
Homework 8 – Solutions

These solutions demonstrate one way to approach each of the homework problems. In many
cases, there are other correct solutions. If you would like to discuss alternative solutions or
the grading of your assignment, please see me during office hours or send me an email.

Textbook Problems:

6.2.7 We have A =

[
6 −10
2 −3

]
. First, we compute eigenvalues.

det(A− λI) = det

[
6− λ −10

2 −3− λ

]
= (6− λ)(−3− λ) + 20

= λ2 − 3λ+ 2

= (λ− 1)(λ− 2)

For λ1 = 1, we have

A− I =

[
5 −10
2 −4

]
→
[
1 −2
0 0

]
So we have eigenvector ~v1 = (2, 1).

For λ2 = 2, we have

A− 2I =

[
4 −10
2 −5

]
→
[
2 −5
0 0

]
So we have eigenvector ~v2 = (5, 2).

We have 2 distinct eigenvalues, so A is diagonalizable. The diagonalization is

A =

[
2 5
1 2

] [
1 0
0 2

] [
2 5
1 2

]−1
6.2.15 First, we compute eigenvalues.

det(A− λI) = det

3− λ −3 1
2 −2− λ 1
0 0 1− λ


= (1− λ) det

[
3− λ −3

2 −2− λ

]
= (1− λ) [(3− λ)(−2− λ) + 6]

= (1− λ)(λ2 − λ) = −λ(λ− 1)2
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For λ1 = 0, we have

A− 0I =

3 −3 1
2 −2 1
0 0 1

→
1 −1 0

0 0 1
0 0 0


So we have eigenvector ~v1 = (1, 1, 0).

For λ2 = 1, we have

A− I =

2 −3 1
2 −3 1
0 0 0

→
2 −3 1

0 0 0
0 0 0


So we have basis for the eigenspace {(3, 2, 0), (1, 0,−2)}.
We have one dimension 1 eigenspace and one dimension 2 eigenspace, so A is diago-
nalizable. The diagonalization is

A =

1 3 1
1 2 0
0 0 −2

0 0 0
0 1 0
0 0 1

1 3 1
1 2 0
0 0 −2

−1

6.2.19 First, we compute eigenvalues.

det(A− λI) = det

1− λ 1 −1
−2 4− λ −1
−4 4 1− λ


= (1− λ) det

[
4− λ −1

4 1− λ

]
− det

[
−2 −1
−4 1− λ

]
− det

[
−2 4− λ
−4 4

]
= (1− λ) [(4− λ)(1− λ) + 4]− (−2 + 2λ− 4)− (−8 + 16− 4λ)

= (1− λ)(λ2 − 5λ+ 8) + 2λ− 2

= (1− λ)(λ2 − 5λ+ 8− 2)

= (1− λ)(λ2 − 5λ+ 6)

= (1− λ)(λ− 2)(λ− 3)

For λ1 = 1, we have

A− I =

 0 1 −1
−2 3 −1
−4 4 0

→
−2 3 −1

0 1 −1
0 0 0


So we have eigenvector ~v1 = (1, 1, 1).
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For λ2 = 2, we have

A− 2I =

−1 1 −1
−2 2 −1
−4 4 −1

→
−1 1 −1

0 0 1
0 0 0


So we have eigenvector ~v2 = (1, 1, 0)

For λ3 = 3, we have

A− 3I =

−2 1 −1
−2 1 −1
−4 4 −2

→
−2 1 −1

0 1 0
0 0 0


So we have eigenvector ~v3 = (1, 0,−2).

We have 3 distinct eigenvalues, so A is diagonalizable. The diagonalization is

A =

1 1 1
1 1 0
1 0 −2

1 0 0
0 2 0
0 0 3

1 1 1
1 1 0
1 0 −2

−1

6.3.7 We need to diagonalize first. So, we compute eigenvalues:

det(A− λI) = det

1− λ 3 0
0 2− λ 0
0 0 2− λ


= (1− λ)(2− λ)(2− λ)

For λ1 = 1, we have

A− I =

0 3 0
0 1 0
0 0 1

→
0 1 0

0 0 1
0 0 0


So we have eigenvector ~v1 = (1, 0, 0).

