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1 Problem 3 section 3.4

Problem

In Problems 1-4, two matrices 𝐴 and 𝐵 and two numbers 𝑐 and 𝑑 are given. Compute the
matrix 𝑐𝐴 + 𝑑𝐵

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 0
0 7
3 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐵 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 5
3 2
7 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑐 = −2, 𝑑 = 4

Solution

𝑐𝐴 + 𝑑𝐵 = −2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 0
0 7
3 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 5
3 2
7 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−10 0
0 −14
−6 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−16 20
12 8
28 16

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−26 20
12 −6
22 18

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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2 Problem 5 section 3.4

Problem

In Problems 5-12, two matrices 𝐴 and 𝐵 are given. Calculate whichever of the matrices 𝐴𝐵
and 𝐵𝐴 is defined.

𝐴 =
⎡
⎢⎢⎢⎢⎣
2 −1
3 2

⎤
⎥⎥⎥⎥⎦, 𝐵 =

⎡
⎢⎢⎢⎢⎣
−4 2
1 3

⎤
⎥⎥⎥⎥⎦

Solution

𝐴 dimension is 2 × 2 and 𝐵 dimension is 2 × 2. So inner dimensions agree. Both 𝐴𝐵 and 𝐵𝐴
are defined. Using definition of matrix multiplication we obtain

𝐴𝐵 =
⎡
⎢⎢⎢⎢⎣
2 −1
3 2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
−4 2
1 3

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
−9 1
−10 12

⎤
⎥⎥⎥⎥⎦

And

𝐵𝐴 =
⎡
⎢⎢⎢⎢⎣
−4 2
1 3

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
2 −1
3 2

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
−2 8
11 5

⎤
⎥⎥⎥⎥⎦
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3 Problem 8 section 3.4

Problem

𝐴 =
⎡
⎢⎢⎢⎢⎣
1 0 3
2 −5 4

⎤
⎥⎥⎥⎥⎦, 𝐵 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0
−1 4
6 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

𝐴 dimension is 2 × 3 and 𝐵 dimension is 3 × 2. Hence 𝐴𝐵 is (2 × 3)(3 × 2) = 2 × 2 matrix.
Therefore inner dimensions agree. And 𝐵𝐴 is define since (3 × 2)(2 × 3) = 3 × 3. Therefore
inner dimensions agree.

𝐴𝐵 =
⎡
⎢⎢⎢⎢⎣
1 0 3
2 −5 4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0
−1 4
6 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
21 15
35 0

⎤
⎥⎥⎥⎥⎦

And

𝐵𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0
−1 4
6 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 0 3
2 −5 4

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0 9
7 −20 13
16 −25 38

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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4 Problem 11 section 3.4

Problem

𝐴 = �3 −5�, 𝐵 =
⎡
⎢⎢⎢⎢⎣
2 7 5 6
−1 4 2 3

⎤
⎥⎥⎥⎥⎦

Solution

𝐴 dimension is 1 × 2 and 𝐵 dimension is 2 × 4. Hence 𝐴𝐵 is (1 × 2)(2 × 4) = 1 × 4 matrix.
Therefore inner dimensions agree. And 𝐵𝐴 is not defined since (2 × 4)(1 × 2). Therefore inner
dimensions do not agree. So only 𝐴𝐵 is defined here.

𝐴𝐵 = �3 −5�
⎡
⎢⎢⎢⎢⎣
2 7 5 6
−1 4 2 3

⎤
⎥⎥⎥⎥⎦

= �11 1 5 3�



6

5 Problem 3 section 3.5

Problem

In Problems 1-8, first apply the formulas in (9) to find 𝐴−1. Then use 𝐴−1 (as in Example 5)
to solve the system 𝐴𝑥 = 𝑏.

