nTerms, 2, 8, 2}], 2]

Figure 16: Code used to generate the above plot
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6 Chapter 1, Section 8, Problem 1

Problem (a) Use the Fourier sine series found in example 1, section 5 for 𝑓 (𝑥) = 𝑥 for
0 < 𝑥 < 𝜋, to show that

𝑥 ∼
2
𝜋

∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin 𝑛𝜋𝑥 (−1 < 𝑥 < 1) (1)

(b) Obtain the correspondence in part (a) by using expression (11) in section 9 for the
coe�cient in a Fourier sine series on 0 < 𝑥 < 𝑐

6.1 Part a

The Fourier sine series found in example 1, section 5 for 𝑓 (𝑥) = 𝑥 for 0 < 𝑥 < 𝜋 is

𝑥 ∼ 2
∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin 𝑛𝑥 (0 < 𝑥 < 𝜋) (2)

Which has period 𝑇2 = 2𝜋 after odd extension. To convert the above to the range −1 < 𝑥 < 1,
then by looking at this diagram

−π +π

−1 1

x

x′

x
π = x′

1

Figure 17: Finding scale for correspondence

We see that by symmetry
𝑥
𝜋 =

𝑥′

1 . Hence 𝑥 = 𝜋𝑥′. Therefore we want 𝑥 → 𝜋𝑥′ but 𝑥′ is just
𝑥 in the new domain. Hence 𝑥 → 𝜋𝑥 in the new Fourier series. Therefore replacing 𝑥 by 𝜋𝑥
in (2) gives

𝑥 ∼ 2
∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin 𝑛𝜋𝑥 (0 < 𝑥 < 1) (3)

Equation (3) is now scaled by multiplying it by
𝑥′

𝑥 =
1
𝜋 giving

𝑥 ∼
2
𝜋

∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin 𝑛𝜋𝑥 (0 < 𝑥 < 1) (4)
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6.2 Part b

Expression (11) in section 8 is

𝑏𝑛 =
2
𝑐 �

𝑐

0
𝑓 (𝑥) sin �

𝑛𝜋𝑥
𝑐
� 𝑑𝑥

Let 𝑐 = 1 and since 𝑓 (𝑥) = 𝑥, then above becomes

𝑏𝑛 = 2�
1

0
𝑥 sin (𝑛𝜋𝑥) 𝑑𝑥

Let 𝑢 = 𝑥, 𝑑𝑣 = sin (𝑛𝜋𝑥) then 𝑑𝑢 = 1, 𝑣 = − cos(𝑛𝜋𝑥)
𝑛𝜋 . Hence 𝑢𝑑𝑣 = 𝑢𝑣−∫𝑣𝑑𝑢 and the integral

above becomes

𝑏𝑛 = 2 �
−1
𝑛𝜋

[𝑥 cos (𝑛𝜋𝑥)]10 +
1
𝑛𝜋 �

1

0
cos (𝑛𝜋𝑥) 𝑑𝑥�

= 2
⎛
⎜⎜⎜⎜⎝
−1
𝑛𝜋

[cos (𝑛𝜋)] +
1
𝑛𝜋 �

sin (𝑛𝜋𝑥)
𝑛𝜋 �

1

0

⎞
⎟⎟⎟⎟⎠

= 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
−1
𝑛𝜋

�(−1)𝑛� +
1

(𝑛𝜋)2

0

���������������[sin (𝑛𝜋𝑥)]10

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
2
𝑛𝜋

(−1)𝑛+1

Hence

𝑥 ∼
∞
�
𝑛=1

𝑏𝑛 sin 𝑛𝜋𝑥

∼
2
𝜋

∞
�
𝑛=1

1
𝑛
(−1)𝑛+1 sin 𝑛𝜋𝑥

Which is the same as (1) in part (a)
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7 Chapter 1, Section 8, Problem 6

Problem Use method in example 2 section 8 to show that

𝑒𝑥 ∼
sinh 𝑐
𝑐

+ 2 sinh 𝑐
∞
�
𝑛=1

(−1)𝑛

𝑐2 + (𝑛𝜋)2
�𝑐 cos �

𝑛𝜋𝑥
𝑐
� − 𝑛𝜋 sin �

𝑛𝜋𝑥
𝑐
�� − 𝑐 < 𝑥 < 𝑐

Solution

From problem 4 section 7, we know that

𝑒𝑎𝑥 ∼
sinh 𝑎𝜋
𝑎𝜋

+ 2
sinh 𝑎𝜋
𝜋

∞
�
𝑛=1

(−1)𝑛

𝑎2 + 𝑛2
(𝑎 cos (𝑛𝑥) − 𝑛 sin (𝑛𝑥)) − 𝜋 < 𝑥 < 𝜋 (1)

To convert the above to the range −𝑐 < 𝑥 < 𝑐, then by looking at this diagram

−π +π

−c c

x

x′

x
π = x′

c

Figure 18: Finding scale for correspondence

We see that by symmetry,
𝑥
𝜋 = 𝑥′

𝑐 where 𝑥′ is the 𝑥 in the new range we want, which is

−𝑐 < 𝑥 < 𝑐. Hence 𝑥 = 𝑥′𝜋
𝑐 or since 𝑥′ is just 𝑥 in the new domain, then this implies 𝑥 → 𝑥𝜋

𝑐 .

Then replacing 𝑥 by 𝑥𝜋
𝑐 in (1) gives

𝑒
𝑎𝜋𝑥
𝑐 ∼

sinh 𝑎𝜋
𝑎𝜋

+ 2
sinh 𝑎𝜋
𝜋

∞
�
𝑛=1

(−1)𝑛

𝑎2 + 𝑛2
�𝑎 cos �

𝑛𝜋𝑥
𝑐
� − 𝑛 sin �

𝑛𝜋𝑥
𝑐
�� − 𝑥 < 𝑥 < 𝑐 (2)

We see that the trigonometric terms inside the sum is multiplied by 𝑎, hence we replace that
by

𝑐
𝜋 in the above. This is the same as

𝑥′

𝑥 =
𝑐
𝜋 . Hence letting 𝑎 = 𝑐

𝜋 in (2) gives

𝑒𝑥 ∼
sinh 𝑐
𝑐

+ 2
sinh 𝑐
𝜋

∞
�
𝑛=1

(−1)𝑛

� 𝑐
𝜋
�
2
+ 𝑛2

�
𝑐
𝜋

cos �
𝑛𝜋𝑥
𝑐
� − 𝑛 sin �

𝑛𝜋𝑥
𝑐
��

∼
sinh 𝑐
𝑐

+ 2
sinh 𝑐
𝜋

∞
�
𝑛=1

(−1)𝑛

𝑐2

𝜋 + 𝜋𝑛
2
�𝑐 cos �

𝑛𝜋𝑥
𝑐
� − 𝑛𝜋 sin �

𝑛𝜋𝑥
𝑐
��

∼
sinh 𝑐
𝑐

+ 2 sinh 𝑐
∞
�
𝑛=1

(−1)𝑛

𝑐2 + 𝜋2𝑛2
�𝑐 cos �

𝑛𝜋𝑥
𝑐
� − 𝑛𝜋 sin �

𝑛𝜋𝑥
𝑐
��

Which is what we asked to show.
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