For λ2 = 2, we have

A− 2I =

−1 3 0
0 0 0
0 0 0


A basis for the eigenspace is {(3, 1, 0), (0, 0, 1)}.
So we can diagonalize A as

A = PDP−1 =

1 3 0
0 1 0
0 0 1

1 0 0
0 2 0
0 0 2

1 3 0
0 1 0
0 0 1

−1
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We compute the inverse of P :1 3 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 −3R2+R1−−−−−→

1 0 0 1 −3 0
0 1 0 0 1 0
0 0 1 0 0 1


Now A5 = PD5P−1, so

A5 =

1 3 0
0 1 0
0 0 1

1 0 0
0 2 0
0 0 2

5 1 3 0
0 1 0
0 0 1

−1

=

1 3 0
0 1 0
0 0 1

1 0 0
0 32 0
0 0 32

1 −3 0
0 1 0
0 0 1


=

1 96 0
0 32 0
0 0 32

1 −3 0
0 1 0
0 0 1


=

1 93 0
0 32 0
0 0 32


6.3.13 To diagonalize, first we compute eigenvalues.

det(A− λI) = det

1− λ −1 1
2 −2− λ 1
4 −4 1− λ


= (1− λ) det

[
−2− λ 1
−4 1− λ

]
+ det

[
2 1
4 1− λ

]
+ det

[
2 −2− λ
4 −4

]
= (1− λ) [(−2− λ)(1− λ) + 4] + 2− 2λ− 4 +−8 + 8 + 4λ

= (1− λ)(λ2 + λ+ 2) + 2λ− 2

= (1− λ)(λ2 + λ+ 2− 2)

= λ(1− λ)(λ+ 1)

For λ1 = 0, we have

A− 0I =

1 −1 1
2 −2 1
4 −4 1

→
1 −1 1

0 0 1
0 0 0


So we have eigenvector ~v1 = (1, 1, 0).

For λ2 = −1, we have

A+ I =

2 −1 1
2 −1 1
4 −4 2

→
2 −1 1

0 1 0
0 0 0


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So we have eigenvector ~v2 = (1, 0,−2).

For λ3 = 1, we have

A− I =

0 −1 1
2 −3 1
4 −4 0

→
2 −3 1

0 −1 1
0 0 0


So we have eigenvector ~v3 = (1, 1, 1).

So we can diagonalize A as

A = PDP−1 =

1 1 1
1 0 1
0 −2 1

0 0 0
0 −1 0
0 0 1

1 1 1
1 0 1
0 −2 1

−1

We compute the inverse of P :1 1 1 1 0 0
1 0 1 0 1 0
0 −2 1 0 0 1

 −R1+R2−−−−−→

1 1 1 1 0 0
0 −1 0 −1 1 0
0 −2 1 0 0 1


−2R2+R3−−−−−→
R2+R1

1 0 1 0 1 0
0 −1 0 −1 1 0
0 0 1 2 −2 1


−R3+R1−−−−−→
(−1)R2

1 0 0 −2 3 −1
0 1 0 1 −1 0
0 0 1 2 −2 1


Now A10 = PD10P−1, so

A10 =

1 1 1
1 0 1
0 −2 1

0 0 0
0 −1 0
0 0 1

10 1 1 1
1 0 1
0 −2 1

−1

=

1 1 1
1 0 1
0 −2 1

0 0 0
0 1 0
0 0 1

−2 3 −1
1 −1 0
2 −2 1


=

0 1 1
0 0 1
0 −2 1

−2 3 −1
1 −1 0
2 −2 1


=

3 −3 1
2 −2 1
0 0 1



5



6.3.25 We need to diagonalize A =

[
.9 .1
.1 .9

]
. First, we find eigenvalues:

det(A− λI) = det

[
.9− λ .1
.1 .9− λ

]
= (.9− λ)(.9− λ)− .01

= λ2 − 1.8λ+ .8

= (λ− 1)(λ− .8)

For λ1 = 1, we have

A− I =

[
−.1 .1
.1 −.1

]
→
[
−1 1
0 0

]
So we have eigenvector ~v1 = (1, 1).