𝐴 =
⎡
⎢⎢⎢⎢⎣
6 7
5 6

⎤
⎥⎥⎥⎥⎦, 𝑏 =

⎡
⎢⎢⎢⎢⎣
2
−3

⎤
⎥⎥⎥⎥⎦

Solution

Formula (9) is

𝐴 =
⎡
⎢⎢⎢⎢⎣
𝑎 𝑏
𝑐 𝑑

⎤
⎥⎥⎥⎥⎦

𝐴−1 =
1

𝑎𝑑 − 𝑏𝑐

⎡
⎢⎢⎢⎢⎣
𝑑 −𝑏
−𝑐 𝑎

⎤
⎥⎥⎥⎥⎦

Therefore

⎡
⎢⎢⎢⎢⎣
6 7
5 6

⎤
⎥⎥⎥⎥⎦

−1

=
1

36 − 35

⎡
⎢⎢⎢⎢⎣
6 −7
−5 6

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
6 −7
−5 6

⎤
⎥⎥⎥⎥⎦

Hence

𝑥 = 𝐴−1𝑏

=
⎡
⎢⎢⎢⎢⎣
6 −7
−5 6

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
2
−3

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
33
−28

⎤
⎥⎥⎥⎥⎦
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6 Problem 10 section 3.5

Problem

In Problems 9-22, use the method of Example 7 to find the inverse 𝐴−1 of each given matrix
𝐴.

𝐴 =
⎡
⎢⎢⎢⎢⎣
5 7
4 6

⎤
⎥⎥⎥⎥⎦

Solution

The augmented matrix is ⎡
⎢⎢⎢⎢⎣
5 7 1 0
4 6 0 1

⎤
⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 − 𝑅2 gives ⎡
⎢⎢⎢⎢⎣
1 1 1 −1
4 6 0 1

⎤
⎥⎥⎥⎥⎦

𝑅2 → −4𝑅1 + 𝑅2 gives ⎡
⎢⎢⎢⎢⎣
1 1 1 −1
0 2 −4 5

⎤
⎥⎥⎥⎥⎦

𝑅2 →
1
2𝑅2 gives ⎡

⎢⎢⎢⎢⎣
1 1 1 −1
0 1 −2 5

2

⎤
⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 − 𝑅2 gives ⎡
⎢⎢⎢⎢⎣
1 0 3 −7

2
0 1 −2 5

2

⎤
⎥⎥⎥⎥⎦

Since the left side of the augments matrix is now the identity matrix, then we read 𝐴−1 from
the right side. Hence

𝐴−1 =
⎡
⎢⎢⎢⎢⎣
3 −7

2
−2 5

2

⎤
⎥⎥⎥⎥⎦

=
1
2

⎡
⎢⎢⎢⎢⎣
6 −7
−4 5

⎤
⎥⎥⎥⎥⎦
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7 Problem 16 section 3.5

Problem

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −3
−1 1 2
2 −3 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

The augmented matrix is

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −3 1 0 0
−1 1 2 0 1 0
2 −3 −3 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅1 + 𝑅2 gives

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −3 1 0 0
0 −2 −1 1 1 0
2 −3 −3 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → −(2)𝑅1 + 𝑅3 gives

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −3 1 0 0
0 −2 −1 1 1 0
0 3 3 −2 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 3𝑅2 and 𝑅3 → 2𝑅3 gives

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −3 1 0 0
0 −6 −3 3 3 0
0 6 6 −4 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅2 + 𝑅3 gives

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −3 1 0 0
0 −6 −3 3 3 0
0 0 3 −1 3 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 + 𝑅3 gives

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −3 1 0 0
0 −6 0 2 6 2
0 0 3 −1 3 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 + 𝑅3 gives

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 0 0 3 2
0 −6 0 2 6 2
0 0 3 −1 3 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑅1 → 𝑅1 −
1
2𝑅2 gives

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1 0 1
0 −6 0 2 6 2
0 0 3 −1 3 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 →
−1
6 𝑅2 gives

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1 0 1
0 1 0 −1

3 −1 −1
3

0 0 3 −1 3 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 →
1
3𝑅3 gives

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1 0 1
0 1 0 −1

3 −1 −1
3

0 0 1 −1
3 1 2

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since the left side of the augments matrix is now the identity matrix, then we read 𝐴−1 from
the right side. Hence

𝐴−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 1
−1
3 −1 −1

3
−1
3 1 2

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1
3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 0 3
−1 −3 −1
−1 3 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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8 Problem 4 section 3.6

Problem

Use cofactor expansions to evaluate the determinants in Problems 1-6. Expand along the
row or column that minimizes the

amount of computation that is required.

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 11 8 7
3 −2 6 23
0 0 0 −3
0 4 0 17

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

Row 4 has most zeros. Hence expansion is on row 4.

|𝐴| = (−)(−3)
�

�

5 11 8
3 −2 6
0 4 0

�

�

= 3
�

�

5 11 8
3 −2 6
0 4 0

�

�

For
�

�

5 11 8
3 −2 6
0 4 0

�

�
we expand on 3rd row. The above becomes

|𝐴| = 3
⎛
⎜⎜⎜⎜⎝(−)4�

5 8
3 6

�

⎞
⎟⎟⎟⎟⎠

= −12�
5 8
3 6

�

= −12(30 − 24)

Therefore
|𝐴| = −72
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9 Problem 9 section 3.6

Problem

In Problems 7-12, evaluate each given determinant after first simplifying the computation
(as in Example 6) by adding an appropriate multiple of some row or column to another.

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −2 5
0 5 17
6 −4 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

Adding multiple of some row to another row does not change the determinant of a matrix.
Same for adding multiple of some column to another column. We can take advantage of
this to add more zeros to the matrix before applying the cofactor method to reduce the
computation needed.

Let 𝑅3 → −2𝑅1 + 𝑅3 gives

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −2 5
0 5 17
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Expansion on third row now gives

|𝐴| = (+)2�
3 −2
0 5

�

= 2(15)

Therefore
|𝐴| = 30
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10 Problem 21 section 3.6

Problem

Use Cramer’s rule to solve the systems in Problems 21-32.

3𝑥 + 4𝑦 = 2
5𝑥 + 7𝑦 = 1

Solution

The system in matrix form is ⎡
⎢⎢⎢⎢⎣
3 4
5 7

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑥
𝑦

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
2
1

⎤
⎥⎥⎥⎥⎦

Hence using Cramer’s rule

𝑥 =
�
2 4
1 7

�

�
3 4
5 7

�

=
14 − 4
21 − 20

= 10

And

𝑦 =
�
3 2
5 1

�

�
3 4
5 7

�

=
3 − 10
21 − 20

= −7

Hence the solution is ⎡
⎢⎢⎢⎢⎣
𝑥
𝑦

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
10
−7

⎤
⎥⎥⎥⎥⎦
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11 Additional problem 1

Problem

Give an example of matrices 𝐴 and 𝐵 where 𝐴𝐵 = 𝐵𝐴

Solution

Let 𝐴 =
⎡
⎢⎢⎢⎢⎣
𝑎 𝑏
𝑐 𝑑

⎤
⎥⎥⎥⎥⎦, 𝐵 =

⎡
⎢⎢⎢⎢⎣
𝑒 𝑓
𝑔 ℎ

⎤
⎥⎥⎥⎥⎦. Then

𝐴𝐵 =
⎡
⎢⎢⎢⎢⎣
𝑎 𝑏
𝑐 𝑑

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑒 𝑓
𝑔 ℎ

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
𝑎𝑒 + 𝑏𝑔 𝑎𝑓 + 𝑏ℎ
𝑐𝑒 + 𝑑𝑔 𝑐𝑓 + 𝑑ℎ

⎤
⎥⎥⎥⎥⎦ (1)

And

𝐵𝐴 =
⎡
⎢⎢⎢⎢⎣
𝑒 𝑓
𝑔 ℎ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑎 𝑏
𝑐 𝑑

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
𝑎𝑒 + 𝑐𝑓 𝑏𝑒 + 𝑑𝑓
𝑎𝑔 + 𝑐ℎ 𝑏𝑔 + 𝑑ℎ

⎤
⎥⎥⎥⎥⎦ (2)