For λ2 = .8, we have

A− .8I =

[
.1 .1
.1 .1

]
→
[
1 1
0 0

]
So we have eigenvector ~v2 = (−1, 1).

Our diagonalization is thus

A = PDP−1

=

[
1 −1
1 1

] [
1 0
0 4/5

] [
1 −1
1 1

]−1
Using our 2× 2 inverse formula, we get P−1 = 1

1+1

[
1 1
−1 1

]
, so we have

Ak = PDkP−1

=

[
1 −1
1 1

] [
1 0
0 (4/5)k

](
1

2

)[
1 1
−1 1

]
=

1

2

[
1 −(4/5)k

1 (4/5)k

] [
1 1
−1 1

]
=

1

2

[
1 + (4/5)k 1− (4/5)k

1− (4/5)k 1 + (4/5)k

]
Now, we can use this to tell us what the population in the city and the suburbs is at
any given time from a starting population of C0 in the city and S0 in the suburbs.[

Ck

Sk

]
= Ak

[
C0

S0

]
=

1

2

[
1 + (4/5)k 1− (4/5)k

1− (4/5)k 1 + (4/5)k

] [
C0

S0

]
=

1

2

[
C0 + C0(4/5)k + S0 − S0(4/5)k

C0 − C0(4/5)k + S0 + S0(4/5)k

]
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As we let k →∞, we have (4/5)k → 0. So in the long run,[
Ck

Sk

]
≈ 1

2

[
C0 + S0

C0 + S0

]
=

[
1/2
1/2

]
(C0 + S0)

So in the long run, 50% of the total population will live in the city and 50% will live
in the suburbs.

Additional Problems:

1. (a) Let A be an n × n matrix. For our matrix P , we take the n × n identity matrix I.
Note that I is invertible and I−1 = I. We have IAI−1 = IAI = A, so A is similar
to A.

(b) Suppose that A is similar to B. So there is an invertible matrix P with A = PBP−1.

Multiplying this equation on the left by P−1 and on the right by P , we have
P−1AP = B. Since P is invertible, P−1 is invertible as well with inverse P . So,
B = (P−1)A(P−1)−1. Thus B is similar to A.

(c) Suppose that A is similar to B and B is similar to C. So there are invertible matrices
P and Q with A = PBP−1 and B = QCQ−1.

Substituting this expression for B into the first equation, we get A = PQCQ−1P−1.
Since both P and Q are invertible, PQ is invertible with inverse Q−1P−1. So, we
have A = (PQ)C(PQ)−1 and thus A is similar to C.

2. (a) We compute the characteristic polynomial

det(A− λI) = det

[
1− λ 1

1 −λ

]
= (1− λ)(−λ)− 1

= −λ+ λ2 − 1

= λ2 − λ− 1

Applying the quadratic formula, we have

λ =
1±
√

1 + 4

2
=

1±
√

5

2

To avoid getting lost in square roots, we will write ϕ = 1+
√
5

2
. Notice then that

1−ϕ = − 1
ϕ

= 1−
√
5

2
which will make a lot of our calculations easier. For λ1 = ϕ, we

have the matrix

A− ϕI =

[
1− ϕ 1

1 −ϕ

]
→
[
1− ϕ 1

0 0

]
So we have the eigenvector ~v1 = (1, ϕ− 1). For λ2 = 1− ϕ, we have the matrix

A− (1− ϕ)I =

[
ϕ 1
1 ϕ− 1

]
→
[
ϕ 1
0 0

]
So we have the eigenvector ~v2 = (1,−ϕ).
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(b) Using what we found in (a), we can write the diagonalization of A:

A = PDP−1

=

[
1 1

ϕ− 1 −ϕ

] [
ϕ 0
0 1− ϕ

] [
1 1

ϕ− 1 −ϕ

]−1
Using our 2× 2 matrix inverse formula, we can write[

1 1
ϕ− 1 −ϕ

]−1
=

1

−ϕ− (−1 + ϕ)

[
−ϕ −1

1− ϕ 1

]
=

1

1− 2ϕ

[
−ϕ −1

1− ϕ 1

]
At this point, it is worthwhile to remember that we have set ϕ = 1+

√
5

2
. Using this,

we can simplify 1
1−2ϕ = − 1√

5
. So the inverse matrix is more simply[

1 1
ϕ− 1 −ϕ

]−1
=

1√
5

[
ϕ 1

ϕ− 1 −1

]
Since An = PDnP−1, we compute

An =

[
1 1

ϕ− 1 −ϕ

] [
ϕ 0
0 1− ϕ

]n [
1 1

ϕ− 1 −ϕ

]−1
=

1√
5

[
1 1

ϕ− 1 −ϕ

] [
ϕn 0
0 (1− ϕ)n

] [
ϕ 1

ϕ− 1 −1

]
=

1√
5

[
ϕn (1− ϕ)n

ϕn(ϕ− 1) (−ϕ)(1− ϕ)n

] [
ϕ 1

ϕ− 1 −1

]
=

1√
5

[
ϕn+1 + (1− ϕ)n(ϕ− 1) ϕn − (1− ϕ)n

ϕn+1(ϕ− 1)− ϕ(1− ϕ)n(ϕ− 1) ϕn(ϕ− 1) + ϕ(1− ϕ)n

]
=

1√
5

[
ϕn+1 − (1− ϕ)n+1 ϕn − (1− ϕ)n

(ϕ− 1)(ϕn+1 − ϕ(1− ϕ)n) ϕn(ϕ− 1) + ϕ(1− ϕ)n

]
At this point, it is useful to remember that 1 − ϕ = − 1

ϕ
and ϕ − 1 = 1

ϕ
, so we can

simplify a bit further to get

An =
1√
5

[
ϕn+1 − (1− ϕ)n+1 ϕn − (1− ϕ)n

ϕn − (1− ϕ)n ϕn−1 − (1− ϕ)n−1

]
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(c) We know that ~xn = An~x0 = An

[
1
0

]
, so

~xn = An

[
1
0

]
=

1√
5

[
ϕn+1 − (1− ϕ)n+1 ϕn − (1− ϕ)n

ϕn − (1− ϕ)n ϕn−1 − (1− ϕ)n−1

] [
1
0

]
=

1√
5

[
ϕn+1 − (1− ϕ)n+1

ϕn − (1− ϕ)n

]

Now, we know that ~xn =

[
fn+1

fn

]
, so this computation tells us that

fn =
1√
5

(ϕn − (1− ϕ)n)

=
1√
5

[(
1 +
√

5

2

)n

−

(
1−
√

5

2

)n]

Aside: This is a remarkable formula. For one thing, it should be surprising that this
expression ever yields an integer, let alone that it is an integer for every nonnegative
integer n. The golden ratio ϕ is an irrational number, meaning that it cannot be
expressed as a fraction of two integers. It is quite unusual for expressions involving
irrational numbers to produce rational numbers. It is even more unusual for them
to produce integers.

We should also be surprised that we can compute the 100th Fibonacci number with-
out computing the 99 before it. Ostensibly, I only know that f100 = f99 + f98 and
I have to use the rule fn+1 = fn + fn−1 many many times before I can apply the
initial values f0 = 0 and f1 = 1. But with this formula, I can use any calculator to
immediately compute f100 = 354, 224, 848, 179, 261, 915, 075.
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