For (1,2) to be equal implies that

𝑎𝑒 + 𝑏𝑔 = 𝑎𝑒 + 𝑐𝑓
𝑎𝑓 + 𝑏ℎ = 𝑏𝑒 + 𝑑𝑓
𝑐𝑒 + 𝑑𝑔 = 𝑎𝑔 + 𝑐ℎ
𝑐𝑓 + 𝑑ℎ = 𝑏𝑔 + 𝑑ℎ

Simplifying gives

𝑏𝑔 = 𝑐𝑓
𝑎𝑓 + 𝑏ℎ = 𝑏𝑒 + 𝑑𝑓
𝑐𝑒 + 𝑑𝑔 = 𝑎𝑔 + 𝑐ℎ

𝑐𝑓 = 𝑏𝑔

First equation is the same as the fourth. Hence the above becomes

𝑏𝑔 = 𝑐𝑓
𝑎𝑓 + 𝑏ℎ = 𝑏𝑒 + 𝑑𝑓
𝑐𝑒 + 𝑑𝑔 = 𝑎𝑔 + 𝑐ℎ
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Let 𝑎 = 1, 𝑏 = 2, 𝑐 = 3, 𝑑 = 4, 𝑒 = 5, 𝑓 = 6. The above becomes

2𝑔 = 18
6 + 2ℎ = 10 + 24
15 + 4𝑔 = 𝑔 + 3ℎ

or

𝑔 = 9
ℎ = 14

Hence and example is

𝐴 =
⎡
⎢⎢⎢⎢⎣
𝑎 𝑏
𝑐 𝑑

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
1 2
3 4

⎤
⎥⎥⎥⎥⎦

𝐵 =
⎡
⎢⎢⎢⎢⎣
𝑒 𝑓
𝑔 ℎ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
5 6
9 14

⎤
⎥⎥⎥⎥⎦

To verify

𝐴𝐵 =
⎡
⎢⎢⎢⎢⎣
1 2
3 4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
5 6
9 14

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
23 34
51 74

⎤
⎥⎥⎥⎥⎦

𝐵𝐴 =
⎡
⎢⎢⎢⎢⎣
5 6
9 14

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 2
3 4

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
23 34
51 74

⎤
⎥⎥⎥⎥⎦
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12 Additional problem 2

Problem

Give an example of matrices 𝐶 and 𝐷 where 𝐶𝐷 ≠ 𝐷𝐶.

Solution

From the last problem, we found a solution that makes 𝐶𝐷 = 𝐷𝐶 to be

𝑔 = 9
ℎ = 14

So any other value will make 𝐶𝐷 ≠ 𝐷𝐶. Hence an example is

𝐶 =
⎡
⎢⎢⎢⎢⎣
𝑎 𝑏
𝑐 𝑑

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
1 2
3 4

⎤
⎥⎥⎥⎥⎦

𝐷 =
⎡
⎢⎢⎢⎢⎣
𝑒 𝑓 + 1
𝑔 ℎ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
5 6 + 1
9 14

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
5 7
9 14

⎤
⎥⎥⎥⎥⎦

To verify

𝐶𝐷 =
⎡
⎢⎢⎢⎢⎣
1 2
3 4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
5 7
9 14

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
23 35
51 77

⎤
⎥⎥⎥⎥⎦

But

𝐷𝐶 =
⎡
⎢⎢⎢⎢⎣
5 7
9 14

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 2
3 4

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
26 38
51 74

⎤
⎥⎥⎥⎥⎦

Hence 𝐶𝐷 ≠ 𝐷𝐶
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13 Additional problem 3

Problem

Let 𝐴;𝐵, and 𝐶 be invertible 𝑛 × 𝑛 matrices. Is the product 𝐴𝐵𝐶 invertible? If it is invertible,
what is (𝐴𝐵𝐶)−1?

Solution

Let 𝐴𝐵𝐶 = 𝐷. Premultiplying both sides by 𝐴−1 gives

𝐴−1𝐴𝐵𝐶 = 𝐴−1𝐷
𝐵𝐶 = 𝐴−1𝐷

Premultiplying both sides by 𝐵−1 gives

𝐵−1𝐵𝐶 = 𝐵−1𝐴−1𝐷
𝐵 = 𝐵−1𝐴−1𝐷

Premultiplying both sides by 𝐶−1 gives

𝐼 = �𝐶−1𝐵−1𝐴−1�𝐷 (1)

Starting with 𝐴𝐵𝐶 = 𝐷 again, but now post multiplying both sides by 𝐶−1 gives

𝐴𝐵𝐶𝐶−1 = 𝐷𝐶−1

𝐴𝐵 = 𝐷𝐶−1

Post multiplying both sides by 𝐵−1 gives

𝐴𝐵𝐵−1 = 𝐷𝐶−1𝐵−1

𝐴 = 𝐷𝐶−1𝐵−1

Post multiplying both sides by 𝐴−1 gives

𝐼 = 𝐷�𝐶−1𝐵−1𝐴−1� (2)

Comparing (1,2) we see that

�𝐶−1𝐵−1𝐴−1�𝐷 = 𝐷�𝐶−1𝐵−1𝐴−1� = 𝐼 (3)

This means 𝐶−1𝐵−1𝐴−1 is the inverse of 𝐷 by definition (page 177 of book) which says if
𝐴𝐵 = 𝐵𝐴 = 𝐼 then 𝐵 is the inverse of 𝐴.

But 𝐷 is the product of 𝐴𝐵𝐶. Hence the product is invertible. And from (3), its inverse is
given by

(𝐴𝐵𝐶)−1 = 𝐶−1𝐵−1𝐴−1
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14 Additional problem 4

Problem

Let 𝑇 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡1 0 0
0 𝑡2 0
0 0 𝑡3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
be diagonal matrix. What is det(𝑇)?

Solution

The determinant of a diagonal matrix is the product of the elements on the diagonal. Hence

det(𝑇) = 𝑡1𝑡2𝑡3

This comes from expansion over any row or column. For example, expansion along row 1
gives

det(𝑇) = 𝑡1�
𝑡2 0
0 𝑡3

�

= 𝑡1𝑡2 det(�𝑡3�

= 𝑡1𝑡2𝑡3

Note that the sign of the elements are all positive for 3 × 3 since 𝑛 is odd here.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ − +
− + −
+ − +

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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15 Additional problem. Optional

Problem

Optional: Consider an 𝑛 × 𝑛 diagonal matrix 𝑇. What is 𝑑𝑒𝑡(𝑇)? The required part of this
problem asks you to answer this question for the case where 𝑛 = 3.

Solution

𝑇 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡1 0 0 ⋯ ⋯ 0
0 𝑡2 0 ⋯ ⋯ 0
0 0 𝑡3 ⋯ ⋯ 0
0 ⋯ ⋯ ⋱ ⋯ 0
0 ⋯ ⋯ ⋯ ⋱ 0
0 ⋯ ⋯ ⋯ ⋯ 𝑡𝑛

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

det(𝑇) is the product of all elements on the diagonal. This comes from expansion over any
row. For example, expansion on row 1 gives

det(𝑇) = 𝑡1

�
�
�
�

𝑡2 0 ⋯ ⋯ 0
0 𝑡3 ⋯ ⋯ 0
⋯ ⋯ ⋱ ⋯ 0
⋯ ⋯ ⋯ ⋱ 0
⋯ ⋯ ⋯ ⋯ 𝑡𝑛

�
�
�
�

= 𝑡1𝑡2

�
�
�

𝑡3 ⋯ ⋯ 0
⋯ 𝑡4 ⋯ 0
⋯ ⋯ ⋱ 0
⋯ ⋯ ⋯ 𝑡𝑛

�
�
�

= 𝑡1𝑡2𝑡3
�

�

𝑡4 ⋯ 0
⋯ ⋱ 0
⋯ ⋯ 𝑡𝑛

�

�

And so on until the last entry

det(𝑇) = 𝑡1𝑡2𝑡3⋯𝑡𝑛

=
𝑛
�
𝑖=1

𝑡𝑛

Note on the sign. In expansion, we have to take account of sign changes. If 𝑛 is odd, then
the sign of the elements are all positive on the diagonal as in case 𝑛 = 3 above. So we do
not need to worry about this case.

For even 𝑛, the sign on diagoanl also remains positive, since the formula is (−1)𝑖+𝑗 where 𝑖, 𝑗
are the index of the diagonal elements, and this always adds to even number since 𝑖 = 𝑗 on
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the diagonal. For an example for 𝑛 = 4
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ − + −
− + − +
+ − + −
− + − +

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We see that product on the diagonal always has positive signs.
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